
OBDA for Log Extraction in Process Mining

Diego Calvanese, Tahir Emre Kalayci, Marco Montali(B), and Ario Santoso

KRDB Research Centre for Knowledge and Data,
Free University of Bozen-Bolzano, Bolzano, Italy

{calvanese,tkalayci,montali,santoso}@inf.unibz.it

Abstract. Process mining is an emerging area that synergically com-
bines model-based and data-oriented analysis techniques to obtain useful
insights on how business processes are executed within an organization.
Through process mining, decision makers can discover process models
from data, compare expected and actual behaviors, and enrich models
with key information about their actual execution. To be applicable,
process mining techniques require the input data to be explicitly struc-
tured in the form of an event log, which lists when and by whom different
case objects (i.e., process instances) have been subject to the execution of
tasks. Unfortunately, in many real world set-ups, such event logs are not
explicitly given, but are instead implicitly represented in legacy informa-
tion systems. To apply process mining in this widespread setting, there
is a pressing need for techniques able to support various process stake-
holders in data preparation and log extraction from legacy information
systems. The purpose of this paper is to single out this challenging, open
issue, and didactically introduce how techniques from intelligent data
management, and in particular ontology-based data access, provide a
viable solution with a solid theoretical basis.

Keywords: Process mining · Ontology-based data access · Event log
extraction · Relational database management systems

1 Introduction

SMEs1 and large enterprises are increasingly adopting business process man-
agement to continuously optimise internal work, achieve its strategic business
objectives, and guarantee quality of service to their customers. Business process
management provides methods, techniques, and tools to comprehensively sup-
port managers and domain experts in the design, administration, configuration,
execution, monitoring, and analysis of operational business processes [1]. As
pointed out in [2], a business process consists of a set of activities that are
performed in coordination in an organisational and technical environment, and
that jointly realise a business goal. At execution time, the process is instantiated
multiple times, leading to different sequences of activity executions performed
by different resources, where each sequence refers to the evolution of a main,
1 Small and medium-sized enterprises.

c© Springer International Publishing AG 2017
G. Ianni et al. (Eds.): Reasoning Web 2017, LNCS 10370, pp. 292–345, 2017.
DOI: 10.1007/978-3-319-61033-7 9

OBDA for Log Extraction in Process Mining 293

so-called case object. The instantiation of each activity on a case, in turn, gives
raise to multiple events, indicating the evolution of each activity instance from
its start to its completion or cancellation, according to a so-called activity trans-
actional lifecycle.

The notion of case depends on the nature of the process, and on the perspec-
tive taken to understand the process. For example, in an order-to-cash scenario,
the case typically corresponds to the order first issued by a customer, then manip-
ulated within the enterprise, paid by the customer, and finally shipped to her.
Different orders give raise to different process instances and corresponding exe-
cution traces. While using the order as a case object to understand the process
is the most natural choice in this scenario, alternative case objects may be useful
to understand the same process from different viewpoints. For example, suppose
that the enterprise managing orders relies on an external shipping company to
handle the order deliveries. Such a shipping company may prefer to consider its
couriers as cases, and consequently focus its attention to the flow of operations
performed by each courier, possibly involving multiple orders at once.

Classical BPM is purely model-driven: processes are elicited using human
ingenuity through interviews with the involved stakeholders, and then used in
a prescriptive manner to orchestrate the process execution, and to indicate to
such stakeholders how they are expected to behave. This has been increasingly
considered as the main limiting factor towards large-scale adoption of BPM. On
the one hand, people tend to consider processes not as a support, but as a form
of control over their behaviour. This is especially true in so-called knowledge-
intensive settings, where it is not possible to foresee all potential state of affairs in
advance, nor to enumerate all possible courses of execution, which have in fact to
be adaptively and incrementally devised at runtime by the involved stakeholders,
leveraging their own knowledge. On the other hand, there is an intrinsic mis-
match between processes as reflected in models, and process executions resulting
from the actual progression of cases in a real organisational setting. Even when
processes are executed in line with the elicited process models, considering exe-
cution data is crucial to understand how work is effectively carried out inside
the enterprise, and consequently obtain useful insights related to key perfor-
mance indicators (such as average completion time for cases), the detection of
bottlenecks and of working relationships among persons, and the identification
of frequent and infrequent behaviours, to name a few.

To resolve this mismatch between process models and process executions, the
emerging area of process mining [3,4] has become increasingly popular both in the
academia and the industry. Process mining is a collection of techniques that com-
bine, in a synergic way, model-based and data-oriented analysis to obtain useful
insights on how business processes are executed in a real organisational environ-
ment. Through process mining, decision makers can discover process models from
data, compare expected and actual behaviours, and enrich models with informa-
tion obtained from their execution. The process mining manifesto [3] provides a
thorough introduction to process mining. The book by van der Aalst [4] is the
main reference material for students, researchers and professionals interested in

294 D. Calvanese et al.

this field. In addition, a list of successful stories related to the application of process
mining to concrete case studies can be found at the web page of IEEE CIS Task
Force on Process Mining2.

The applicability of process mining depends on two crucial factors:

– the availability of high-quality event data, and of event logs containing correct
and complete event data about which cases have been executed, which events
occurred for each case, and when they did occur;

– the representation of such data in a format that is understandable by process
mining algorithms, such as the XML-based, IEEE standard eXtensible Event
Stream (XES) [5].

Event data structured in this form are only readily available if the enterprise
under analysis adopts a business process management system, providing direct
support for orchestrating the execution of cases according to a given process
model, and at the same time providing logging capabilities for cases, events, and
corresponding attributes. In this setting, the extraction of an event log for process
mining is quite direct. Unfortunately, in many real world settings, the enterprise
exploits functionalities offered by more general enterprise systems such as ERP3,
CRM4, SCM5, and other business suites. In addition, such systems are typically
configured for the specific needs of the company, and connected to domain-
specific and other legacy information systems. Within such complex systems,
event logs are not explicitly present, but have instead to be reconstructed by
extracting and integrating information present in all such different, possibly
heterogeneous data sources.

To apply process mining in this widespread setting, there is a pressing need
for techniques that are able to support data and process analysts in the data
preparation phase [3], and in particular in the extraction of event data from
legacy information systems. The purpose of this paper is to single out this chal-
lenging, open issue, and didactically introduce how techniques from intelligent
data management, and in particular ontology-based data access (OBDA) [6–8],
provide a viable solution with a solid theoretical basis. The resulting approach,
called onprom [9], comes with a methodology supporting data and process ana-
lysts in the conceptual identification of event data, answering questions like: (i)
Which are relevant concepts and relations? (ii) How do such concepts/relations
map to the underlying information system? (iii) Which concepts/relations relate
to the notion of case, event, and event attributes? The methodology is backed up
by a toolchain that, once the aforementioned questions are answered, automat-
ically extracts an event log conforming to the chosen perspective, and obtained
by inspecting the data where they are, thanks to the OBDA paradigm and tools.

2 http://tinyurl.com/ovedwx4.
3 Enterprise Resource Planning.
4 Customer Relationship Management.
5 Supply Chain Management.

http://tinyurl.com/ovedwx4

OBDA for Log Extraction in Process Mining 295

2 Process Mining: A Gentle Introduction

In this section, we give broad introduction to process mining, starting with the
reference framework for process mining, the main process mining techniques, and
an excursus of some contemporary process mining tools. In the second part of
the section, we focus on the data preparation phase for process mining, recalling
the notion of event log and of the event log format expected by process mining
algorithms.

Fig. 1. The reference framework for process mining, and the three types of process
mining techniques: discovery, conformance, and enhancement [3]

2.1 The Process Mining Framework

The reference framework for process mining is depicted in Fig. 1. On the one
hand, process mining considers conceptual models describing processes, organi-
sational structures, and the corresponding relevant data. On the other hand, it
focuses on the real execution of processes, as reflected by the footprint of real-
ity logged and stored by the software systems in use within the enterprise. For
process mining to be applicable, such information has to be structured in the
form of explicit event logs. In fact, all process mining techniques assume that
it is possible to record the sequencing of relevant events occurred within the
enterprise, such that each event refers to an activity (i.e., a well-defined step in

296 D. Calvanese et al.

some process) and is related to a particular case [3]. Events may have additional
information stored in event logs. In fact, whenever possible, process mining tech-
niques use extra information such as the exact timestamp at which the event has
been recorded, the resource (i.e., person or device) that generated the event, the
event type in the context of the activity transactional lifecycle (e.g., whether the
activity has been started, cancelled, or completed), the timestamp of the event,
or data elements recorded with the event (e.g., the size of an order).

Example 1. As a running example, we consider a simplified conference sub-
mission system, which we call ConfSys. The main purpose of ConfSys is
to coordinate authors, reviewers, and conference chairs in the submission of
papers to conferences, the consequent review process, and the final decision
about paper acceptance or rejection. Figure 2 shows the process control flow
considering papers as case objects. Under this perspective, the management of
a single paper evolves through the following execution steps. First, the paper
is created by one of its authors, and submitted to a conference available in the
system. Once the paper is submitted, the review phase for that paper starts.
This phase of the process consists of a so-called multi-instance section, i.e., a
section of the process where the same set of activities is instantiated multiple
times on the same paper, and then executed in parallel. In the case of ConfSys,
this section is instantiated for each reviewer selected by the conference chair for
the paper, and consists of the following three activities: (i) a reviewer is assigned
to the paper; (ii) the reviewer produces the review; (iii) the reviewer submits
the review to ConfSys. The multi-instance section is considered completed only
when all its parallel instantiations are completed. Hence the process continues as
soon as all appointed reviewers have submitted their review. Based on the sub-
mitted reviews, the chair then decides if the paper has to be accepted or rejected.
In the former case, one of the authors is expected to upload the final (camera
ready) version of the paper, addressing the comments issued by reviewers.

create
paper

author

submit
paper

author

assign
reviewer

chair

review
paper

reviewer

submit
review

reviewer

take
decision

chair

accept?

accept
paper

chair

reject
paper

chair

upload
camera
ready

author

Y

N

Fig. 2. The process for managing papers in a simplified conference submission system;
gray tasks are external to the conference information system and cannot be logged.

OBDA for Log Extraction in Process Mining 297

It is important to notice, again, that the process model shown in Fig. 2 is
only one of the several representations of the process, reflecting the perspective
of papers as process cases. A completely different model would emerge from
the same process, when focusing on the evolution of reviews instead of that of
papers.

A fragment of a sample event log tracking the evolution of papers within
ConfSys is shown in Table 1. The logged activities corresponds to those activ-
ities in Fig. 2 that actually comprise interaction with the software system of
ConfSys, together with those activities that are autonomously executed by the
system itself. From the point of view of the software system, the former activities
are called human-interaction activities, and the latter are called system activi-
ties. These two types of activity contrast with purely human activities, which are
executed by humans in the concrete world without software support, and can
be indirectly logged only if accompanied by corresponding human-interaction
activities. An example of this can be seen in Fig. 2, where review paper is a
purely human activity carried out by a reviewer without the intervention of the
software system, and is in fact coupled with submit review, a human-interaction
activity executed by a reviewer to communicate to ConfSys the outcome of
review paper. As we can see from the table there are two different cases (i.e.,
papers), with various events, each involving different responsible actors. Both
cases regard papers that have been subject only to a single review, but in the
first case the paper is accepted, while in the second one it is rejected. �

How do process mining techniques exploit models and/or event logs to extract
useful insights, and what do they offer concretely? The three main types of

Table 1. An event log fragment tracking the evolution of two papers within ConfSys.
Every paper is a case, which in turn corresponds to a trace of events logging the
execution of (human-interaction and system) activities instantiated on that paper.

Case ID Event data

ID Timestamp Activity User . . .

1 35654423 30-12-2010:11.02 create paper Pete . . .

35654424 31-12-2010:10.06 submit paper Pete . . .

35654425 05-01-2011:15.12 assign review Mike . . .

35654426 06-01-2011:11.18 submit review Sara . . .

35654428 07-01-2011:14.24 accept paper Mike . . .

35654429 06-01-2011:11.18 upload CR Pete . . .

2 35654483 30-12-2010:11.32 create paper George . . .

35654485 30-12-2010:12.12 submit paper John . . .

35654487 30-12-2010:14.16 assign review Mike . . .

35654489 16-01-2011:10.30 submit review Ellen . . .

35654490 18-01-2011:12.05 reject paper Mike . . .

298 D. Calvanese et al.

process mining techniques are marked by the three, thick red arrows in the
bottom part of Fig. 1. We briefly discuss them next.

Discovery starts from an event log and automatically produces a process model
that explains the different behaviours observed in the log, without assuming any
prior knowledge on the process. The vast majority of process discovery algo-
rithms focus on the discovery of the process control-flow, towards generating a
model that indicates what are the allowed sequences of activities according to
the log. One of the first algorithms in this line is the α algorithm [10], which
produces a Petri net that compactly explains the sequences of activities present
in a given event log. Contemporary control-flow discovery algorithms are much
more sophisticated and richer in terms of the produced results, and differ from
each other along several dimensions, such as the concrete language they use for
the discovered model, the ability of enriching control-flow with additional ele-
ments (such as decision and data logic), and the ability of incorporating multiple
abstraction levels (i.e., to hide/show details about infrequent or outlier behav-
iours). In addition, their quality depends on how they trade between the four
crucial factors of:

1. fitness - to what extent the produced model correctly reconstructs the behav-
iours present in the log;

2. simplicity - how much is the produced model understandable to humans;
3. precision - how much is the produced model adherent to the behaviours con-

tained in the log;
4. generalisation - what is the extent of behaviours not contained in the log, but

supported by the model.

In addition to the control-flow perspective, many other aspects are addressed
by process discovery techniques (cf. Sect. 2.2). For example, a class of discovery
algorithms focuses on process resources, producing a social network that explains
the hand-over of work among the stakeholders involved in the process. This is
only possible if the input event log contains resource-related information (this
is, e.g., the case of the log shown in Table 1).

Conformance Checking compares an existing process model and an event log
for the same process, with the aim of understanding the presence and nature of
deviations. Conformance checking techniques take as input an event log and a
(possibly discovered) process model, and return indications related to the adher-
ence of the behaviours contained in the log to the prescriptions contained in the
model. Detected deviations provide on the one hand the basis to take coun-
termeasures on non-conforming behaviours, and on the other hand to act on
the considered model and suitable re-engineer it so as to incorporate also the
unaligned behaviours. In this light, conformance checking ranges from the detec-
tion and localisation of sources of non-conformance, to the estimation of their
severity, the computation of conformance metrics summarising them, and possi-
bly even their explanation and diagnosis.

OBDA for Log Extraction in Process Mining 299

Enhancement improves an existing process model using information recorded
inside an event log for that process. The input of enhancement techniques is a
process model and an event log, and the output is a new process model that
incorporates and reflects new information extracted from the data. The first
important class of enhancement techniques is that of extension, where the input
process model is not altered in its structure, but is extended with additional
perspectives, using information present in the log. Examples of extension tech-
niques are those that incorporate frequency- and time-related information into
the process model, using the timestamps and the frequencies about activity exe-
cutions present in the log. The extended process model provides an immediate
feedback about which parts of the process are most exploited and which contain
outlier behaviours, as well as where bottlenecks are located. A second important
class of enhancement techniques is that of repair, where deviations detected by
checking the conformance of the input event log to the input process model are
resolved by suitably modifying the process model. For example, if two activities
are sequentially ordered in the given process model, but according to the log they
may appear in any order, then the process model may be evolved by relaxing
the sequence, and allowing for their concurrent execution.

Example 2. Figure 3 shows the result of a control-flow discovery algorithm,
applied to an event log from ConfSys whose structure obeys to what reported
in Table 1. Notably, the algorithm does not only discover the control-flow of a
process model explaining the behaviours contained in the log, but also extends
such a model with frequency information, colouring activities and setting the
width of sequence flow connectors depending on how frequent they are. �

Fig. 3. Result of a process discovery and enhancement technique on a ConfSys event
log. The algorithm is called Inductive Visual Miner [11], and runs as a plug-in of the
ProM process mining platform (cf. Sect. 2.3).

2.2 Application of Process Mining

Since process mining is a relatively new field, methodologies supporting data and
process analysts in the application of process mining techniques are still in their

300 D. Calvanese et al.

infancy [12]. In general, five main stages are foreseen for process mining projects.
The first phase concerns planning and justification of the project, formulating
which research questions shall be answered through process mining, and defining
the boundaries of the analysis. This includes the definition of which perspective
has to be taken for the analysis, including which notion(s) of case object to
consider.

The second phase substantiates the first one by handling the extraction of
the relevant event data from the software systems of he enterprise. As argued
in the introduction, this phase is in general extremely challenging, and for the
most part still based on manual, ad-hoc extraction procedures.

The third phase exploits control-flow process discovery techniques towards
the construction of a first, process model explaining the behaviours reflected in
the extracted data, and deriving which are the allowed orderings of activities.
The resulting model is usually represented using formal languages such as vari-
ants of Petri nets, or concrete control-flow modelling notations such as BPMN,
EPCs, or UML activity diagrams. The so-obtained model can be enhanced with
information present in the log.

The fourth phase consists in the incorporation of additional dimensions, so as
to obtain integrated models simultaneously accounting for multiple perspectives,
like the organisational perspective (i.e., the actors, roles, groups/departments
are involved in the process execution), the case perspective (i.e., relevant data
elements that are attached to cases), and the time perspective (i.e., execution
times, durations, latencies, and frequencies information about the execution of
activities and/or the execution of a certain route within the process). Even
though these different perspectives are non-exhaustive and partly overlapping,
they provide a quite comprehensive overview of the aspects that process mining
aims to analyse [4].

The fifth phase aims at exploiting the results obtained so far so as to produce
insightful indications, suggestions, recommendations, and predictions on running
and future cases, i.e., to provide operational decision support to decision makers
and to the people involved in the actual execution of the process under study.

2.3 Process Mining Tools

A plethora of process mining techniques and technologies have been developed
and successfully employed in several application domains6. We provide here a
non-exhaustive list of contemporary process mining solutions.

– ProM (Process Mining framework)7 is an Open Source framework for process
mining algorithms [13], based on JAVA. It provides a plug-in based, integra-
tion platform [14] that users and developers of process mining can exploit to
deploy and run their techniques. This pluggable architecture currently hosts
a huge amount of plug-ins covering all the different aspects of process mining,

6 http://tinyurl.com/ovedwx4.
7 http://www.processmining.org/prom/.

http://tinyurl.com/ovedwx4
http://www.processmining.org/prom/

OBDA for Log Extraction in Process Mining 301

from data import to discovery, conformance checking, enhancement along dif-
ferent perspectives [4]. Hence, it enable users to apply the latest developments
in process mining research on their own data. Finally, RapidProM8 [15] is an
extension of RapidMiner based on ProM that supports users in pipelining
different ProM plug-ins based on the paradigm of scientific workflows.

– Celonis9 is a commercial, widely adopted process mining software that sup-
port various file formats and database management systems to load event
data. Its distinctive feature is the possibility of applying process mining
natively on top of enterprise systems like SAP. In addition, it exploits well-
assessed data warehousing (OLAP) techniques to store and process event
data [4].

– Disco10 is a commercial, stand-alone and lightweight process mining tool. It
supports various file formats as input, in particular providing native support
for importing CSV files, which can be annotated with case and event infor-
mation prior to the import. Disco has usability, fidelity, and performance as
design priorities, and makes process mining easy and fast [16].

– ARIS PPM 11 is a tool that can be used to automatically assess business
processes and their execution data in terms of speed, cost, quality and quan-
tity, at the same time identifying optimisation opportunities. It ranges from
analysis of historical data to process discovery, and notably provides dedicated
techniques for the analysis of the organisational structure and improving col-
laboration.

Beside the aforementioned solutions, worth mentioning are non-commercial tools
such as PMLAB12 and CoBeFra13, as well as commercial tools such as Enterprise
Discovery Suite14, Interstage Business Process Manager Analytics15, Minit16,
myInvenio17, Rialto18, Perceptive Process Mining19, QPR ProcessAnalyzer20,
and SNP Business Process Analysis21.

8 http://www.promtools.org/doku.php?id=rapidprom:home.
9 http://www.celonis.de.

10 https://fluxicon.com/disco/.
11 http://www.softwareag.com/nl/products/aris platform/aris controlling/aris process

performance/overview/default.asp.
12 https://www.cs.upc.edu/∼jcarmona/PMLAB/.
13 http://www.processmining.be/cobefra.
14 http://www.stereologic.com.
15 http://www.fujitsu.com/global/products/software/middleware/

application-infrastructure/interstage/solutions/bpmgt/bpm/.
16 http://www.minitlabs.com.
17 http://www.my-invenio.com.
18 http://www.exeura.eu.
19 http://www.lexmark.com/en us/products/software/workflow-and-case-

management/process-mining.html.
20 https://www.qpr.com/products/qpr-processanalyzer.
21 http://www.snp-bpa.com.

http://www.promtools.org/doku.php?id=rapidprom:home
http://www.celonis.de
https://fluxicon.com/disco/
http://www.softwareag.com/nl/products/aris_platform/aris_controlling/aris_process_performance/overview/default.asp
http://www.softwareag.com/nl/products/aris_platform/aris_controlling/aris_process_performance/overview/default.asp
https://www.cs.upc.edu/~jcarmona/PMLAB/
http://www.processmining.be/cobefra
http://www.stereologic.com
http://www.fujitsu.com/global/products/software/middleware/application-infrastructure/interstage/solutions/bpmgt/bpm/
http://www.fujitsu.com/global/products/software/middleware/application-infrastructure/interstage/solutions/bpmgt/bpm/
http://www.minitlabs.com
http://www.my-invenio.com
http://www.exeura.eu
http://www.lexmark.com/en_us/products/software/workflow-and-case-management/process-mining.html
http://www.lexmark.com/en_us/products/software/workflow-and-case-management/process-mining.html
https://www.qpr.com/products/qpr-processanalyzer
http://www.snp-bpa.com

302 D. Calvanese et al.

2.4 The XES Standard

As extensively argued before, the application of process mining techniques
requires the input data to be structured in a format where key notions like
case objects and events are explicitly represented, and where their correspond-
ing data are structured in a way that lends itself to be automatically processed.
This fundamental requirements led to the development of standard formats for
the representation and storage of event data for process mining. In recent years,
the XES (eXtensible Event Stream) format emerged as the main reference for-
mat for the storage, interchange, and analysis of event logs. XES appeared for
the first time in 2009 [17], as the successor of the MXML format [18]. It quickly
became the de-facto standard in this area, adopted by the IEEE Task Force on
Process Mining22, eventually becoming an official IEEE standard in 2016 [5].

XES is based on XML, and adopts an extensible paradigm that only fixes a
minimal structure for event data, allowing one to enrich it with domain-specific

Fig. 4. An example of XES event log

22 http://www.win.tue.nl/ieeetfpm/doku.php.

http://www.win.tue.nl/ieeetfpm/doku.php

OBDA for Log Extraction in Process Mining 303

attributes and features. More specifically, an XES event log document is an XML
document formed by the following core components: (i) log, (ii) trace, (iii) event,
(iv) attribute, (v) global attribute, (vi) classifier, and (vii) extension. We briefly
review each such components in the remainder of this section, referring the
interested reader to the official IEEE XES standard for further details. Figure 4
encodes in XES a portion of the event log from Table 1.

Log is the root component in XES. It aggregates information about the logged
evolution of multiple cases for a process. In the XML serialisation of XES, it
is encoded using the XML element <log>, which comes with two mandatory
attributes:

– xes.version, indicating which version of the standard is used;
– xes.features, declaring which features of the standard are employed (if

none, then it has an empty string as value).

Example 3. The following code

<log xes.version="2.0" xes.features="nested-attributes">
...

</log>

is an example of XES log declaration, which indicates that the version 2.0 of the
standard is used, relying on nested attributes. �

Trace corresponds to the execution log of a single case, in turn comprising a
sequence of events that occurred for that case. In our ConfSys running example,
a trace may consist of all logged events for a paper, a review, or a user, depending
on the adopted notion of case. In the XML representation of XES, a trace is
encoded using the XML element <trace>, and does not have any attribute. A
trace element is directly contained within the log root element, and consequently
each trace belongs to a log, whereas each log contains possibly many traces.

Event represents the occurrence of a relevant atomic execution step for a specific
case. Usually, this corresponds to the (completion of) execution of an activity
instance, or to the progression of an activity instance within its transactional
lifecycle, but this is not mandatorily prescribed by the standard.

In the XML serialisation of XES, this component is encoded using the XML
tag <event>, and does not have any attribute. An event element is contained
within the trace element corresponding to its target case, and consequently each
event belongs to a trace, whereas each trace contains in general many events.

Attributes represent relevant information items associated to a log, trace, or
event. Each attribute element is then child of one of such elements, which in
turn may contain in general many attributes. The concrete representation of
an attribute follows the typical key-value patterns, where the key describes the

304 D. Calvanese et al.

type of information slot, while the value is the information stored inside such a
slot. The value, in turn, may be primitive, a collection, or a complex structure
containing other attributes, consequently giving raise to elementary, composite,
and nested attributes.

An elementary attribute is an attribute that has an single value. The XES
standard supports several types of elementary attributes, namely: (i) string, (ii)
datetime, (iii) integer, (iv) real number, (v) boolean, and (vi) ID. In the XML
serialisation of XES, an elementary attribute is encoded using the XML tag
that corresponds to its type. For instance, the XML tag <string> encodes
an elementary attribute of type “string”. This XML element also mandatorily
comes with two XML attributes key and value, respectively capturing the name
of the key and the value carried by the attribute.

Example 4. The following XML element

<string key="concept:name" value="upload"/>

declares an attribute of type string in XES, indicating its key and value. �

A composite attribute is an attribute that may contain several values. In
XES 2.0 [19], there are two kinds of composite attributes, namely list and con-
tainer, respectively addressing ordered and unordered collections. However, in
the official IEEE XES standard [5], only lists are provided. Based on [5], the list
attribute is represented as an XML element <list>, with key as mandatory
attribute. The values belonging to the list are in turn represented as attributes
element enclosed within a <values> element, direct child of the <list> ele-
ment.

Example 5. The XML element

<list key="addresses">
<values>

<string key="mainAddress"
value="P.zza Universita 1"/>

<string key="deliveryAddress"
value="P.zza Domenicani 3"/>

</values>
</list>

represents a XES composite attribute containing two elementary attributes,
respectively representing the main and delivery address for an expedition. �

Global attributes are used to define a “template” for attributes to be attached
to each element of a certain kind within the given XES document. This makes
it possible to declare recurrent attributes that will be consistently attached to
each trace or event contained in the log. According to the official IEEE XES
Standard [5], global attributes are declared within the root, <log> element, as
elements called <global> coming with a scope XML attribute that defines

OBDA for Log Extraction in Process Mining 305

the selected target element kind (trace, or event). Inside such an element, a
set of (global) attributes are defined using the standard structure, with the key
semantical difference that the value represents, in this context, the default value
taken by the attribute once it is attached to a target element.

Example 6. The following excerpt of an XES document

<log xes.version="2.0" xes.features="nested-attributes">
...
<global scope="trace">

<string key="concept:name" value="MyTrace"/>
</global>
<global scope="event">

<date key="time:timestamp"
value="1970-01-01T01:00:00.000+01:00"/>

<string key="lifecycle:transition"
value="complete"/>

<string key="concept:name" value="MyTask"/>
</global>
...

</log>

declares different global attributes. The first <global> element declares that
each trace contained in the log will come with a string attribute with key
concept:name having a value that, unless specified, will be the string MyTrace.
The second <global> element targets instead events, and declares that each
event element contained in the log will come with three attributes respectively
representing the event execution time, the type of event within the activity
transactional lifecycle, and the name of the corresponding activity (with their
respective default values). �

Classifiers are used to provide identification schemes for the elements in a
log, based on a combination of attributes associated to them. Similarly to the
case of global attributes, each classifier comes with a scope defining whether
the classifier is applied to traces or events, and with a combination of strings
that represent keys of global attributes attached to the same scope. An event
(resp., trace) classifier mentioning strings k1, . . . , kn, which are keys of global
attributes with scope “event” (resp., “trace”), states that the identity of events
(resp., traces) is defined by the values associated to such keys, i.e., that two
events (resp., traces) are identical if and only if they assign the same values to
the attributes characterised by those keys.

The declaration of a classifier is done in the XML serialisation of XES by
inserting a <classifier> element as child of <log>, providing an attribute
called scope whose value denotes whether the scope is that of event or trace,
and an attribute called keys whose value is a comma-separated set of strings
pointing to keys of global attributes defined over the same scope.

306 D. Calvanese et al.

Example 7. Consider the following excerpt of an XES document:

<log xes.version="2.0" xes.features="nested-attributes">
...
<classifier name="Event Name ID" scope="event"

keys="concept:name"/>
...

</log>

It indicates that the global attribute with key concept:name provides an iden-
tification scheme for events. �

Extensions capture pre-defined sets of global attributes with a clear semantics.
In fact, the XES standard allows the modeller to introduce arbitrary domain-
specific attributes, whose meaning may be ambiguous and difficult to interpret by
other humans or third-party algorithms. The notion of extension fixes this issue
by providing a mechanism to define a set of pre-defined attribute keys together
with a reference to documentation that describes their meaning. Specifically, each
extension must have a name, a prefix and a Uniform Resource Identifier (URI).
The prefix is used to unambiguously contextualise the attribute keys and avoid
name clashes, whereas the URI to the definition of the extension. An XES event
log making use of a particular extension must declare it at the level of its <log>
element. Notably, the official IEEE XES standard comes with a set of common
extensions defining attributes to capture domain-independent important aspects
such as: 1. (name of the) activity to which an event refers; 2. timestamp infor-
mation about the actual time at which the event has been recorded; 3. resource
information describing the resource that generated the event; 4. information
about the type of event in terms of a corresponding transition within a standard
transactional lifecycle for activities, also described in the standard itself.
Example 8. The following excerpt of an XES event log

<log xes.version="2.0" xes.features="nested-attributes">
...
<extension name="Time"

prefix="time"
uri="http://www.xes-standard.org/
time.xesext"/>

...
<trace>

<event>
<date key="time:timestamp"

value="2017-03-26T10:45:36.000+01:00"/>
...

</event>
...

</trace>
...

</log>

OBDA for Log Extraction in Process Mining 307

declares that the time extension is employed in the log, and that the definition for
such an extension may be found at the provided URI. The timestamp attribute,
defined in the time extension, is then used in the definition of an event, so as to
indicate when such an event has been recorded. �

2.5 The Data Preparation Phase

Thanks to the IEEE XES standard (cf. Sect. 2.4), the challenging phase of data
preparation for process mining (i.e., the second phase in the description provided
in Sect. 2.2) now has a clear target: it amounts to analyse the event data as
natively stored by an enterprise, and to consequently devise suitable mechanisms
to extract those data and encode them in the form of an XES log. This phase is
extremely delicate because insightful process mining results cannot be obtained
if the starting data miss important information or do not reflect the boundaries
and research questions and defined in during the first phase of any process mining
project. The complexity, and the availability of tool support, to extract event logs
from the native enterprise logs depends on several factors, related to the quality,
comprehensiveness, and structure of such data. The process mining manifesto
provides an intuitive set of criteria to assess the maturity of enterprise logs,
which in turn characterise the difficulty of extracting event logs. Specifically,
five maturity levels are introduced:

� enterprise logs are low-quality logs that are usually filled in manually, and
that include false positives and false negatives, i.e., contain events that do
not correspond to reality, while miss events that occurred.

�� enterprise logs are automatically recorded by generic software systems that
can be circumvented by their users, and that are consequently incomplete, at
the same time possibly containing improperly recorded events.

��� enterprise logs are trustworthy, but possibly incomplete logs automatically
recorded through reliable software systems but without following a systematic
approach.

���� enterprise logs are high-quality, trustworthy and complete logs, recorded
systematically by software systems where the key notions of cases and activ-
ities are represented explicitly;

����� enterprise logs are top-quality logs, where events are recorded in a
systematic, comprehensive, and reliable manner, and where all event data
have a shared, well-defined unambiguous semantics.

The literature abounds of techniques and tools to handle the extraction of
event logs from ���� and ����� enterprise logs, which are typically gen-
erated by BPM/workflow management systems. For example, academic efforts
such as ProMimport [20] and XESame [13] provides support in the extraction
of MXML/XES event logs from relational databases that contain explicit infor-
mation about cases, activities, events, and their timestamps. Commercial tools
like Disco, Celonis, and Minit, allows users to import CSV files, and guide them
in annotating the columns contained therein with such key notions.

308 D. Calvanese et al.

However, much less support is provided to users interested in the application
of process mining starting from ��� enterprise logs. Such logs are widespread
in reality, as they correspond to data stored by widely adopted enterprise systems
such as ERP, CRM, and SCM solutions, as well as data generated by trustworthy,
domain-specific legacy information systems. This is why the typical approach
followed in this case is to devise ad-hoc, Extract, Transform, and Load (ETL)
procedures. Such procedures need to be manually instrumented, assuming a fixed
perspective on the data, and covering the following three steps [4]:

1. extraction of data from the native enterprise systems, according to the chosen
perspective;

2. transformation of the extracted data, dealing with syntactical and semantical
issues, towards fitting the operational needs;

3. load of data into a target system (such as a data warehouse or a dedicated
relational database), from which a corresponding XES log can be extracted
directly.

This procedure is not only inherently difficult and error prone, but does not
lend itself to incrementally and iteratively analyse the enterprise data according
to different perspectives (e.g., different boundaries for the analysis, and/or mul-
tiple notions of case). In fact, every time the perspective and/or the scope of the
analysis changes, an entirely new ETL-like set up has to be instrumented [9].
After having introduced the paradigm of Ontology-Based Data Access in Sect. 3,
we show how in Sect. 4 how such a paradigm can be exploited to better support
data and process analysts in the extraction of event logs from ��� enterprise
data.

3 Ontology-Based Data Access

Ontologies are used to provide the conceptualization of a domain of interest,
and mechanisms for reasoning about it. The standard language for representing
ontologies is the Web Ontology Language (OWL 2), which has been standardized
(in its second edition) by the W3C [21]. The formal foundations for ontologies,
and in particular for OWL 2, are provided by Description Logics (DLs) [22],
which are logics specifically designed to represent structured knowledge and to
reason upon it.

In DLs, the domain to represent is structured into classes of objects of interest
that have properties in common, and these properties are explicitly represented
through relevant relationships that hold among the classes. Concepts denote
classes of objects, and roles denote (typically binary) relations between objects.
Both are constructed, starting from atomic concepts and roles, by making use of
various constructs, and the set of allowed constructs characterizes a specific DL.
The knowledge about the domain is then represented by means of a DL ontology,
where a separation is made between general structural knowledge and specific
extensional knowledge about individual objects. The structural knowledge is
provided in a so-called TBox (for “Terminological Box”), which consists of a set

OBDA for Log Extraction in Process Mining 309

of universally quantified assertions that state general properties about concepts
and roles. The extensional knowledge is represented in an ABox (for “Assertional
Box”), consisting of assertions on individual objects that state the membership
of an individual in a concept, or the fact that two individuals are related by a
role.

The setting we are interested in here, however, is the one in which the exten-
sional information, i.e., the data, is not maintained as an ABox, but is stored in
an information system, represented as a relational data source23, and the TBox
of the ontology is used not only to capture relevant structural properties of the
domain, but also acts as a conceptual data schema that provides a high-level view
over the data in the information system. In other words, users formulate their
information requests in terms of the conceptual schema provided by the TBox
of the ontology, and use it to access the underlying data source. The connection
between the conceptual schema/TBox and the information system is provided
by a declarative mapping specification. Such specification is used to translate the
user requests, i.e., the queries the user poses over the conceptual schema, into
queries to the information system, which can then directly be answered by the
corresponding relational database engine. This setting is known as ontology-based
data access (OBDA) [6,7], and we are describing it more in detail below.

3.1 Lightweight Ontology Languages

An important aspect to note in the OBDA setting outlined above, is that the
data source is in general a full-fledged relational database, and therefore it might
be very large (especially when compared to the size of the TBox). On the other
hand, the user queries formulated over the TBox, have to be answered while
fully taking into account the domain semantics encoded in the TBox itself, i.e.,
in general under incomplete information. This means that query answering does
not correspond to query evaluation, but amounts to a form of logical inference,
which in general is inherently more complex than query evaluation [23]. More
specifically, the complexity of query evaluation strongly depends on the form
of the TBox (according to the usual tradeoff between expressive power and
efficiency of inference). Therefore we need to carefully choose the language in
which the TBox is expressed, so as to guarantee that query answering can be
done efficiently, in particular in data complexity, i.e., when the complexity is
measured with respect to the size of the data only [24]. Ideally, we would like
to fully take into account the constraints encoded in the TBox, and at the same
time delegate query evaluation over the data source to the relational DBMS in
which the data is stored, so as to leverage the more than 30 years of experience
gained with commercial relational technology.

We present now a so-called lightweight ontology language, specifically,
DL-LiteA of the DL-Lite family, which is a family of DLs that have been care-
fully designed so as to allow for efficient query answering over the TBox by
23 We consider here the case of an information system consisting of a single relational

data source. Multiple data sources can be wrapped by a federation tool and presented
as a single source.

310 D. Calvanese et al.

relying on standard SQL query evaluation done by a relational DBMS [6,25,26].
The logics of the DL-Lite family (and specifically, the DL-LiteR sub-language
of DL-LiteA) provide the basis for OWL 2 QL, one of the three standard pro-
files (i.e., sub-languages) of OWL 2 [21,27], which has been specifically designed
to capture the essential features of conceptual modeling formalisms (see also
Sect. 3.2). In line with what available in OWL 2 and OWL 2 QL, DL-LiteA dis-
tinguishes concepts, which denote sets of abstract objects, from value-domains,
which denote sets of (data) values, and roles, which denote binary relations
between objects, from features24, which denote binary relations between objects
and values. We now define formally syntax and semantics of expressions in our
logic.

Syntax. DL-LiteA expressions are built over an alphabet that comprises sym-
bols for atomic roles, atomic concepts, atomic features, value-domains, and con-
stants. As value-domains we consider the traditional data types, such as String,
Integer, etc., and also the data type ts to represent timestamps (considering that
timestamps play a crucial role in event logs). Intuitively, these types represent
sets of values such that their pairwise intersections are either empty or infinite.
In the following, we denote such value-domains by T1, . . . , Tn, and we consider
additionally the universal value-domain �d. Furthermore, we denote with Γ the
alphabet for constants, which we assume partitioned into two sets, namely, ΓO

(the set of constant symbols for objects), and ΓV (the set of constant symbols
for values). In turn, ΓV is partitioned into n sets ΓV1 , . . . , ΓVn

, where each ΓVi

is the set of constants for the values in the value-domain Ti.
The syntax of DL-LiteA expressions is defined as follows:

– Basic roles, denoted by R, are built according to the syntax

R −→ P | P−

where P denotes an atomic role, and P− an inverse role. In the following,
R− stands for P− when R = P , and for P when R = P−.

– Basic concepts, denoted by B, are built according to the syntax

B −→ A | ∃R | δ(F)

where A denotes an atomic concept, and F an (atomic) feature. The concept
∃R, called unqualified existential restriction, denotes the domain of role R,
i.e., the set of objects that R relates to some object. Similarly, δ(F) denotes
the domain of feature F , i.e., the set of objects that F relates to some value.

In DL-LiteA, the TBox may contain assertions of three types:

24 In DL-LiteA, features are actually called attributes. Here we use the term “feature”
to avoid confusion with attributes of UML (see later).

OBDA for Log Extraction in Process Mining 311

– An inclusion assertion has one the forms

R1 � R2, B1 � B2, F1 � F2, ρ(F) � D,

denoting respectively, from left to right, inclusions between basic roles, basic
concepts, features, and value-domains. For the latter, ρ(F) denotes the range
of feature F (i.e., the set of values to which F relates some object), and D a
value domain (i.e., either a Ti or �d.)
Intuitively, an inclusion assertion states that, in every model of T , each
instance of the left-hand side expression is also an instance of the right-hand
side expression. When convenient, we use E1 ≡ E2 as an abbreviation for the
pair of inclusion assertions E1 � E2 and E2 � E1.

– A disjointness assertion has one the forms

R1 � ¬R2, B1 � ¬B2, F1 � ¬F2.

– A functionality assertion has one of the forms

(funct R), (funct F),

denoting functionality of a (direct or inverse) role and of a feature, respec-
tively. Intuitively, a functionality assertion states that the binary relation
represented by a role (resp., a feature) is a function.

Then, a DL-LiteA TBox, T , is a finite sets of intensional assertions of the forms
above, where in addition a limitation on the interaction between role/feature
inclusions and functionality assertions is imposed. Specifically, whenever a role
or feature U appears (possibly as U−) in the right-hand side of an inclusion
assertion in T , then neither (funct U) nor (funct U−) might appear in T .

Intuitively, the condition says that, in DL-LiteA TBoxes, roles and features
occurring in functionality assertions cannot be specialized.

A DL-LiteA ABox consists of a set of membership assertions, which are used
to state the instances of concepts, roles, and features. Such assertions have the
form

A(a), P (a1, a2), F (a, c),

where a, a1, a2 are constants in ΓO, and c is a constant in ΓV .
A DL-LiteA ontology O is a pair 〈T ,A〉, where T is a DL-LiteA TBox, and

A is a DL-LiteA ABox all of whose atomic concepts, roles, and features occur
in T .

Semantics. Following the standard approach in DLs, the semantics of DL-LiteA
is given in terms of (First-Order) interpretations. All such interpretations agree
on the semantics assigned to each value-domain Ti and to each constant in ΓV .
In particular, each value-domain Ti is interpreted as the set val(Ti) of values
of the corresponding data type, and each constant ci ∈ ΓV is interpreted as
one specific value, denoted val(ci), in val(Ti). Then, an interpretation is a pair
I = (ΔI , ·I), where

312 D. Calvanese et al.

AI ⊆ ΔI
O

(∃R)I = { o | ∃o . (o, o) ∈ RI }
(δ(F))I = { o | ∃v. (o, v) ∈ F I }
(ρ(F))I = { v | ∃o. (o, v) ∈ F I }

I
d = ΔI

V

T I
i = val(Ti)

P I ⊆ ΔI
O × ΔI

O

(P −)I = { (o, o) | (o , o) ∈ P I }
F I ⊆ ΔI

O × ΔI
V

Fig. 5. Semantics of DL-LiteA expressions

– ΔI is the interpretation domain, which is the disjoint union of two non-empty
sets: ΔI

O, called the domain of objects, and ΔI
V , called the domain of values.

In turn, ΔI
V is the union of val(T1), . . . , val(Tn).

– ·I is the interpretation function, which assigns an element of ΔI to each
constant in Γ , a subset of ΔI to each concept and value-domain, and a subset
of ΔI × ΔI to each role and feature, in such a way that the following holds:

• for each c ∈ ΓV , cI = val(c),
• for each d ∈ ΓO, dI ∈ ΔI

O,
• for each a1, a2 ∈ Γ , a1
= a2 implies aI

1
= aI
2 , and

• the conditions shown in Fig. 5 are satisfied.

Note that the above definition implies that different constants are interpreted dif-
ferently in the domain, i.e., DL-LiteA adopts the so-called unique name assump-
tion (UNA).

To specify the semantics of an ontology, we define when an interpretation I
satisfies and assertion α, denoted I |= α.

– I satisfies a role, concept, feature, or value-domain inclusion assertion E1 �
E2 if EI

1 ⊆ EI
2 .

– I satisfies a role, concept, or feature disjointness assertion E1 � ¬E2 if EI
1 ∩

EI
2 = ∅.

– I satisfies a role functionality assertion (funct R), if for each o1, o2, o3 ∈ ΔI
O

(o1, o2) ∈ RI and (o1, o3) ∈ RI implies o2 = o3.

– I satisfies a feature functionality assertion (funct F), if for each o ∈ ΔI
O and

v1, v2 ∈ ΔI
V

(o, v1) ∈ F I and (o, v2) ∈ F I implies v1 = v2.

– I satisfies a membership assertion

A(a), if aI ∈ AI ;
P (a1, a2), if (aI

1 , aI
2) ∈ P I ;

F (a, c), if (aI , cI) ∈ F I .

An interpretation I is a model of a DL-LiteA ontology O (resp., TBox T ,
ABox A), or, equivalently, I satisfies O (resp., T , A), written I |= O (resp.,
I |= T , I |= A) if and only if I satisfies all assertions in O (resp., T , A). The
semantics of a DL-LiteA ontology O = 〈T ,A〉 is the set of all models of O. Also,
we say that a concept, association, or feature E is satisfiable with respect to an
ontology O (resp., TBox T), if O (resp., T) admits a model I such that EI
= ∅.

OBDA for Log Extraction in Process Mining 313

3.2 Conceptual Data Models and Relationship to Ontology
Languages

We remind the reader that our aim is to use ontologies specified in a lightweight
language as conceptual views of the relational data sources that maintain the
data from which to extract XES logs. Moreover, the information about how to
extract the log information should be provided as easily interpretable annota-
tions of the ontology elements. To simplify the annotation activity, we exploit
the well investigated correspondence between (lightweight) ontology languages
and conceptual data modeling formalisms [7,28,29], and we specify the TBox of
the ontology in terms of a UML class diagram. The Unified Modeling Language
(UML)25 is a standardized formalism for capturing at the conceptual level vari-
ous aspects of information systems, and the UML standard provides also a well
established graphical notation which we can leverage. Specifically, we make use
of UML class diagrams, which are equipped with a formal semantics, provided,
e.g., in terms of first-order logic [29], and we show how they can be encoded as
DL-LiteA ontologies. Since we use UML class diagrams as conceptual modeling
formalisms, we abstract away those features that are only relevant in a software
engineering context (such as operations associated to classes, or public, pro-
tected, and private qualifiers for attributes), and we also make some simplifying
assumptions. In particular, considering that roles in ontology languages denote
binary relations, we consider only associations of arity 2; also, we deal only with
those multiplicities of associations that convey meaningful semantic aspects in
modeling, namely functional and mandatory participation to associations.

Classes and Data Types. A class in a UML class diagram denotes a set of
objects with common features. The specification of a class contains its name
and its attributes, each denoted by a name (possibly followed by the multiplic-
ity, between square brackets) and with an associated type, which indicates the
domain of the attribute values.

A UML class is represented by a DL concept. This follows naturally from the
fact that both UML classes and DL concepts denote sets of objects. Similarly, a
UML data type is formalized in DL-LiteA by a value domain.

Attributes. A UML attribute a of type T for a class C associates to each
instance of C, zero, one, or more instances of a data type T . An optional multi-
plicity [i..j] for a specifies that a associates to each instance of C, at least i and
most j instances of T . When the multiplicity for an attribute is missing, [1..1] is
assumed, i.e., the attribute is considered mandatory and single-valued.

To formalize attributes, we have to think of an attribute a of type T for
a class C as a binary relation between instances of C and instances of T . We
capture such a binary relation by means of a DL-LiteA feature aC . To specify

25 See http://www.omg.org/spec/UML/2.5/ for the latest version of UML at the
moment of writing.

http://www.omg.org/spec/UML/2.5/

314 D. Calvanese et al.

the type of the UML attribute we use the DL-LiteA assertions

δ(aC) � C and ρ(aC) � T.

Such assertions specify precisely that, for each instance (c, v) of the feature aC ,
the object c is an instance of concept C, and the value v is an instance of the
value domain T . Note that the attribute name a is not necessarily unique in the
whole diagram, and hence two different classes, say C1 and C2 could both have
attribute a, possibly of different types. This situation is correctly captured by
our DL formalization, where the attribute is contextualized to each class with a
distinct feature, i.e., aC1 and aC2 .

To specify that the attribute is mandatory, i.e., has minimum multiplicity 1,
we add the assertion

C � δ(aC),

which specifies that each instance of C participates necessarily at least once to
the feature aC . To specify that the attribute is single-valued, i.e., has maximum
multiplicity 1, we add the assertion

(funct aC).

Finally, if the attribute is both mandatory and single-valued, i.e., has multiplicity
[1..1], we use both assertions together, i.e., we add

C � δ(aC) and (funct aC).

C1 C2
A

n ..nu m ..mu

Fig. 6. UML association without association class

Associations. An association in UML is a relation between the instances of
two (or more) classes. An association often has a related association class, which
describes properties of the association, such as attributes, operations, etc. A
binary association A between the instances of two classes C1 and C2 is graphically
rendered as in Fig. 6, where the multiplicity m�..mu specifies that each instance
of class C1 can participate at least m� times and at most mu times to association
A. The multiplicity n�..nu has an analogous meaning for class C2. We consider
here only the most commonly used forms of multiplicities, namely those where 0
and 1 are the only involved numbers: 0..∗ (unconstrained, also abbreviated as ∗),
0..1 (functional participation), 1..∗ (mandatory participation), and 1..1 (one-to-
one correspondence, also abbreviated as 1).

An association A between classes C1 and C2 is formalized in DL-LiteA by
means of a role A on which we enforce the assertions

∃A � C1 and ∃A− � C2.

OBDA for Log Extraction in Process Mining 315

To express the multiplicity m�..mu on the participation of instances of C2 for
each given instance of C1, we use the assertions

C1 � ∃A, if m� = 1, and
(funct A), if mu = 1.

We can use similar assertions for the multiplicity n�..nu on the participation of
instances of C1 for each given instance of C2, i.e.,

C1 � ∃A−, if n� = 1, and
(funct A−), if nu = 1.

C1 C2

A

A1

n ..nu

A2

m ..mu

Fig. 7. UML association with association class

Next we focus on an association with a related association class, as shown in
Fig. 7, where the class A is the association class related to the association, and
A1 and A2, if present, are the role names of C1 and C2 respectively, i.e., they
specify the role that each class plays within the association A.

We formalize in DL-LiteA an association A with an association class, by using
reification: we represent the association by means of a DL concept A, and we
introduce two DL roles, A1, A2, one for each role of A, which intuitively connect
an object representing an instance of the association to the instances of C1 and
C2, respectively, that participate to the association26. Then, we enforce that
each instance of A participates exactly once both to A1 and to A2, by means of
the assertions

A � ∃A1, (funct A1), A � ∃A2, (funct A2).

To represent that the association A is between classes C1 and C2, we use the
assertions

∃A1 � A, ∃A−
1 � C1, ∃A2 � A, ∃A−

2 � C2.

We observe that the above formalization does not guarantee that in every
interpretation I of the DL-LiteA TBox encoding the UML class diagram, each
instance of AI represents a distinct tuple in CI

1 ×CI
2 . However, this is not really

26 If the roles of the association are not specified in the UML class diagram, we may
use arbitrary fresh DL role names, each of which is identified by the name of the
association and the component.

316 D. Calvanese et al.

needed for the encoding to preserve satisfiability and answers to queries; we refer
to [7,29] for more details. We also observe that the encoding we have proposed
for binary associations with association class can immediately be extended to
represent also associations of any arity (with or without association class): it
suffices to introduce one role Ai for each component i of the association, and
add the respective assertions for every component.

We can easily represent in DL-LiteA also multiplicities on an association
with association class, by imposing suitable assertions on the inverses of the DL
roles modeling the roles of the association. For example, to express that there
is a one-to-one participation of instances of C1 in the association (with related
association class) A, we assert

C1 � ∃A−
1 and (funct A−

1).

Generalizations. In UML, one can use generalization between a parent class
and a child class to specify that each instance of the child class is also an instance
of the parent class. Hence, the instances of the child class inherits the properties
of the parent class, but typically they satisfy additional properties that in general
do not hold for the parent class.

Generalization is naturally supported in DLs. If a UML class C2 generalizes
a class C1, we can express this by the DL-LiteA assertion

C1 � C2.

Inheritance between DL concepts works exactly as inheritance between UML
classes. This is an obvious consequence of the semantics of ‘�’, which is based
on subsetting. As a consequence, in the formalization, each attribute of C2 and
each association involving C2 is correctly inherited by C1. Observe that the
formalization in DL-LiteA also captures directly multiple inheritance between
classes.

C

C1 C2 Cn

{disjoint}

. . .

Fig. 8. A class hierarchy in UML

Moreover in UML, one can group several generalizations into a class hierar-
chy, as shown in Fig. 8. Such a hierarchy is captured in DL by a set of inclusion
assertions, one between each child class and the parent class, i.e.,

Ci � C, for each i ∈ {1, . . . , n}.

OBDA for Log Extraction in Process Mining 317

Often, when defining generalizations between classes, we need to add addi-
tional assertions among the involved classes. For example, for the class hierar-
chy in Fig. 8, an assertion may express that C1, . . . , Cn are pairwise disjoint. In
DL-LiteA, such a relationship can be expressed by the assertions

Ci � ¬Cj , for each i, j ∈ {1, . . . , n} with i < j.

In UML we may also want to express that a generalization hierarchy is complete,
i.e., that the subclasses C1, . . . , Cn are a covering of the superclass C. In order
to represent such a situation in DLs, one would need to express disjunctive
information, which however is ruled out in DL-LiteA. Hence, completeness of
generalization hierarchies cannot be captured in DL-LiteA.

Similarly to generalization between classes, UML allows one to state subset
assertions between associations. A subset assertion between two associations A
and A′ can be modeled in DL-LiteA by means of the role inclusion assertion
A � A′, involving the two DL roles A and A′ representing the associations.
When the two associations A and A′ are represented by means of association
classes, we would need to use the concept inclusion assertion A � A′, together
with the role inclusion assertions between the DL roles corresponding to the
components of A and A′. However, since the roles representing the components
of reified associations are functional, they cannot appear in (the right-hand side
of) a role inclusion assertion. Therefore, in DL-LiteA, we are able to capture
subset assertions between association classes only when (the association class
for) the child association connects the same concepts as the parent association,
so that we can use the same DL roles to represent the components of the child
and parent associations.

Correctness of the Encoding. The encoding we have provided is faithful, in
the sense that it fully preserves in the DL-LiteA ontology the semantics of the
UML class diagram. Obviously, since, due to reification, the ontology alphabet
may contain additional symbols with respect to those used in the UML class
diagram, the two specifications cannot have the same logical models. However,
it is possible to show that the logical models of a UML class diagram and those
of the DL-LiteA ontology derived from it correspond to each other, and hence
that satisfiability of a class or association in the UML diagram corresponds to
satisfiability of the corresponding concept or role [7,29].

Example 9. We illustrate the encoding of UML class diagrams in DL-LiteA
on the UML class diagram shown in Fig. 9, which depicts (a simplified version
of) the information model of the ConfSys conference submission system used
for our running example. We assume that the components of associations are
given from left to right and from top to bottom. Papers are represented through
the Paper class, with attributes title and type, both of type string. The subclass
DecidedPaper of Paper represents those papers for which an acceptance decision
has already been taken, and such a decision is characterized by the decTime and
accepted attributes, and by the unique person who has notified the decision. The

318 D. Calvanese et al.

Paper

title : String
type : String

Person

pName : String
regTime: ts

Assignment

invTime: ts
Submission

uploadTime: ts

CRUpload Creation

DecidedPaper

decTime: ts
accepted: boolean

notifiedBy
Review

subTime: ts

leadsTo

Conference

cName: String
crTime: ts

submittedTo

chairs

*

*

*

1..*

*

1

1

0..1

* 1

1

*

Fig. 9. Data model of our ConfSys running example

type of decTime is ts, which is the data type we use to represent timestamps.
Persons, characterized through their name and the time they have been regis-
tered in the system, are related to papers via the Assignment and the Submission
associations, which are both represented through association classes with corre-
sponding timestamps. Among the submissions, we distinguish those that are a
Creation and those that are a CRUpload (i.e., a camera-ready upload). Instead,
each assignment possibly leadsTo a Review, which has its submission time as
timestamp. Finally, each paper is submitted to exactly one conference, which is
represented through the association submittedTo with the class Conference and
the corresponding multiplicity, and each conference has a unique person who
chairs it.

We represent such a UML class diagrams through the DL-LiteA ontology
depicted in Fig. 10. �

3.3 Queries over DL-LiteA Ontologies

We are interested in queries over DL-LiteA ontologies (and hence, over the UML
class diagrams corresponding to such ontologies), and specifically in unions of
conjunctive queries, which correspond to unions of select-project-join queries in
relational algebra or SQL.

A First-Order Logic (FOL) query q over a DL-LiteA ontology O (resp., TBox
T) is a, possibly open, FOL formula whose predicate symbols are atomic con-
cepts, value-domains, roles, or features of O (resp., T). The arity of q is the
number of free variables in the formula. A query of arity 0 is called a boolean
query. When we want to make the free variables of q explicit, we denote the
query as q(�x).

A conjunctive query (CQ) q(�x) over a DL-LiteA ontology is a FOL query of
the form

∃�y. conj (�x, �y),

OBDA for Log Extraction in Process Mining 319

Fig. 10. Encoding in DL-LiteA of the UML class diagram shown in Fig. 9

where �y is a tuple of pairwise distinct variables not occurring among the free
variables �x, and where conj (�x, �y) is a conjunction of atoms (whose predicates are
as specified above for FOL queries), possibly involving constants. The variables
�x are also called distinguished and the (existentially quantified) variables �y are
called non-distinguished.

320 D. Calvanese et al.

A union of conjunctive queries (UCQ) is a FOL query that is the disjunction
of a set of CQs of the same arity, i.e., it is a FOL formula of the form:

∃�y1. conj 1(�x, �y1) ∨ · · · ∨ ∃�yn. conjn(�x, �yn).

When convenient, we also use the Datalog notation for (U)CQs, i.e.,

q(�x) ← conj ′
1(�x, �y1)

...
q(�x) ← conj ′

n(�x, �yn)

where each conj ′
i(�x, �yi) in a CQ is considered simply as a set of atoms. In this

case, we say that q(�x) is the head of the query, and that each conj ′
i(�x, �yi) is the

body of the corresponding CQ.

Semantics of Queries. Given an interpretation I = (ΔI , ·I), the answer qI

to a FOL query q = ϕ(�x) of arity n is the set of tuples �o ∈ (ΔI)n such that ϕ
evaluates to true in I under the assignment that assigns each object in �o to the
corresponding variable in �x [30]. Notice that the answer to a boolean query is
either the empty tuple, “()”, considered as true, or the empty set, considered as
false.

We remark that a relational database (over the atomic concepts, roles, and
features) corresponds to a finite interpretation. Hence the notion of answer to
a query introduced here is the standard notion of answer to a query evaluated
over a relational database.

The notion of answer to a query is not sufficient to capture the situation where
a query is posed over an ontology, since in general an ontology will have many
models, and we cannot single out a unique interpretation (or database) over
which to answer the query. Given a query, we are interested in those answers that
are obtained for all possible databases (including infinite ones) that are models
of the ontology. This corresponds to the fact that the ontology conveys only
incomplete information about the domain of interest, and we want to guarantee
that the answers to a query that we obtain are certain, independently of how we
complete this incomplete information. This leads us to the following definition
of certain answers to a query over an ontology.

Let O be a DL-LiteA ontology and q a UCQ over O. The certain answer to
q over O, denoted cert(q,O), consist of all tuples �c of constants appearing in O
such that �cI ∈ qI , for every model I of O.

Remarks on Notation. In the following, as a concrete syntax for specifying
CQs and UCQs, we use sparql, which is the standard query language defined
by the W3C to access RDF data27. In sparql notation, atoms over unary and
binary predicates are given in terms of RDF triples, and a conjunction of atoms

27 https://www.w3.org/TR/sparql11-overview/.

https://www.w3.org/TR/sparql11-overview/

OBDA for Log Extraction in Process Mining 321

constitutes a so-called basic graph pattern. Specifically, a concept atom A(t),
where t is a variable or constant, is specified as the triple t rdf:type A,
which involves the pre-defined predicate rdf:type (intuitively standing for
“is instance of”). Instead, a binary atom U(t1, t2), where U is either a role or
a feature and t1, t2 are variables or constants, is specified as the triple t1 U t2.
Note that, in sparql notation, variables names have to start with ‘?’, and each
triple terminates with ‘.’.

We observe that in the example UML class diagram in Fig. 9 and in its
DL-LiteA encoding in Fig. 10, we have used abstract names for classes/concepts,
associations/roles, attributes/features, and data types, and we have represented
them using a slanted font. Later, when we describe how these elements are
implemented in our prototype system, we introduce also a concrete syntax, for
which we use a typewriter font. Data types in the abstract syntax are specified
using simple intuitive names, such as String, Integer, and ts (for time stamps),
while in the concrete syntax we refer to the standard data types of the ontology
languages of the OWL 2 family, such as xsd:string. We view identifiers written
in the abstract and in the concrete syntax as identifical, despite the difference in
the used fonts. In the concrete syntax, where appropriate, we also make use of
RDF namespaces, which are used as a prefix to identifier names for the purpose
of disambiguation. A namespace is separated from the identifier it applies to by
‘:’. It is common to precede an identifier just by ‘:’ to denote that the default
namespace applies to it, and we will also adopt this convention, even when we
do not explicitly introduce or name the default namespace.

3.4 Linking Ontologies to Data

We describe now how to provide the declarative mapping specification M, which
establishes the connection between the conceptual data schema (or TBox) T
and the underlying information system I. Such a mapping specification actually
serves two purposes:

1. It specifies how to extract data from the database D of I.
2. It specifies how to use the extracted data to (virtually) populate the elements

of T .

In populating the elements of T , also the so-called impedance mismatch prob-
lem is taken into account, i.e., the mismatch between the way in which data is
represented in D, and the way in which the corresponding information is rendered
through the conceptual data schema T . Indeed, the mapping specification keeps
data value constants separate from object identifiers (i.e., URIs), and constructs
identifiers as (logic) terms over data values. More precisely, object identifiers are
terms of the form t(d1, . . . , dn), called object terms, where t is a function symbol
of arity n > 0, and d1, . . . , dn are data values from the data source. Concretely,
such function symbols are realized through suitable templates containing place-
holders for the data values, which result in a valid URI when the placeholders
are substituted with actual values.

322 D. Calvanese et al.

Specifically, the mapping specification consists of a set of mapping assertions,
each of the form

Φ(�x) � G(�t(�y))

where

– Φ(�x), called the source part of the mapping assertion, is an SQL query28 over
the db schema R, with answer variables �x, and

– G(�t(�y)), called the target part of the mapping, is a conjunction of atoms whose
predicate symbols are atomic concepts, roles, and features of the conceptual
data schema T , and where �t(�y) represents the arguments of the predicates in
the atoms. Specifically, the variables �y are among the answer variables �x of the
query in the source part, and �t(�y) represents terms that are either variables
in �y, constants, or are obtained by applying URI templates to variables in �y
and constants.

We distinguish three different types of atoms that may appear in the target part
G(�t(�y)) of the mapping assertion, and we specify them as sparql triple patterns:

– concept atoms, which are unary atoms of the form t(�y′) rdf:type A, where
A is an atomic concept, t is a URI template with m placeholders, and �y′ is a
sequence of m variables among �y or constants;

– role atoms, which are binary atoms of the form t1(�y1) P t2(�y2), where P is
an atomic role, t1 is a URI template with m1 > 0 placeholders, and �y1 is a
sequence of m1 variables appearing in �y or constants; similarly for t2, m2,
and �y2;

– feature atoms, which are binary atoms of the form t(�y1) F v2, where F is
an atomic feature, t is a URI templage with m1 > 0 placeholders, �y1 is a
sequence of m1 variables appearing in �y or constants, and v2 is a variable
appearing in �y or a constant.

Intuitively, mapping assertions involving such atoms are used to map source rela-
tions (and the tuples they store), to concepts, roles, and features of the ontology
(and the objects and the values that constitute their instances), respectively.
Note that for a feature atom, the type of values retrieved from the source data-
base is not specified, and needs to be determined based on the data type of the
variable v2 in the source query Φ(�x).

Example 10. Consider the ConfSys running example, and an information sys-
tem whose db schema R consists of the eight relational tables shown in Fig. 11.
We give some examples of mapping assertions:

– The following mapping assertion explicitly populates the concept Creation.
The term :submission/{oid} in the target part represents a URI template
with one placeholder, {oid}, which gets replaced with the values for oid

28 The formal counterpart of such an SQL query is a first-order logic (FOL) query with
distinguished variables �x.

OBDA for Log Extraction in Process Mining 323

ACCEPTANCE

ID uploadtime user paper

CONFERENCE

ID name organizer time

DECISION

ID decisiontime chair outcome

LOGIN

ID user CT

SUBMISSION

ID uploadtime user paper

PAPER

ID title CT user conf type status

REVIEW

ID RRid submissiontime

REVIEWREQUEST

ID invitationtime reviewer paper

Fig. 11. DB schema for the information system of the conference submission system.
Primary keys are underlined and foreign keys are shown in italic

retrieved through the source query. This mapping expresses that each value
in SUBMISSION identified by oid and such that its upload time equals the cor-
responding paper’s creation time, is mapped to an object :submission/oid,
which becomes an instance of concept Creation in T .

SELECT DISTINCT SUBMISSION.ID AS oid
FROM SUBMISSION, PAPER
WHERE SUBMISSION.PAPER = PAPER.ID

AND SUBMISSION.UPLOADTIME = PAPER.CT
� :submission/{oid} rdf:type :Creation .

– The following mapping assertion retrieves from the PAPER table instances of
the concept Paper, and instantiates also their features title and type with
values of type String.

SELECT ID, title, type
FROM PAPER
� :paper/{ID} rdf:type :Paper .

:paper/{ID} :title {title}ˆˆxsd:string .
:paper/{ID} :type {type}ˆˆxsd:string .

– The following mapping assertion retrieves from the SUBMISSION table
instances of the concept Submission, together with their upload time.

SELECT ID, uploadtime
FROM SUBMISSION
� :submission/{ID} rdf:type :Submission .

:submission/{ID} :uploadTime {uploadtime}ˆˆxsd:dateTime .

– Finally, the following mapping assertion retrieves instances of the first compo-
nent of the reified association Submission, which are pairs of URIs consisting

324 D. Calvanese et al.

of an instance of the concept Submission, representing the association class,
and of an instance of the concept Paper.

SELECT ID, paper
FROM SUBMISSION
� :submission/{ID} :Submission1 :paper/{paper} .

We omit the specification of the mapping assertions for the remaining elements
of the conceptual data schema. �

3.5 Processing of Conceptual Queries

When M is fully defined, it can be used for two purposes. On the one hand,
it explicitly documents how the structure of the company information system
has to be conceptually understood in terms of domain concepts and relations
specified in the conceptual data schema T , and thus constitutes an asset for
the company that itself might be worth an investment [31]. On the other hand,
S = 〈R, T ,M〉 constitutes what we call an OBDA schema, which completely
decouples end users from the details of the information system (cf. Fig. 15).
Adding to the OBDA schema a database D that conforms to the database schema
R, i.e., replacing R with an information system I, we obtain what we call an
OBDA model B = 〈I, T ,M〉. Whenever a user poses a conceptual query q (e.g.,
expressed in sparql) over T , an OBDA system exploits the OBDA model to
answer such query in terms of the data stored in the underlying database D. We
sketch now the technique for answering queries in such an OBDA setting [6,7].

We start with the following observation. Suppose we evaluate (over D) the
queries in the source part of the mapping assertions of M, and we materialize
accordingly the corresponding facts in the target part. This would lead to a set
of ground facts, denoted by AM,D, that can be considered as a DL-LiteA ABox.
It can be shown that query answering over B can be reduced to computing the
certain answers over the DL-LiteA ontology O = 〈T ,AM,D〉 constituted by the
TBox T and the ABox AM,D. However, the query answering algorithm resulting
from this approach would need to perform a materialization of AM,D, which in
general is polynomial in the size of the potentially very large database D, and
this might not be practically feasible. However, we can avoid any materializa-
tion of the ABox, and rather answer a query q over T by reformulating it into a
new query that can then be evaluated directly over the database D. The result-
ing query answering algorithm is in general much more efficient than the one
based on materialization, and is conceptually divided into three phases, namely
rewriting, unfolding, and evaluation, which we briefly describe below.

Rewriting. Given a UCQ q formulated over the conceptual data schema T
of an OBDA schema S = 〈R, T ,M〉, and a database D for R, the rewriting
step computes a new UCQ q1, still over T , in which the logical assertions of
T are compiled in. In computing the rewriting, only inclusion assertions of the
form E1 � E2 are taken into account, while disjointness assertions E1 � ¬E2

OBDA for Log Extraction in Process Mining 325

and functionality assertions (funct Q) are not considered. Intuitively, the query
q is rewritten, according to the knowledge specified in T that is relevant for
answering q, into a query q1 such that cert(q, 〈T ,A〉) = qA

1 for every ABox A
for T , where qA

1 denotes the evaluation of q1 over A, carried out as if A was a
relational database (i.e., under complete knowledge). Hence, the rewriting allows
us to get rid of T .

Different query rewriting algorithms have been proposed in the literature,
since the first variants that have been presented in [6,25], to which we refer for
more details. We only notice that the rewriting procedure does not depend on the
source database D, runs in polynomial time in the size of T , and returns a query
q1 whose size is at most exponential in the size of q (which is also worst-case
optimal [32]).

Unfolding. Given the UCQ q1 over T computed by the rewriting step, the
unfolding step computes, by exploiting the mapping specification M and using
techniques based on partial evaluation of logic programs, an SQL query q2 that
can be directly evaluated over the db schema R. Such a query might return,
in addition to values retrieved from D, also URIs constructed according to the
URI templates in M. Specifically, the query q2 is constructed in such a way that
qD
2 = q

AM,D
1 . Hence, the unfolding allows us to get rid of M. Moreover, also the

unfolding procedure does not depend on D, runs in polynomial time in the size
of M, and returns a query whose size is at most exponential in the size of q1.

Evaluation. The evaluation step consists in simply delegating the evaluation
of the SQL query q2, produced by applying first the rewriting step and then
the unfolding step, to the RDBMS underlying the information system of the
OBDA model. This evaluation step returns qD

2 , which is simply the set of tuples
resulting from the evaluation of q2 over D.

Correctness and Complexity of Query Answering. The procedure for
processing queries formulated over the conceptual data schema of an OBDA
model described above correctly computes the certain answers to UCQs, and
it does so by reducing the problem to one of evaluating an SQL query over a
relational database. Indeed, we have that qD

2 = q
AM,D
1 = cert(q, 〈T ,AM,D〉),

and the latter expression corresponds to the answers of Q over B. This means
that the problem of computing certain answers to UCQs over an OBDA model
is First-Order (FO) rewritable.

We have (implicitly) assumed that, given the database D, the OBDA model
B is consistent, i.e., that the ontology 〈T ,AM,D〉 admits at least one model.
Notably, it can be shown that the machinery developed for query answering
can also be used for checking consistency of B. Therefore, checking consistency
can also be reduced to evaluating appropriate SQL queries over the underlying
relational database D [6,25].

Although the presented query answering technique is computationally worst-
case optimal, the increase in size of the queries produced by the rewriting and

326 D. Calvanese et al.

unfolding steps poses a significant practical challenge. Therefore, a lot of effort
has been spent recently in studying the problem of query answering in OBDA
and in devising optimization techniques and alternative query transformation
approaches that allow for efficient query processing. Discussing these aspects in
detail is beyond the scope of the present work, and we refer to the extensive lit-
erature on the topic, e.g., [8,33–35]. We remark, however, that many of the opti-
mized techniques for query answering in OBDA have been implemented, both
in freely available and in commercial systems. Notable examples are D2RQ29,
Mastro30, Ultrawrap31, Morph-RDB32, and ontop33.

For the implementation of the prototype tools for the preparation phase
of process mining based on OBDA that we are discussing in this paper, we
rely on the ontop system, which is a state-of-the-art OBDA system available
under the very liberal Apache 2 licence. ontop implements the query rewriting
and unfolding algorithms discussed above, together with an extensive set of
optimization techniques, which are aimed on the one hand at reducing the size
of the SQL queries generated by the system, and on the other hand at producing
queries that are efficiently executable by relational database engines. We refer
to [8] for an in depth discussion of ontop.

4 OBDA for Log Extraction: The onprom Approach

We are now in the position of illustrating how OBDA can be effectively applied to
the data preparation phase of process mining. The resulting framework, called
onprom, is based on the seminal results in [9,36]. We start by recalling the
methodological steps that are foreseen by onprom, and move then to the formal
model and the corresponding toolchain.

4.1 Methodology

The onprom methodology, sketched in Fig. 12, aims at the semi-automatic extrac-
tion of event logs from a legacy information system, reflecting different process-
related views on the same data, and consequently supporting analysts in the
application of process mining along multiple perspectives.

The methodology comprises four main phases. The first phase is about under-
standing the meaning of the data stored in the information system at hand. Con-
cretely, it consists of the definition of an OBDA model (cf. Sect. 3), on the one
hand providing a conceptual data schema to semantically describe the domain
of interest, and on the other hand linking such a data schema to the underly-
ing information system. While this is in general a labor-intensive, purely human

29 http://d2rq.org.
30 http://www.dis.uniroma1.it/∼mastro.
31 http://capsenta.com.
32 https://github.com/oeg-upm/morph-rdb.
33 http://ontop.inf.unibz.it.

http://d2rq.org
http://www.dis.uniroma1.it/~mastro
http://capsenta.com
https://github.com/oeg-upm/morph-rdb
http://ontop.inf.unibz.it

OBDA for Log Extraction in Process Mining 327

high-level IS?

Create
conceptual

data
schema

Create
mappings

Bootstrap
model +
mappings

Enrich
model +
mappings

Choose
perspective

Create
event-data
annotations

Get
XES/CSV

Do process
mining

Other perspective?

N

Y

Y

N

Fig. 12. The onprom methodology and its four phases

activity, if the information system has a “high-level” structure that is under-
standable by domain experts, such an activity can be partially automatized
through bootstrapping techniques [37]. These techniques mirror the schema of
the information system into a corresponding conceptual data schema, at the
same time generating (identity) mappings to link the two specifications. The
result of bootstrapping can then be manually refined.

Once the first phase is completed, process analysts and the other involved
stakeholders do not need anymore to consider the structure of the legacy infor-
mation system, but directly focus on the conceptual data schema. Remember,
in fact, that the OBDA paradigm allows one to formulate queries over the con-
ceptual data schema, getting back answers expressed over such a schema but
computed over the underlying legacy data.

The goal of the second phase is then to decide which perspective on the data
has to be considered for the analysis, singling out, among all possible alternatives,
which entities and relationships define the desired notion of case object, and
which other conditions have to be defined so as to properly confine the analysis.
Recall that a case object represents the main object that is evolved by an instance
of the process of interest. E.g., by considering our ConfSys running example,
one may decide to focus on the flow of papers submitted to a given conference,
or instead tailor the analysis to the flow of operations performed by persons who
registered to the conference management system between 2012 and 2015.

4.2 Event Ontology

Since the final goal of data extraction is the generation of a XES event log, the
necessary basis for the application of the onprom methodology is to conceptually
clarify which key concepts and relations are part of the XES standard. To this
end, a (conceptual) event schema is introduced. We denote such an event schema
by E . We will see later how such a schema is used to support the semi-automated
extraction of an event log from legacy data.

328 D. Calvanese et al.

Figure 13 shows the core elements of the event schema:

– trace, accounting for the evolution of a case through events;
– event, capturing an atomic step of execution for a case;
– (simple) attributes, attaching relevant data to traces and events.

Each attribute comes with a key-value pair, and with the characterization of the
type taken by the value.

Attribute

attKey: String
attType: String
attValue: String

EventTrace

e-has-at-has-a

t-contains-e

0..*

0..*

0..*

0..*

..0..1

Fig. 13. Core event schema

We show now how such a simple schema can be suitably encoded in DL-LiteA.
To encode the core event schema of Fig. 13, the three concept names Trace,
Event, and Attribute are used. In addition, the role names e-has-a, t-has-a, and
t-contains-e are used to capture the binary relations among such concepts. To
restrict the usage of those role names, the following domain/range axioms are
imposed:

∃e-has-a � Event ∃e-has-a− � Attribute
∃t-has-a � Trace ∃t-has-a− � Attribute

∃t-contains-e � Trace ∃t-contains-e− � Event

Additionally, the following axiom captures that no dangling event may exist,
i.e., that each event is assigned to at least one trace:

Event � ∃t-contains-e−

The typing axioms of the three DL features of the Attribute concept are:

δ(attKey) � Attribute ρ(attKey) � String
δ(attType) � Attribute ρ(attType) � String
δ(attValue) � Attribute ρ(attValue) � String

Recall, in fact, that XES attribute values are always stored as strings, while
the type information indicates how such string may be parsed into more specific
data types.

OBDA for Log Extraction in Process Mining 329

Fig. 14. A more comprehensive event schema, capturing all main abstractions of the
XES standard

Finally, by recalling that, in UML, the default multiplicity for an attribute of
a class is 1..1, the linkage between the Attribute concept and its three features
is captured by the following axioms:

Attribute � δ(attKey) (funct attKey)
Attribute � δ(attType) (funct attType)
Attribute � δ(attValue) (funct attValue)

Figure 14 shows a richer event schema that more comprehensively captures
the XES standard, including classifiers, global and composite attributes, as well
as extensions. However, in the remainder of the paper we will just employ the
concepts, relations, and features of the core event schema, making use of the
following recurrent attributes to capture key event data, which are encapsulated
by XES into specific extensions:

– timestamp attribute, keeping track of when the event occurred;
– activity attribute, indicating to which activity the event refers;

330 D. Calvanese et al.

– transition attribute, denoting the type of the event within the lifecycle of the
corresponding activity (e.g., whether the event refers to the start, termination,
or cancellation of an instance of that activity);

– resource attribute, indicating the name of the agent responsible for the event
occurrence.

4.3 The onprom Model

We describe now the onprom model, whose key elements and their respective
relations are depicted in Fig. 15.

We start from the assumption that the data of interest for the analysis is
maintained in a legacy information system I = 〈R,D〉, with schema R and set D
of facts about the domain of interest. In the typical case where the information
system is a relational database, R accounts for the schema of the tables and
their columns, and D is a set of data structured according to such tables. On
top of I, our methodology is centered on the usage of conceptual models in
two respects. First, they are used as documentation artifacts that explicitly
capture not only knowledge about the domain of interest, but also how legacy
information systems relate to that knowledge. This facilitates understanding and
interaction among human stakeholders. Second, conceptual models are used as

D
(database)

R
(db schema)

conforms to

M
(mapping specification)

T
(conceptual data schema)

L
(event-data annotations)

P (onprom model)

E
(conceptual event schema)

annotates

points to

ME
P

(log mapping specification)

I (information system)

B (OBDA model)

Fig. 15. Sketch of the onprom model. The dashed mapping specification is automati-
cally generated

OBDA for Log Extraction in Process Mining 331

computational artifacts, that is, to automatize the extraction process as much
as possible.

The first phase of the methodology consists in the creation of two concep-
tual models. The first one is the conceptual data schema T , which accounts for
the structural knowledge of the domain of interest, i.e., relevant concepts and
relations, consequently providing a high-level view of I that is closer to domain
experts. More specifically, we employ UML class diagrams as a concrete language
for conceptual data modeling, and we provide their logic-based, formal encoding
in terms of the OWL 2 QL ontology language, as illustrated in Sect. 3.2. In the
following, depending on the context, we refer to T as a UML class diagram or
as the corresponding OWL 2 QL ontology.

The second conceptual model, the mapping specification M, is a distinctive
feature introduced by our approach, borrowed from the area of OBDA. As illus-
trated in Sect. 3.4, M, which explicitly links I to T , consists of a set of logical
assertions that map patterns of data over schema R to high-level facts over T .

Once the OBDA system is in place, onprom allows one to abstract away the
information system. In this way, the analyst responsible for the data extraction
can directly focus on T , using the concepts and relations contained therein so
as to concretely formulate which perspective has to be taken towards process
mining. More specifically, this amounts to enrich T with annotations L, each
creating an implicit link between T and the core portion of the event schema E
captured in Fig. 13. In this light, each annotation expresses one of the following
aspects:

– definition of a case, indicating which class provides the basis to identify case
objects, and which conditions have to be satisfied by instances of the selected
class so as to classify them as case objects;

– definition of an event, indicating which class provides the basis to identify
occurrences of such an event;

– definition of an event attribute, indicating which navigational route has to
be followed within the diagram so as to fetch the value for such an attribute
given an instance of the corresponding event.

We consider each type of annotation next.

Case Annotation specifies which class constitutes the main entry point for
the analysis, and which additional conditions have to be considered when iden-
tifying cases. Each object instantiating this so-called case class, and satisfying
the additional conditions, is a case object. Each case object, in turn, is used to
correlate the event of interest, grouping into a single trace all the events that
refer to the same case object.

Event Annotations pinpoint which events of interest characterise the evolu-
tion of the selected case objects, and to which classes of T they are attached.
Only classes that obey to the following two conditions are eligible to be tar-
get for an event annotation, i.e., to be marked as event classes. First, the class

332 D. Calvanese et al.

has to be navigationally connected to the case class. A navigational connection
consists of the concatenation of multiple links (i.e., associations or IS-A gener-
alisations), each time imposing that the target class of the current link becomes
the source of the next link. Second, the class has to be navigationally connected
to a timestamp attribute, through functional associations only.

The first condition is used to establish a relationship between case objects
and their related events. The second condition is used to unambiguously identify
the execution times associated to those events. It is important to notice that, for
both navigations, the concatenated associations may be optional. In this light,
only those objects falling under the scope of the annotation, and corresponding
to an actual timestamp and to at least one case object, are considered as events.
This is used to account for the fact that cases may be still running (i.e., with
events that did not occur yet, but that will occur in the future), and that different
cases may very well contain different events.

Attribute Annotations capture how to connect events to corresponding val-
ues for their characteristic attributes. Each annotation of this form comes with
a key that defines the type of targeted attribute, and the specification of a nav-
igational connection to fetch its corresponding value(s). Each event annotation
comes with three mandatory attribute annotations, respectively used to capture
the relationship between the event and its corresponding case(s), timestamp,
and activity. As pointed out before, the timestamp annotation needs to have a
functional navigation. This also applies to the activity annotation, with the only
difference that, instead of providing a functional navigation, the activity annota-
tion may also be filled with a constant string that independently fixes the name
of activity. Beside such three mandatory attributes, additional optional attribute
annotations may be provided, so as to cover the various standard extensions pro-
vided XES, including the link to a transition within the activity transactional
lifecycle, as well as resource information, in turn constituted by the resource
name and/or role.

Example 11. Consider again our ConfSys case study, and in particular the
data model shown in Fig. 9, under the assumption that the focus of process min-
ing is to analyse the flow of papers within ConfSys, from their creation and
submission to their final judgement. An informal account of the different anno-
tations reflecting this perspective on the data is given in Fig. 16. In particular,
the case annotation clearly depicts that each Paper is a case object. On top of
this choice for cases, four types of events are identified:

– Each instance of DecidedPaper may determine a Decision event occurring for
that paper instance at the given decision time (attribute decTime). Notice
that, in this case, the case class is directly reached from DecidedPaper through
its IS-A relationship.

OBDA for Log Extraction in Process Mining 333

Paper

title : String
type : String

Person

pName : String
regTime: ts

Assignment

invTime: ts
Submission

uploadTime: ts

CRUpload Creation

DecidedPaper

decTime: ts
accepted: boolean

notifiedBy
Review

subTime: ts

leadsTo

Conference

cName: String
crTime: ts

submittedTo

chairs

Case
Event Submission
Timestamp: uploadTime
Case: Submission1

Event Review
Timestamp: subTime
Case: leadsTo− →Assignment1

Event Creation
Timestamp: uploadTime
Case: Submission→Submission1

Event Decision
Timestamp: decTime
Case: Paper

*

*

*

1..*

*

1

1

0..1

* 1

1

*

Fig. 16. Annotated data model of our ConfSys running example

– Each instance of Creation may determine a Creation event for the paper that
is reached by concatenating the IS-A relationship pointing to Submission,
together with the Submission association (class), navigating it towards Paper.
The event occurs at the upload time attached to the Submission parent class
(attribute uploadTime in Submission).

– Each instance of Submission may determine a Submission for the paper that
is obtained by simply navigating the association class Submission towards
Paper. Similar to the previous annotation, also events of this type occur at
the upload time (attribute uploadTime) for the submission.

– Finally, each instance of Review may determine a Review event for the paper
that is obtained by navigating backward the leadsTo association, in turn nav-
igating the Assignment association (class) towards Paper. The event comes
with the timestamp of submission for that review (attribute subTime). �

Example 12. A completely different set of annotations would be devised on
top of the ConfSys data model in Fig. 9, when considering a class different
than Paper to identify cases. For example, one may focus on the flow of opera-
tions performed by users of ConfSys, by declaring Person to be the case class.
Alternatively, one may consider the flow of review invitations and submissions,
by declaring Assignment to be the case class. All such different choices would
in turn result in different relevant events and corresponding event/attribute
annotations. �

334 D. Calvanese et al.

4.4 Formalising Event-Data Annotations

As we have seen, the different event-data annotations enrich the conceptual
data schema T by indicating which classes, associations, and attributes in T
contribute to the identification of cases, events, and event attributes. Towards
the automated processing of such annotations, and the consequent automated
extraction of an XES event log reflecting such annotations, the first step is to
formally represent the annotations using a machine-processable language. To
this end, we rely on conjunctive queries encoded as sparql SELECT queries.
Such queries are used to extract objects/values targeted by the annotations,
and thus change depending on the type of annotation (cf. Sect. 4.3). We review
each annotation type next.

Case Annotations are tackled by sparql SELECT queries with a single answer
variable, which matches with the intended case objects, i.e., instances of the case
class. Additional filters can be expressed in the WHERE clause to single out the
boundaries of the analysis (e.g., only papers submitted to a given conference, or
within a given timespan, may be considered when analysing ConfSys).

Example 13. The case annotation captured in Fig. 16 can be formalised using
the following query:

PREFIX : <http://www.example.com/>
SELECT DISTINCT ?case
WHERE {

?case rdf:type :Paper .
}

which retrieves all instances of the Paper class. �

Event Annotations are also tackled using sparql SELECT queries with a single
answer variable, this time matching with actual event identifiers, i.e., objects
denoting occurrences of events.

Example 14. Consider the event annotation for creation, as shown in Fig. 16.
The actual events for this annotation are retrieved using the following query:

PREFIX : <http://www.example.com/>
SELECT DISTINCT ?creationEvent
WHERE {

?creationEvent rdf:type :Creation .
}

which in fact returns all instances of the Creation class. �

OBDA for Log Extraction in Process Mining 335

Attribute Annotations are formalised using sparql SELECT queries with two
answer variables, establishing a relation between events and their correspond-
ing attribute values. In this light, for timestamp and activity attribute annota-
tions, the second answer variable will be substituted by corresponding values for
timestamps/activity names. For case attribute annotations, instead, the second
answer variable will be substituted by case objects, thus establishing a relation-
ship between events and the case(s) they belong to.

Example 15. Consider again the annotation for creation events, as shown
in Fig. 16. The relationship between creation events and their corresponding
timestamps is established by the following query:

PREFIX : <http://www.example.com/>
SELECT DISTINCT ?creationEvent ?creationTime
WHERE {

?creationEvent rdf:type :Creation .
?creationEvent :Submission1 ?Paper .
?creationEvent :uploadTime ?creationTime .

}

which indeed retrieves all instances of Creation, together with the corresponding
values taken by the uploadTime attribute. �

In the remainder of the paper, a sparql query q formalising an annotation l
is called the annotation query for l. Given a set L of annotations, we denote by
Lq the set of annotation queries formalising the different annotations in L.

4.5 Automated Processing of Annotations

Once the data-annotation step is concluded, the conceptual data schema T of
the input OBDA system 〈I, T ,M〉 is enriched with annotations L that implicitly
link such a system to the event schema E that conceptually accounts for the main
concepts and relations of the XES standard (cf. Sect. 4.2). We now show how
such event-data annotations can be automatically processed, so as to synthesise
a new OBDA system that directly maps the data in I to the event schema E
(cf. the dashed part of Fig. 15). This OBDA system, in turn, can be exploited
to query the data in I as they were structured as a XES event log, and also to
actually materialise such an event log.

Technically, onprom takes as input an onprom model P = 〈I, T ,M,L〉 and
the event schema E , and produces new OBDA system 〈I,ME

P , E〉, where the
annotations in L are automatically reformulated as OBDA mappings ME

P that
directly link I to E . Such mappings are synthesised using the three-step approach
described next.

In the first step, the sparql queries formalising the annotations in L are refor-
mulated into corresponding SQL queries posed directly over I. This is done by rely-
ing on standard query rewriting and unfolding, where each sparql query q ∈ Lq is
rewritten considering the contribution of the conceptual data schema T , and then

336 D. Calvanese et al.

unfolded using the mappings in M. The resulting query qsql can then be posed
directly over I so as to retrieve the data associated to the corresponding annota-
tion. In the following, we denote the set of all so-obtained SQL queries as Lsql.

Example 16. Consider the sparql query in Example 13, formalising the event
annotation that accounts for the creation of papers. A possible reformulation of
the rewriting and unfolding of such a query respectively using the conceptual
data schema in Fig. 9, and the mappings from Example 10, is the following SQL
query:

SELECT DISTINCT
CONCAT(’http://www.example.com/submission/
’,Submission."ID")
AS "creationEvent"
FROM Submission, Paper
WHERE Submission."Paper" = Paper."ID" AND

Submission."UploadTime" = Paper."CT" AND
Submission."ID" IS NOT NULL

This query is generated by the ontop OBDA system, which applies various opti-
misations so as to obtain a final SQL query that is not only correct, but also
possibly compact and fast to process by a standard DBMS. One such optimisa-
tions is the application of conjunctive query containment techniques to remove
parts of the query that are subsumed by others. �

The second step towards the synthesis of ME
P amounts to the creation of

the actual, direct mappings from I to E . Each mapping, in turn, is obtained by
considering one of the reformulated annotation queries in Lsql, and constructed
depending on the corresponding annotation type. In the obtained mapping, the
SQL query constitutes the source part of the mapping, while the annotation type
indicates which concepts/roles/features have to be considered to form its target
part.

More specifically, ME
P is obtained from Lsql as follows:

1. For each SQL query q(c) ∈ Lsql obtained from a case annotation, we insert
into ME

P the following OBDA mapping:

q(c)
� :trace/{c} rdf:type :Trace .

Intuitively, such a mapping populates the concept Trace in E with the case
objects that are created from the answers returned by query q(c).

2. For each SQL query q(e) ∈ Lsql that is obtained from an event annotation,
we insert into ME

P the following OBDA mapping:

q(e)
� :event/{e} rdf:type :Event .

Intuitively, such a mapping populates the concept Event in E with the event
objects that are created from the answers returned by query q(e).

OBDA for Log Extraction in Process Mining 337

3. For each SQL query q(e,y) ∈ Lsql that is obtained from an attribute anno-
tation, we insert into ME

P a mapping that depends on the type of attribute:
(a) If q(e,y) is the query obtained from a case attribute annotation (i.e., e

is bound to events, and y to their corresponding cases), then the mapping
has the following form:

q(e,y)
� :trace/{y :t-contains-e :event/{e} .

Intuitively, such a mapping populates the the relation that links traces
and events in E (i.e., the role t-contains-e) with the answers returned by
query q(e,y).

(b) If q(e,y) is the query obtained from a timestamp attribute annotation
(i.e., e is bound to events, and y to their corresponding execution times),
then the mapping has the following form:

q(e,y)
� :event/{e} :e-has-a :att/eventTS/{e}/{y};

:att/eventTS/{e}/{y} :attType "date"ˆˆxsd:string;
:attKey "time:timestamp"ˆˆxsd:string;
:attVal "{y}"ˆˆxsd:string .

Intuitively, such a mapping populates the concept Attribute with the
objects representing timestamp attributes. at the same time, it also suit-
ably reconstruct the event-timestamp relationship at the level of E , using
the answers returned by query q(e,y).

(c) If q(e,n) is the query obtained from an activity attribute annotation (i.e.,
e is bound to events, and n to their corresponding activity names), then
the mapping has the following form:

q(e,n)
� :event/{e} :e-has-a :att/aName/{e}/{n};

:att/aName/{e}/{n} :attType "string"ˆˆxsd:string;
:attKey "concept:name"ˆˆxsd:string;
:attVal "{n}"ˆˆxsd:string .

It is worth noting that the presented approach can be straightforwardly gen-
eralised to cover additional types of annotations (e.g., dealing with the activity
transactional lifecycle, or the involved resources).

The third, final step consists in leveraging the synthesised OBDA system
〈I, E ,ME

P〉 so as to extract the event data of interest. The extraction can be
declaratively guided by formulating sparql queries over the vocabulary of E
and, if needed, serialising the obtained answers in the form of an XES event log.
We provide, in the following, a list of sparql queries serving this purpose.

The sparql query below retrieves events and their attributes, considering
only those events that do actually have a reference trace, timestamp, and activity
name:

PREFIX : <http://onprom.inf.unibz.it>
SELECT DISTINCT ?event ?att
WHERE {

?trace :t-contain-e ?event.
?event :e-has-a ?att.
?event :e-has-a ?timestamp. ?timestamp :attKey "time:timestamp"ˆˆxsd:string.
?event :e-has-a ?name. ?name :attKey "concept:name"ˆˆxsd:string.

}

338 D. Calvanese et al.

The WHERE clause is used to filter away dangling events (i.e., events for which
the corresponding case is not known), or events with missing timestamp or miss-
ing activity name.

The following query is instead meant to retrieve (elementary) attributes,
considering in particular their key, type, and value.

PREFIX : <http://www.example.org/>
SELECT DISTINCT ?att ?attType ?attKey ?attValue
WHERE {

?att rdf:type :Attribute;
:attType ?attType;
:attKey ?attKey;
:attVal ?attValue.

}

The following query handles the retrieval of empty and nonempty traces,
simultaneously obtaining, for nonempty traces, their constitutive events:

PREFIX : <http://www.example.org/>
SELECT DISTINCT ?trace ?event
WHERE {

?trace a :Trace .
OPTIONAL {

?trace :t-contain-e ?event .
?event :e-contain-a ?timestamp .

?timestamp :attKey "time:timestamp"ˆˆxsd:string .
?event :e-contain-a ?name .

?name :attKey "concept:name"ˆˆxsd:string .
}

}

4.6 The onprom Toolchain

onprom comes with a toolchain that supports the various phases of the method-
ology shown in Fig. 12, and in particular implements the automated processing
technique for annotations discussed in Sect. 4.5. The toolchain is open source and
can be downloaded from http://onprom.inf.unibz.it. The toolchain is available
as a stand-alone software, or as a set of plugins running inside the ProM process
mining framework. Specifically, the onprom toolchain consists of the following
components:

– a UML Editor to model the conceptual data schema (cf. Sect. 4.1);
– an Annotation Editor to enrich the conceptual data schema with event-data

annotations (cf. Sect. 4.3);
– a Log Extractor component that automatically processes the event-data anno-

tations, and extracts an XES event log from a given relational information
system (cf. Sect. 4.5).

http://onprom.inf.unibz.it

OBDA for Log Extraction in Process Mining 339

Notice that the definition of a suitable mapping specification to link a con-
ceptual data schema to an underlying information system is not natively covered
within onprom, and we assume that it is realised manually or by exploiting third-
party tools, such as the ontop mapping editor for Protégé34.

We now briefly describe each component, using ConfSys as running
example.

UML Editor. The UML editor provides two main functionalities: modelling of
a UML class diagram, and import/export from/to OWL 2 QL, leveraging the cor-
respondence described in Sect. 3.2. The editor makes some simplifying assump-
tions, in line with this correspondence with OWL 2 QL:

– we do not support completeness of UML generalisation hierarchies, since the
presence of such construct would fundamentally undermine the virtual OBDA
approach based on query reformulation [7];

Fig. 17. The onprom UML Editor, showing the conceptual data schema used in our
ConfSys running example
34 http://protege.stanford.edu/.

http://protege.stanford.edu/

340 D. Calvanese et al.

– in line with Semantic Web languages, we explicitly support binary associa-
tions only;

– multiplicities in associations (resp., features) are restricted to be either 0 or
1. Hence, we can express functionality and mandatory participation;

– we do not support IS-A between associations;
– we ignore all those features that are not directly related to conceptual mod-

elling, but instrumental to software design, such as stereotypes and methods.

A screenshot of the UML Editor showing the conceptual data schema of
ConfSys is shown in Fig. 17.

Annotation Editor. This editor supports data and process analysts in the
specification of event-data annotations on top of a UML class diagram developed
using the UML editor described above.

A screenshot of the Annotation Editor, showing annotations for our Conf-
Sys conceptual data schema, is shown Fig. 18. Specifically, the screenshot shows
that Paper has been annotated as case class, and that four events annotations

Fig. 18. The Annotation Editor showing annotations for the ConfSys use case

OBDA for Log Extraction in Process Mining 341

(a) The Creation event

(b) The Decision event

(c) The Review event

(d) The Submission event

Fig. 19. The properties of event annotations defined for the ConfSys use case

are defined, implementing what is reported in Fig. 16 (together with additional
attribute definitions). The input forms for the configurations of such annotations
are depicted in Fig. 19.

To simplify the annotation task, the editor supports some advanced
operations:

– Properties and paths can be chosen using navigational selections over the
diagram via mouse-click operations.

– The editor takes into account multiplicities on associations and attributes;
when the user is selecting properties of the case and of events (in particular
the timestamp), the editor enables only navigation paths that are functional.

The annotations are automatically translated into corresponding sparql
queries by the editor.

Log Extraction Plug-in. The last component of the toolchain implements
the mapping synthesis technique described in Sect. 4.5 towards log extraction,
leveraging the state-of-the-art ontop framework to handle several important
tasks such as (i) management of OBDA mappings, (ii) rewriting and unfold-
ing of sparql queries, and (iii) query answering. In addition, the log extraction

342 D. Calvanese et al.

component exploits the OpenXES APIs35 for managing XES data structures and
the corresponding XML serialisation. Figure 20 shows the screenshot of the log
extractor plug-in in Prom 6.6. Essentially, the plug-in takes the following inputs:

1. A conceptual data schema T , generated via the UML Editor or represented
as an OWL 2 QL file;

2. An OBDA mapping specification, containing
– a mapping specification M linking T to an underlying relational R
– the connection information to access a database instance D of interest,

conforming to R.
3. Event-data annotations L, which can be created using the Annotation Editor.

Fig. 20. Screenshot of Log Extractor Plug-in in Prom 6.6.

As output, the plugin produces a XES event log obtained as the result of
the processing of the database instance D through the provided mappings and
annotations. The event log is offered as a standard ProM resource within the
ProM framework.

5 Conclusions

In this paper, we have presented the onprom framework, which leverages tech-
niques from intelligent data management to tackle the challenging phase of data
35 http://www.xes-standard.org.

http://www.xes-standard.org

OBDA for Log Extraction in Process Mining 343

preparation for process mining, enabling the possibility to apply process min-
ing techniques on top of legacy information systems. Instead of forcing data and
process analysts to set up ad-hoc, manual extraction procedures, onprom provides
support to handle this problem at a higher level of abstraction. Specifically, users
focus on modelling the data of interest conceptually, on the one hand linking the
resulting conceptual schema to legacy data via declarative mappings, and on
the other hand equipping the schema with declarative annotations that indicate
where cases, events, and their attributes are “located” within such a schema.
onprom then automatises the extraction of event logs, manipulating and rea-
soning over mappings and annotations by exploiting well-established techniques
from knowledge representation and ontology-based data access.

We believe that the synergic integration of techniques coming from data and
process management is the key to enable decision makers, analysts and domain
experts in improving the way work is conducted within small, medium and large
enterprises. At the same time, it provides interesting, open research challenges for
computer scientists, covering both foundational and applied aspects. In particu-
lar, different interesting lines of research can be developed starting from onprom,
ranging from the optimisation of ontology-based data access in the specific con-
text of event log extraction, to the investigation of techniques and methodologies
for event modelling and recognition typically studied within formal ontology, to
the definition of alternative mechanisms for linking conceptual data schemas to
reference, event log models.

Acknowledgements. This research has been partially supported by the Euregio
IPN12 “KAOS: Knowledge-Aware Operational Support” project, which is funded by
the “European Region Tyrol-South Tyrol-Trentino” (EGTC) under the first call for
basic research projects, and by the UNIBZ internal project “OnProm (ONtology-driven
PROcess Mining)”. We thank Wil van der Aalst for the interesting discussions and
insights on the problem of extracting event logs from legacy information systems.

References

1. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer, Heidelberg (2013)

2. Weske, M.: Business Process Management - Concepts, Languages, Architectures,
2nd edn. Springer, Heidelberg (2012)

3. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-28108-2 19

4. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer,
Heidelberg (2016)

5. IEEE Computational Intelligence Society: IEEE Standard for eXtensible Event
Stream (XES) for Achieving Interoperability in Event Logs and Event Streams.
IEEE Std 1849–2016 (2016). i–50

6. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Seman-
tics X. LNCS, vol. 4900, pp. 133–173. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-77688-8 5

http://dx.doi.org/10.1007/978-3-642-28108-2_19
http://dx.doi.org/10.1007/978-3-540-77688-8_5
http://dx.doi.org/10.1007/978-3-540-77688-8_5

344 D. Calvanese et al.

7. Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro,
M., Rosati, R.: Ontologies and databases: the DL-Lite approach. In: Tessaris, S.,
Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt,
R.A. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 255–356. Springer, Heidel-
berg (2009). doi:10.1007/978-3-642-03754-2 7

8. Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M.,
Rodriguez-Muro, M., Xiao, G.: Ontop: answering SPARQL queries over relational
databases. Semant. Web J. 8(3), 471–487 (2017)

9. Calvanese, D., Kalayci, T.E., Montali, M., Tinella, S.: Ontology-based data access
for extracting event logs from legacy data: the onprom tool and methodology. In:
Abramowicz, W. (ed.) BIS 2017. LNBIP, vol. 288, pp. 220–236. Springer, Heidel-
berg (2017). https://www.springer.com/us/book/9783319593357

10. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process
models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

11. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Process and deviation explo-
ration with inductive visual miner. In: Proceedings of BPM Demo Sessions. CEUR
Workshop Proceedings, vol. 1295, p. 46. CEUR-WS.org (2014). http://ceur-ws.
org/

12. Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM2: a process min-
ing project methodology. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.)
CAiSE 2015. LNCS, vol. 9097, pp. 297–313. Springer, Cham (2015). doi:10.1007/
978-3-319-19069-3 19

13. Verbeek, H.M.W., Buijs, J.C.A.M., Dongen, B.F., van der Aalst, W.M.P.: XES,
XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP,
vol. 72, pp. 60–75. Springer, Heidelberg (2011). doi:10.1007/978-3-642-17722-4 5

14. Dongen, B.F., Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der
Aalst, W.M.P.: The ProM framework: a new era in process mining tool support.
In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454.
Springer, Heidelberg (2005). doi:10.1007/11494744 25

15. van der Aalst, W.M.P., Bolt, A., van Zelst, S.J.: RapidProM: Mine your processes
and not just your data. CoRR Technical Report abs/1703.03740, arXiv.org e-Print
archive, March 2017. http://arxiv.org/abs/1703.03740

16. Günther, C.W., Rozinat, A.: Disco: discover your processes. In; Lohmann, N.,
Moser, S. (eds.) Proceedings of the Demonstration Track of the 10th International
Conference on Business Process Management (BPM). CEUR Workshop Proceed-
ings, vol. 940, pp. 40–44 (2012). http://ceur-ws.org/

17. Günther, C.W.: XES Standard Definition Version 1.0. Technical report, Fluxicon
Process Laboratories, November 2009. http://www.xes-standard.org

18. van Dongen, B.F., van der Aalst, W.M.P.: A meta model for process mining data.
In: Proceedings of EMOI - INTEROP. CEUR Workshop Proceedings, vol. 160.
CEUR-WS.org (2005). http://ceur-ws.org/

19. Günther, C.W., Verbeek, E.: XES Standard Definition Version 2.0. Technical
report, Fluxicon Process Laboratories, March 2014. http://www.xes-standard.org

20. Günther, C.W., Aalst, W.M.P.: A generic import framework for process event logs.
In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 81–92. Springer,
Heidelberg (2006). doi:10.1007/11837862 10

21. Bao, J., et al.: OWL 2 Web Ontology Language document overview, 2nd edn. W3C
Recommendation, World Wide Web Consortium, December 2012. http://www.w3.
org/TR/owl2-overview/

http://dx.doi.org/10.1007/978-3-642-03754-2_7
https://www.springer.com/us/book/9783319593357
http://ceur-ws.org/
http://ceur-ws.org/
http://dx.doi.org/10.1007/978-3-319-19069-3_19
http://dx.doi.org/10.1007/978-3-319-19069-3_19
http://dx.doi.org/10.1007/978-3-642-17722-4_5
http://dx.doi.org/10.1007/11494744_25
http://arxiv.org/abs/org
http://arxiv.org/abs/1703.03740
http://ceur-ws.org/
http://www.xes-standard.org
http://ceur-ws.org/
http://www.xes-standard.org
http://dx.doi.org/10.1007/11837862_10
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/

OBDA for Log Extraction in Process Mining 345

22. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press (2003)

23. Calvanese, D.: Query answering over description logic ontologies. In: Fermé, E.,
Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 1–17. Springer, Cham
(2014). doi:10.1007/978-3-319-11558-0 1

24. Vardi, M.Y.: The complexity of relational query languages. In: Proceedings of the
14th ACM SIGACT Symposium on Theory of Computing (STOC), pp. 137–146
(1982)

25. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. Autom. Reasoning 39(3), 385–429 (2007)

26. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. Artif. Intell. 195, 335–360 (2013)

27. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2
Web Ontology Language profiles, 2nd edn. W3C Recommendation, World Wide
Web Consortium, December 2012. http://www.w3.org/TR/owl2-profiles/

28. Calvanese, D., Lenzerini, M., Nardi, D.: Unifying class-based representation for-
malisms. J. Artif. Intell. Res. 11, 199–240 (1999)

29. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.
Artif. Intell. 168(1–2), 70–118 (2005)

30. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley
Publ. Co. (1995)

31. Antonioli, N., Castanò, F., Coletta, S., Grossi, S., Lembo, D., Lenzerini, M., Poggi,
A., Virardi, E., Castracane, P.: Ontology-based data management for the Ital-
ian public debt. In: Proceedings of the 8th International Conference on Formal
Ontology in Information Systems (FOIS). Frontiers in Artificial Intelligence and
Applications, vol. 267, pp. 372–385. IOS Press (2014)

32. Gottlob, G., Kikot, S., Kontchakov, R., Podolskii, V.V., Schwentick, T.,
Zakharyaschev, M.: The price of query rewriting in ontology-based data access.
Artif. Intell. 213, 42–59 (2014)

33. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to query answering in DL-Lite. In: Proceedings of the 12th Inter-
national Conference on the Principles of Knowledge Representation and Reasoning
(KR), pp. 247–257 (2010)

34. Rodriguez-Muro, M., Calvanese, D.: High performance query answering over DL-
Lite ontologies. In: Proceedings of the 13th International Conference on the Prin-
ciples of Knowledge Representation and Reasoning (KR), pp. 308–318 (2012)

35. Rodriguez-Muro, M., Rezk, M.: Efficient SPARQL-to-SQL with R2RML mappings.
J. Web Semant. 33, 141–169 (2015)

36. Syamsiyah, A., van Dongen, B.F., van der Aalst, W.M.P.: DB-XES: enabling
process discovery in the large. In: Ceravolo, P., Guetl, C., Rinderle-Ma, S. (eds.)
Proceedings of the 6th International Symposium on Data-driven Process Discov-
ery and Analysis (SIMPDA). CEUR Workshop Proceedings, vol. 1757, pp. 63–77
(2016). http://ceur-ws.org/

37. Jiménez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks, I., Pinkel, C.,
Skjæveland, M.G., Thorstensen, E., Mora, J.: BootOX: Bootstrapping OWL 2
Ontologies and R2RML Mappings from Relational Databases. In Villata, S., Pan,
J.Z., Dragoni, M. (eds.) Proceedings of the 14th International Semantic Web Con-
ference Posters & Demonstrations Track (ISWC). CEUR Workshop Proceedings,
vol. 1486 (2015). http://ceur-ws.org/

http://dx.doi.org/10.1007/978-3-319-11558-0_1
http://www.w3.org/TR/owl2-profiles/
http://ceur-ws.org/
http://ceur-ws.org/

	OBDA for Log Extraction in Process Mining
	1 Introduction
	2 Process Mining: A Gentle Introduction
	2.1 The Process Mining Framework
	2.2 Application of Process Mining
	2.3 Process Mining Tools
	2.4 The XES Standard
	2.5 The Data Preparation Phase

	3 Ontology-Based Data Access
	3.1 Lightweight Ontology Languages
	3.2 Conceptual Data Models and Relationship to Ontology Languages
	3.3 Queries over DL-LiteA Ontologies
	3.4 Linking Ontologies to Data
	3.5 Processing of Conceptual Queries

	4 OBDA for Log Extraction: The onprom Approach
	4.1 Methodology
	4.2 Event Ontology
	4.3 The onprom Model
	4.4 Formalising Event-Data Annotations
	4.5 Automated Processing of Annotations
	4.6 The onprom Toolchain

	5 Conclusions
	References

