
ar
X

iv
:1

20
3.

00
24

v1
 [

cs
.D

B
]

29
 F

eb
 2

01
2

Verification of Relational Data-Centric Dynamic Systems
with External Services

Babak Bagheri Hariri
Diego Calvanese

Marco Montali
Free Univ. of Bozen/Bolzano

lastname@inf.unibz.it

Giuseppe De Giacomo
Sapienza Università di Roma

degiacomo@dis.uniroma1.it

Alin Deutsch
UC San Diego

deutsch@cs.ucsd.edu

ABSTRACT
Data-centric dynamic systems are systems where both the process
controlling the dynamics and the manipulation of data are equally
central. Recently such kinds of systems are increasingly attract-
ing the interest of the scientific community, especially in their vari-
ant called artifact-centric business processes. In this paper we
study verification of (first-order)µ-calculus variants overrelational
data-centric dynamic systems, where data are represented by a full-
fledged relational database, and the process is described interms
of atomic actions that evolve the database. The execution ofsuch
actions may involve calls to external services, providing fresh data
inserted into the system. As a result such systems are typically
infinite-state. We show that verification is undecidable in general,
and we isolate notable cases, where decidability is achieved. Specif-
ically we start by considering service calls that return values de-
terministically (depending only on passed parameters). Weshow
that in aµ-calculus variant that preserves knowledge of objects ap-
peared along a run we get decidability under the assumption that the
fresh data introduced along a run are bounded, though they might
not be bounded in the overall system. In fact we tie such a result to
a notion related to weak acyclicity studied in data exchange. Then,
we move to nondeterministic services where the assumption of data
bounded run would result in a bound on the service calls that can be
invoked during the execution and hence would be too restrictive. So
we investigate decidability under the assumption that knowledge of
objects is preserved only if they are continuously present.We show
that if infinitely many values occur in a run but do not accumulate
in the same state, then we get again decidability. We give syntac-
tic conditions to avoid this accumulation through the novelnotion
of “generate-recall acyclicity”, which takes into consideration that
every service call activation generates new values that cannot be
accumulated indefinitely.

1. INTRODUCTION
Data-centric dynamic systems (DCDSs) are systems where both

the process controlling the dynamics and the manipulated data are
equally central. Recently such kinds of systems are increasingly at-
tracting the interest of the scientific community. In particular, the so

called artifact-centric approach to modeling business processes has
emerged, with the fundamental characteristic of considering both
data and processes as first-class citizens in service designand anal-
ysis [32, 26, 18, 15, 36, 1]. This holistic view of data and processes
together promises to avoid the notorious discrepancy between data
modeling and process modeling of more traditional approaches that
consider these two aspects separately [7, 6].

DCDSs are constituted by(i) a data layer, which is used to hold
the relevant information to be manipulated by the system, and (ii)
a process layerformed by the invokable(atomic) actionsand a
process based on them. Such a process characterizes the dynamic
behavior of the system. Executing an action has effects on the data
manipulated by the system, on the process state, and on the infor-
mation exchanged with the external world.

DCDSs deeply challenge formal verification by requiring simul-
taneous attention to both data and processes: indeed, on theone
hand they deal with full-fledged processes and require analysis in
terms of sophisticated temporal properties [17]; on the other hand,
the presence of possibly unbounded data makes the usual analysis
based on model checking of finite-state systems impossible in gen-
eral, since, when data evolution is taken into account, the whole
system becomes infinite-state.

In this paper we studyrelational DCDSs, where data are repre-
sented by a full-fledged relational database, and the process is de-
scribed in terms of atomic actions that evolve the database.The ex-
ecution of such actions may involve calls to external services, pro-
viding fresh data inserted into the system. As a result such systems
are infinite-state in general. In particular, actions are characterized
using conditional effects. Effects are specified using first-order
(FO) queries to extract from the current database the objects we
want to persist in the next state, and using conjunctive queries on
these objects to generate the facts that are true in the next state. In
addition, to finalize the next state we call external services (func-
tion calls) that provide new information and objects comingfrom
the external world.

On top of such a framework, we introduce powerful verification
logics, which are FO variants ofµ-calculus [29, 33, 22, 13].µ-
calculus is well known to be more expressive than virtually all tem-
poral logics used in verification, including CTL, LTL, CTL*,PDL,
and many others. Our approach is remarkably robust: while it
is common to use simpler logics like CTL and LTL towards veri-
fication decidability, our decidability results hold for significantly
more expressiveµ-calculus variants, and thus carry over to all these
other logics. Our variants ofµ-calculus are based on first-order
queries over data in the states of the DCDS, and allow for first-
order quantification across states (within and across runs), though
in a controlled way. No limitations whatsoever are instead put on
the fixpoint formulae, which are the key element of theµ-calculus.

http://arxiv.org/abs/1203.0024v1

In particular we consider two variants ofµ-calculus. The first
variant is calledµLA, and requires that first-order quantification
across states be always bounded to the active domain of the state
where the quantification is evaluated. This quantification mecha-
nism indirectly preserves, at any point, knowledge of objects that
appeared in the history so far, even if they disappeared in the mean-
time. The second variant, calledµLP , restricts the first-order quan-
tification in µLA by requiring that only quantified object that are
still present in the current domain are of interest as we movefrom
one state to the next . That is, knowledge of objects is preserved
only if they are continuously present. For these two logics we de-
fine novel notions of bisimulation, which we exploit to proveour
results.

We show that verification of bothµLA andµLP is undecidable
in general. In fact we get undecidability even ruling out first-order
quantification and branching time. However we isolate two notable
decidable cases. Specifically we start by considering service calls
that return values deterministically (depending only on passed pa-
rameters). We show that verification ofµLA properties is decid-
able under the assumption that the cardinality of fresh dataintro-
duced along each run is bounded (run-boundedDCDSs), though
it need not be bounded across runs. Decidability is therefore not
obvious, given that the logic permits quantification over values oc-
curring across (potentially infinitely many) branching runcontinu-
ations. Run-boundedness is a semantic property which we show
undecidable to check, but for which we propose a sufficient syn-
tactic condition related to the notion of weak acyclicity studied in
data exchange [23]. Then, we move to nondeterministic services
where same-argument service calls possibly return different values
at different moments in time. To exploit the results on run-bounded
DCDSs in this case we would have to limit the number of service
calls that can be invoked during the execution, which would be a
too restrictive condition on the form of DCDSs. So we focus on
the aboveµLP fragment ofµLA. We show that if infinitely many
values occur in a run but do not accumulate in the same state (our
system is then calledstate-bounded) thenµLP verification is decid-
able. This comes as a pleasant surprise, given that when compared
to run-boundedness, state-boundedness permits an additional kind
of data unboundedness (within the run, as opposed to onlyacross
runs). State-boundedness is a semantic property as well, and we
show that checking it is undecidable. We then give a novel syn-
tactic condition, “generate-recall acyclicity”, which suffices to en-
force that if a service generates new values by being called an un-
bounded number of times, then these values cannot be accumulated
(“recalled”) indefinitely.

The rest of the paper is organized as follows. Sec. 2 introduces
(relational) DCDS’s. Sec. 3 introduces verification of DCDS’s and
the two variants ofµ-calculus that we consider. Sec. 4 focus the
analysis of DCDS’s under the assumption that external service calls
behave deterministically. Sec. 5 consider the case in whichexter-
nal service calls behave nondeterministically. Sec. 6 discusses the
various notions introduced Sec. 7 reports on related work. Finally,
Sec. 8 concludes the paper. All proofs are given in the appendix,
which also includes a full-fledged example of a DCDS.

2. DATA-CENTRIC DYNAMIC SYSTEMS
In this section, we introduce the notion of(relational) data-

centric dynamic system, or simply DCDS. A DCDS is a pair
S = 〈D,P〉 formed by two interacting layers: adata layerD
and aprocess layerP over it. Intuitively, the data layer keeps all
the data of interest, while the process layer modifies and evolves
such data. We keep the structure of both layers to the minimum, in

particular we do not distinguish between various possible compo-
nents providing the data, nor those providing the subprocesses run-
ning concurrently. Indeed the framework can be further detailed
in several directions, while keeping the results obtained here (cf.
Section 6).

2.1 Data Layer
The data layer represents the information of interest in ourap-

plication. It is constituted by a relational schemaR equipped with
equality constraints1 E , e.g., to state keys of relations, and an ini-
tial database instanceI0, which conforms to the relational schema
and the equality constraints. The values stored in this database be-
long to a predefined, possibly infinite, setC of constants. These
constants are interpreted as themselves, blurring the distinction be-
tween constants and values. We will use the two terms interchange-
ably.

Given a database instanceI, its active domainADOM(I) is the
subset ofC such thatc ∈ ADOM(I) if and only if c occurs inI.

A data layeris a tupleD = 〈C,R, E , I0〉 where:
• C is a countably infinite set of constants/values.
• R = {R1, . . . , Rn} is a database schema, constituted by a

finite set of relation schemas.
• E is a finite set{E1, . . . , Em} of equality constraints. Each

Ei has the form

Qi →
∧
j=1,...,k zij = yij ,

whereQi is a domain independent FO query overR us-
ing constants from the active domainADOM(I0) of I0 and
whose free variables are~x, andzij andyij are either vari-
ables in~x or constants inADOM(I0).2

• I0 is a database instance that represents the initial state of
the data layer, which conforms to the schemaR andsatis-
fies the constraintsE : namely, for each constraintQi →∧
j=1,...,k zij = yij and for each tuple (i.e., substitution

for the free variables)θ ∈ ans (Qi, I), it holds thatzijθ =
yijθ.3

2.2 Process Layer
The process layer constitutes the progression mechanism for the

DCDS. We assume that at every time the current instance of the
data layer can be arbitrarily queried, and can be updated through
action executions, possibly involving external service calls to get
new values form the environment. Hence the process layer is com-
posed of three main notions: actions, which are the atomic pro-
gression steps for the data layer; external services, whichcan be
called during the execution of actions; and processes, which are
essentially nondeterministic programs that use actions asatomic in-
structions. While we require the execution of actions to be sequen-
tial, we do not impose any such constraints on processes, which in
principle can be formed by several concurrent branches, including
fork, join, and so on. Concurrency is to be interpreted by interleav-
ing and hence reduced to nondeterminism, as often done in formal

1Other kinds of constraints can also be included without affecting
the results reported here (cf. Section 6).
2For convenience, and without loss of generality, we assume that
all constants used inside formulae appear inI0.
3We use the notationtθ (resp.,ϕθ) to denote the term (resp., the
formula) obtained by applying the substitutionθ to t (resp.,ϕ). Fur-
thermore, given a FO queryQ and a database instanceI, thean-
swerans (Q, I) to Q overI is the set of assignmentsθ from the
free variables ofQ to the domain ofI, such thatI |= Qθ. We treat
Qθ as a boolean query, and with some abuse of notation, we say
ans (Qθ, I) ≡ true if and only if I |= Qθ.

verification [4, 22]. There can be many ways to provide the control
flow specification for processes. Here we adopt a simple rule-based
mechanism, but our results can be immediately generalized to any
process formalism whose processes control flow is finite-state. No-
tice that this does not imply that the transition system associated to
a process over the data layer is finite-state as well, since the data
manipulated in the data layer may grow over time in an unbounded
way.

Formally, a process layerP over a data layerD = 〈C,R, E ,I0〉,
is a tupleP = 〈F ,A, ̺〉 where:

• F is a finite set offunctions, each representing the interface
to anexternal service. Such services can be called, and as
a result the function is activated and the answer is produced.
How the result is actually computed isunknownto the DCDS
since the services are indeed external.

• A is a finite set ofactions, whose execution progresses the
data layer, and may involve external service calls.

• ̺ is a finite set ofcondition-action rulesthat form the spec-
ification of the overallprocess, which tells at any moment
which actions can be executed.

An actionα ∈ A has the form

α(p1, . . . , pn) : {e1, . . . , em},

where:(i) α(p1, . . . , pn) is thesignatureof the action, constituted
by a nameα and a sequencep1, . . . , pn of input parametersthat
need to be substituted with values for the execution of the action,
and(ii) {e1, . . . , em}, also denoted asEFFECT(α), is a set ofeffect
specifications, whose specified effects are assumed to take place
simultaneously. Eachei has the formq+i ∧Q−

i Ei, where:
• q+i ∧ Q−

i is a query overR whose terms are variables~x,
action parameters, and constants fromADOM(I0). The query
q+i is a UCQ, and the queryQ−

i is an arbitrary FO formula
whose free variables are included in those ofq+i . Intuitively,
q+i selects the tuples to instantiate the effect, andQ−

i filters
away some of them.

• Ei is the effect, i.e., a set of facts forR, which includes as
terms: terms inADOM(I0), input parameters, free variables
of q+i , and in addition Skolem terms formed by applying a
functionf ∈ F to one of the previous kinds of terms. Such
Skolem terms involving functions represent external service
calls and are interpreted so as to return a value chosen by an
external user/environment when executing the action.

The process̺ is a finite set ofcondition-action rules, of the
form Q 7→ α, whereα is an action inA andQ is a FO query
overR whose free variables are exactly the parameters ofα, and
whose other terms can be either quantified variables or constants in
ADOM(I0).

For a detailed example of a DCDS we refer to Appendix E.

2.3 Semantics via Transition System
The semantics of a DCDS is defined in terms of a possibly infi-

nite transition system whose states are labeled by databases. Such a
transition system represents all possible computations that the pro-
cess layer can do on the data layer. A transition systemΥ is a tuple
of the form〈∆,R,Σ, s0, db,⇒〉, where:

• ∆ is a countably infinite set of values;
• R is a database schema;
• Σ is a set of states;
• s0 ∈ Σ is the initial state;
• db is a function that, given a states ∈ Σ, returns the database

associated tos, which is made up of values in∆ and con-
forms toR;

• ⇒ ⊆ Σ× Σ is a transition relation between pairs of states.

(Q)Υv,V ={s ∈ Σ | ans (Qv, db(s))}

(¬Φ)Υv,V =Σ− (Φ)Υv,V

(Φ1 ∧Φ2)
Υ
v,V =(Φ1)

Υ
v,V ∩ (Φ2)

Υ
v,V

(∃x.Φ)Υv,V ={s ∈ Σ | ∃t.t ∈ ∆ ands ∈ (Φ)Υv[x/t],V }

(〈−〉Φ)Υv,V ={s ∈ Σ | ∃s′.s⇒ s′ ands′ ∈ (Φ)Υv,V }

(Z)Υv,V =V (Z)

(µZ.Φ)Υv,V =
⋂
{S ⊆ Σ | (Φ)Υv,V [Z/S] ⊆ S}

Figure 1: Semantics ofµL.

In order to precisely build the transition system associated to a
DCDS, we need to better characterize the behavior of the external
services, which are called in the effects of actions. This isdone in
Sections 4 and 5.

3. VERIFICATION
To specify dynamic properties over a DCDS, we useµ-calculus

[22, 35, 13], one of the most powerful temporal logics for which
model checking has been investigated in the finite-state setting. In-
deed, such a logic is able to express both linear time logics such as
LTL and PSL, and branching time logics such as CTL and CTL*
[17]. The main characteristic ofµ-calculus is the ability of express-
ing directly least and greatest fixpoints of (predicate-transformer)
operators formed using formulae relating the current stateto the
next one. By using such fixpoint constructs one can easily express
sophisticated properties defined by induction or co-induction. This
is the reason why virtually all logics used in verification can be
considered as fragments ofµ-calculus. From a technical viewpoint,
µ-calculus separates local properties, i.e., properties asserted on the
current state or on states that are immediate successors of the cur-
rent one, and properties that talk about states that are arbitrarily far
away from the current one [13]. The latter are expressed through
the use of fixpoints.

In this work, we use a first-order variant of theµ-calculus [33],
calledµL and defined as follows:

Φ ::= Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.Φ | 〈−〉Φ | Z | µZ.Φ

whereQ is a possibly open FO query, andZ is a second order
predicate variable (of arity 0). We make use of the followingab-
breviations: ∀x.Φ = ¬(∃x.¬Φ), Φ1 ∨ Φ2 = ¬(¬Φ1 ∧ ¬Φ2),
[−]Φ = ¬〈−〉¬Φ, andνZ.Φ = ¬µZ.¬Φ[Z/¬Z].

As usual inµ-calculus, formulae of the formµZ.Φ (andνZ.Φ)
must obey to thesyntactic monotonicityof Φ wrt Z, which states
that every occurrence of the variableZ in Φ must be within the
scope of an even number of negation symbols. This ensures that the
least fixpointµZ.Φ (as well as the greatest fixpointνZ.Φ) always
exists.

SinceµL also contains formulae with both individual and pred-
icate free variables, given a transition systemΥ, we introduce an
individual variable valuationv, i.e., a mapping from individual vari-
ablesx to ∆, and a predicate variable valuationV , i.e., a mapping
from predicate variablesZ to subsets ofΣ. With these three notions
in place, we assign meaning to formulae by associating toΥ, v, and
V anextension function(·)Υv,V , which maps formulae to subsets of
Σ. Formally, the extension function(·)Υv,V is defined inductively as
shown in Figure 1.

EXAMPLE 3.1. An example ofµL formula is:

∃x1, . . . , xn.
∧

i6=j

xi 6= xj∧
∧

i∈{1,...,n}

µZ.[Stud(xi)∨〈−〉Z] (1)

The formula asserts that there are at leastn distinct objects/values,
each of which eventually denotes a student along some execution
path. Notice that the formula does not imply that all of thesestu-
dents will be in the same state, nor that they will all occur ina single
run. It only says that in the entire transition systems thereare (at
least)n distinct students.

WhenΦ is a closed formula,(Φ)Υv,V depends neither onv nor
on V , and we denote the extension ofΦ simply by (Φ)Υ. We say
that a closed formulaΦ holds in a states ∈ Σ if s ∈ (Φ)Υ. In this
case, we writeΥ, s |= Φ. We say that a closed formulaΦ holds in
Υ, denoted byΥ |= Φ, if Υ, s0 |= Φ, wheres0 is the initial state
of Υ. We callmodel checkingverifying whetherΥ |= Φ holds.

In particular we are interested in formally verifying properties
of a DCDS. Given the transition systemΥS of a DCDSS and a
dynamic propertyΦ expressed inµL,4 we say thatS verifiesΦ if

ΥS |= Φ.

The challenging point is thatΥS is in general-infinite state, so we
would like to devise a finite-state transition system which is a faith-
ful abstraction ofΥS , in the sense that it preserves the truth value of
all µL formulae. Unfortunately, this program is doomed right from
the start if we insist on using fullµL as the verification formalism.
Indeed formulae of the form (1) defeat any kind of finite-state tran-
sition system. So next we introduce two interesting sublogics of
µL that serve better our objective.

3.1 History Preserving Mu-Calculus
The first fragment ofµL that we consider isµLA, which is char-

acterized by the assumption that quantification over individuals is
restricted to individuals that are present in the current database. To
enforce such a restriction, we introduce a special predicateLIVE(x),
which states thatx belongs to the current active domain. The logic
µLA is defined as follows:

Φ ::= Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.LIVE(x) ∧ Φ | 〈−〉Φ | Z | µZ.Φ

We make use of the usual abbreviation, including∀x.LIVE(x) →
Φ = ¬(∃x.LIVE(x)∧¬Φ). Formally, the extension function(·)Υv,V
is defined inductively as in Figure 1, with the new special predicate
LIVE(x) interpreted as follows:

(LIVE(x))Υv,V = {s ∈ Σ | x/d ∈ v impliesd ∈ ADOM(db(s))}

EXAMPLE 3.2. As an example, consider the followingµLA
formula:

νX.(∀x.LIVE(x) ∧ Stud(x) →

µY.(∃y.LIVE(y) ∧Grad(x, y) ∨ 〈−〉Y) ∧ [−]X),

which states that, along every path, it is always true, for each stu-
dentx, that there exists an evolution that eventually leads to a grad-
uation of the student (with some final marky).

We are going to show that under suitable conditions we can get
a faithful finite abstraction for a DCDS that preserves all formulae
of µLA, and hence enables us in principle to use standard model

4We remind the reader that, without loss of generality, we as-
sume that all constants used inside formulaeΦ appear in the initial
database instance of the DCDS.

checking techniques. Towards this goal, we introduce a notion of
bisimulation that is suitable for the kind of transition systems we
consider here. In particular, we have to take into account that the
two transition systems are over different data domains, andhence
we have to consider the correspondence between the data in the two
transition systems and how such data evolve over time. To do so,
we introduce the following notions.

Given two domains∆1 and∆2, a partial bijectionh between
∆1 and∆2 is a bijection between a subset of∆1 and∆2. Given a
partial functionf : S → S′, we denote withDOM(f) the domain
of f , i.e., the set of elements inS on whichf is defined, and with
IM(f) the image off , i.e., the set of elementss′ in S′ such thats′ =
f(s) for somes ∈ S. A partial bijectionh′ extendsh if DOM(h) ⊆
DOM(h′) (or equivalentlyIM(h) ⊆ IM(h′)) andh′(x) = h(x)
for all x ∈ DOM(h) (or equivalentlyh′−1(y) = h−1(y) for all
y ∈ IM(h)). Let db1 anddb2 be two databases over two domains
∆1 and∆2 respectively, both conforming to the same schemaR.
We say that a partial bijectionh induces an isomorphismbetween
db1 anddb2 if ADOM(db1) ⊆ DOM(h), ADOM(db2) ⊆ IM(h), and
h projected onADOM(db1) is an isomorphism betweendb1 and
db2.

Given two transition systemsΥ1 = 〈∆1,R,Σ1, s01, db1,⇒1〉
andΥ2 = 〈∆2,R,Σ2, s02, db2,⇒2〉, and the setH of partial
bijections between∆1 and∆2, a history preserving bisimulation
betweenΥ1 andΥ2 is a relationB ⊆ Σ1 × H × Σ2 such that
〈s1, h, s2〉 ∈ B implies that:

1. h is a partial bijection between∆1 and∆2 that induces an
isomorphism betweendb1(s1) anddb2(s2);

2. for eachs′1, if s1 ⇒1 s
′
1 then there is ans′2 with s2 ⇒2 s

′
2

and a bijectionh′ that extendsh, such that〈s′1, h
′, s′2〉 ∈ B.

3. for eachs′2, if s2 ⇒2 s
′
2 then there is ans′1 with s1 ⇒1 s

′
1

and a bijectionh′ that extendsh, such that〈s′1, h
′, s′2〉 ∈ B.

A state s1 ∈ Σ1 is history preserving bisimilarto s2 ∈ Σ2

wrt a partial bijection h, written s1 ≈h s2, if there exists a
history preserving bisimulationB betweenΥ1 andΥ2 such that
〈s1, h, s2〉 ∈ B. A states1 ∈ Σ1 is history preserving bisimilarto
s2 ∈ Σ2, writtens1 ≈ s2, if there exists a partial bijectionh and
a history preserving bisimulationB betweenΥ1 andΥ2 such that
〈s1, h, s2〉 ∈ B. A transition systemΥ1 is history preserving bisim-
ilar to Υ2, writtenΥ1 ≈ Υ2, if there exists a partial bijectionh0

and a history preserving bisimulationB betweenΥ1 andΥ2 such
that 〈s01, h0, s02〉 ∈ B. The next theorem gives us the classical
invariance result ofµ-calculus wrt bisimulation, in our setting.

THEOREM 3.1. Consider two transition systemsΥ1 and Υ2

such thatΥ1 ≈ Υ2. Then for everyµLA closed formulaΦ , we
have:

Υ1 |= Φ if and only ifΥ2 |= Φ.

3.2 Persistence Preserving Mu-Calculus
The second fragment ofµL that we consider isµLP , which

further restrictsµLA by requiring that individuals over which we
quantify must continuously persist along the system evolution for
the quantification to take effect.

With a slight abuse of notation, in the following we write
LIVE(x1, . . . , xn) =

∧
i∈{1,...,n} LIVE(xi).

The logicµLP is defined as follows:

Φ ::= Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.LIVE(x) ∧ Φ | 〈−〉(LIVE(~x) ∧ Φ) |

[−](LIVE(~x) ∧ Φ) | Z | µZ.Φ

whereQ is a possibly open FO query,Z is a second order predicate
variable, and the following assumption holds: in〈−〉(LIVE(~x)∧Φ)

and[−](LIVE(~x)∧Φ), the variables~x are exactly the free variables
of Φ, with the proviso that we substitute to each bounded predicate
variableZ in Φ its bounding formulaµZ.Φ′. We use the usual ab-
breviations, including:〈−〉(LIVE(~x) → Φ) = ¬[−](LIVE(~x) ∧
¬Φ) and[−](LIVE(~x) → Φ) = ¬〈−〉(LIVE(~x)∧¬Φ). Intuitively,
the use ofLIVE(·) in µLP ensures that individuals are only consid-
ered if they persist along the system evolution, while the evaluation
of a formula with individuals that are not present in the current
database trivially leads to false or true (depending on the use of
negation).

EXAMPLE 3.3. Getting back to the example above, its variant
in µLP is

νX.(∀x.LIVE(x) ∧ Stud(x) →

µY.(∃y.LIVE(y) ∧Grad(x, y) ∨ 〈−〉(LIVE(x) ∧ Y)) ∧ [−]X)

which states that, along every path, it is always true, for each stu-
dent x, that there exists an evolution in whichx persists in the
database until she eventually graduates (with some final mark y).
Formula

νX.(∀x.LIVE(x) ∧ Stud(x) →

µY.(∃y.LIVE(y) ∧Grad(x, y) ∨ 〈−〉(LIVE(x) → Y)) ∧ [−]X)

instead states that, along every path, it is always true, foreach stu-
dentx, that there exists an evolution in which eitherx is not per-
sisted, or becomes eventually graduated (with final marky).

The bisimulation relation that capturesµLP is as follows. Given
two transition systemsΥ1 = 〈∆1,R,Σ1, s01, db1,⇒1〉 andΥ2 =
〈∆2,R,Σ2, s02, db2,⇒2〉, and the setH of partial bijections be-
tween∆1 and∆2, a persistence preserving bisimulationbetween
Υ1 andΥ2 is a relationB ⊆ Σ1×H×Σ2 such that〈s1, h, s2〉 ∈ B
implies that:

1. h is an isomorphism betweendb1(s1) anddb2(s2);5

2. for each s′1, if s1 ⇒1 s′1 then there exists an
s′2 with s2 ⇒2 s′2 and a bijectionh′ that extends
h|ADOM(db1(s1))∩ADOM(db1(s

′

1
)), such that〈s′1, h

′, s′2〉 ∈ B;6

3. for each s′2, if s2 ⇒2 s′2 then there exists an
s′1 with s1 ⇒1 s′1 and a bijectionh′ that extends
h|ADOM(db1(s1))∩ADOM(db1(s

′

1
)), such that〈s′1, h

′, s′2〉 ∈ B.

We say that a states1 ∈ Σ1 is persistence preserving bisimilarto
s2 ∈ Σ2 wrt a partial bijectionh, writtens1 ∼h s2, if there exists
a persistence preserving bisimulationB betweenΥ1 andΥ2 such
that 〈s1, h, s2〉 ∈ B. A states1 ∈ Σ1 is persistence preserving
bisimilar to s2 ∈ Σ2, written s1 ∼ s2, if there exists a partial bi-
jectionh and a persistence preserving bisimulationB betweenΥ1

andΥ2 such that〈s1, h, s2〉 ∈ B. A transition systemΥ1 is persis-
tence preserving bisimilarto Υ2, writtenΥ1 ∼ Υ2, if there exists
a partial bijectionh0 and a persistence preserving bisimulationB
betweenΥ1 andΥ2 such that〈s01, h0, s02〉 ∈ B. The next theo-
rem shows the invariance ofµLP under this notion of bisimulation.

THEOREM 3.2. Consider two transition systemsΥ1 and Υ2

such thatΥ1 ∼ Υ2. Then for everyµLP closed formulaΦ, we
have:

Υ1 |= Φ if and only ifΥ2 |= Φ.

5Notice that this impliesDOM(h) = ADOM(db1(s1)) and
IM(h) = ADOM(db2(s2)).
6 Given a setD, we denote byf |D the restrictionof f toD, i.e.,
DOM(f |D) = DOM(f) ∩ D, andf |D(x) = f(x) for everyx ∈
DOM(f) ∩D.

4. DETERMINISTIC SERVICES
Now we turn back to the semantics of DCDSs, and analyze them

under the assumption that external services behave deterministi-
cally. This means that the evaluation of functionsf ∈ F , represent-
ing the service interfaces in the process layer, is independent from
the moment in which the function is called: whenever an external
service is called twice with the same parameters, it must return the
same value. So, for example, if the function invocationf(a) re-
turnedb at a certain time, then in all successive moments the call
f(a) will return b again. In particular,statelessservices can be
modeled with deterministic service calls.

Under this characterization of the services we can now define
the transition system of a DCDS. We call such a transition system
“concrete” transition system to avoid confusion with an “abstract”
transition system that we are going to introduce for our verification
technique.

4.1 Semantics
Let S = 〈D,P〉 be a DCDS with data layerD = 〈C,R, E ,I0〉

and process layerP = 〈F ,A, ̺〉.
First we focus on what is needed to characterize the states of

the concrete transition system. One such state obviously needs to
maintain the current instance of the data layer. This instance is a
database made up of constants inC, which conforms to the schema
R and satisfies the equality constraints inE . Together with the
current instance, however, we also need to remember all answers
we had so far when calling the external services.

To meet the requirement that service calls behave determinis-
tically, the states of the transition system keep track of all re-
sults of the service calls made so far, in the form of equalities
between Skolem terms involving functions inF and having as
arguments constants and returned values inC.7 More precisely,
we define the set of (Skolem terms representing) service calls as
SC = {f(v1, . . . , vn) | f/n ∈ F and{v1, . . . , vn} ⊆ C}, where
f/n stands for a functionf arity n. Then we introduce aservice
call map, which is a partial functionM : SC → C.

Now we are ready to formally define states of the concrete tran-
sition system. Aconcrete state, or simply state, is a pair〈I,M〉,
whereI is a relational instance ofR overC satisfying each equality
constraint inE , andM is a service call map. Theinitial concrete
stateis 〈I0, ∅〉.

Next we look at the result of executing an action in a state. For
this it is convenient to denote the database instanceM(E) obtained
by applying a service call mapM to a setE of facts including only
constants inC or terms inDOM(M). Namely, we defineM(E)
as the application ofM to all the terms appearing inE where
constants are preserved. Formally,M(E) = {R(c1 . . . , cn) |
R(t1, . . . , tn) ∈ E andci = ti if ti ∈ C andM(ti) = ci if ti ∈
DOM(M) for i ∈ {1, . . . , n}}.

Let α be an action inA of the form α(p1, . . . , pm) :
{e1, . . . , em} with ei = q+i ∧ Q−

i Ei. The parameters for
α are guarded by the condition-action ruleQ 7→ α in ̺. Let σ
be a substitution for the input parametersp1, . . . , pm with values
taken fromC. We say thatσ is legal for α in state〈I,M〉 if
〈p1, . . . , pm〉σ ∈ ans (Q, I).

7Notice that, we have no knowledge of the specific functions
adopted by the external services, and we simply assume that such
functions return some value fromC. We are going to have differ-
ent executions of the system corresponding to each way to assign
values to the Skolem terms representing the service calls.

Concrete action execution.To capture what happens whenα is
executed in a state using a substitutionσ for its parameters, we in-
troduce a transition relationEXECS between states, calledconcrete
executionof ασ, such that〈〈I,M〉, ασ, 〈I′,M′〉〉 ∈ EXECS if
the following holds:

1. σ is a legal parameter assignment forα in state〈I,M〉,
2. M′ = SERVICECALLS(I, ασ,M),
3. I′ = M′(DO(I, ασ)), and
4. I′ satisfiesE ,

whereDO() andSERVICECALLS() are defined as follows.

DO(I, ασ) =
⋃

q+
i
∧Q−

i
 Ei∈EFFECT(α)

⋃

θ∈ans((q+
i
∧Q−

i
)σ,I)

Eiσθ

applies the actionα to I, usingσ as the assignment for its param-
eters. The returned instance is the union of the results of applying
the effects specificationsEFFECT(α), where the result of each ef-
fect specificationq+i ∧Q−

i Ei is, in turn, the set of factsEiσθ
obtained fromEiσ grounded on all the assignmentsθ that satisfy
the queryq+i ∧Q−

i overI.

SERVICECALLS(I, ασ,M) =
M∪ {t 7→ PICKVALUE(C) | t occurring inDO(I, ασ)

and not inDOM(M)}

nondeterministically generates all possible values that can be
returned by the service calls, guaranteeing that external services
behave in a deterministic manner. More specifically, all the
service calls already contained inM are maintained, while
new service calls are nondeterministically bound to an arbitrary
value PICKVALUE(C) taken fromC (which will be the values
assumed by such service calls inM from now on in the execution).

Concrete transition system. The concrete transition sys-
tem ΥS for S is a possibly infinite-state transition system
〈C,R,Σ, s0, db,=⇒〉 where s0 = 〈I0, ∅〉 and db is such that
db(〈I,M〉) = I. Specifically, we define by simultaneous induc-
tion Σ and=⇒ as the smallest sets satisfying the following prop-
erties: (i) s0 ∈ Σ; (ii) if 〈I,M〉 ∈ Σ , then for all substitutions
σ for the input parameters ofα and for every〈I′,M′〉 such that
〈〈I,M〉, ασ, 〈I′,M′〉〉 ∈ EXECS , we have〈I′,M′〉 ∈ Σ and
〈I,M〉 =⇒ 〈I′,M′〉.

Intuitively, to define the concrete transition system of theDCDS
S we start from the initial states0 = 〈I0, ∅〉, and for each rule
Q 7→ α in P , we evaluateQ overI0, and calculate all statess such
that〈s0, ασ, s〉 ∈ EXECS . Then we repeat the same steps consider-
ing eachs, and so on. The computation of successor states can be
done by picking all the possible combinations of resulting values
for the newly introduced service calls, then checking if thesuc-
cessor obtained for a combination satisfies the equality constraints,
filtering it away if this is not the case. It is worth noting that when
new service calls are considered, the successors can be countably
infinite.

EXAMPLE 4.1. LetS = 〈D,P〉 be a DCDS with data layer
D = 〈C,R, E , I0〉 and process layerP = 〈F ,A, ̺〉, where
F = {f/1, g/1}, R = {Q/2, P/1, R/1}, E = ∅, I0 =
{P (a), Q(a, a)}, ̺ = {true 7→ α}, A = {α}, and

α : {Q(a, a) ∧ P (x) {R(x)}, P (x) {P (x),Q(f(x), g(x))}}

The concrete transition systemΥS contains infinitely many succes-
sors connected to the initial state. These successors result from the
assignment of each possible pair of values tof(a) andg(a) (see
also Figure 3(a).

EXAMPLE 4.2. Consider a variation of the DCDS described in
Example 4.1, where the data layer is equipped with an equality
constraint, i.e.,E = {P (x) ∧ Q(y, z) → x = y}. The resulting
concrete transition system has still infinitely many successors of
the initial state, but the presence of the equality constraint requires
to keep only those successors in whichf(a) returnsa (see also
Figure 2(a).

4.2 Run-Bounded Systems
We now study the verification of DCDSs with deterministic

services. In particular, we are interested in the followingprob-
lem: given a DCDSS and a temporal propertyΦ, check whether
ΥS |= Φ. Not surprisingly, given the expressive power of DCDS
as a computation model, the verification problem is undecidable for
all theµ-calculus variants introduced in Section 3. In fact, we can
show an even stronger undecidability result, for a very small frag-
ment of propositional linear temporal logic (LTL) [34], namely the
safety properties of the formGp wherep is propositional.

THEOREM 4.1. There exists a DCDSS with deterministic ser-
vices, and a propositional LTL safety propertyΦ, such that check-
ingΥS |= Φ is undecidable.

In the following, we isolate a notable class of DCDS for which
verification ofµLA is not only decidable, but can also be reduced
to standard model checking techniques.

Consider a transition systemΥ = 〈∆,R,Σ, s0, db,⇒〉. A run
τ in Υ is a (finite or infinite) sequence of statess0s1s2 · · · rooted
at s0, wheresi ⇒ si+1. We useτ (i) to denotesi and τ [i] to
represent the finite prefixs0 · · · si of τ . A run τ = s0s1s2 · · ·
is (data) boundedif the number of values mentioned inside its
databases is bounded, i.e., there exists a finite boundb such that
|
⋃
s state ofτ ADOM(db(s))| < b. This is equivalent to saying that,

for every finite prefixτ [i] of τ , |
⋃
j∈{0,...,i} ADOM(db(sj))| < b.

We say thatΥ is run-boundedif there exists a boundb such that
every run inΥ is (data) bounded byb. A DCDSS is run-bounded
if its concrete transition systemΥS is run-bounded.

Intuitively, a (data) unbounded run represents an execution of
the DCDS in which infinitely many distinct values occur because
infinitely many different service calls are issued. Since wemodel
deterministic services whose number is finite, this can onlyhappen
if some service is repeatedly called with arguments that arethe re-
sult of previous service calls. This means that the values ofthe run
indirectly depend on arbitrarily many states in the past.

Notice that run boundedness does not impose any restriction
about the branching of the transition system; in particular, ΥS is
typically infinite-branching because new service calls mayreturn
any possible value. We show that this restriction guarantees decid-
ability for µLA verification of run-bounded DCDSs with determin-
istic services.

THEOREM 4.2. Verification ofµLA properties on run-bounded
DCDSs with deterministic services is decidable.

We get this result by showing that for run-bounded DCDSs there
always exists an abstract finite-state transition system that is his-
tory preserving bisimilar to the concrete one, and hence satisfies
the sameµLA formulae as the concrete transition system.

THEOREM 4.3. For every run-bounded DCDSS with determin-
istic services, given its concrete transition systemΥS there exists
an (abstract)finite-statetransition systemΘS such thatΘS is his-
tory preserving bisimilar toΥS , i.e.,ΘS ≈ ΥS .

P(a) Q(a,a)

f(a)7→a g(a)7→b

P(a) R(a) Q(a,b)

f(a)7→a g(a)7→a

P(a) R(a) Q(a,a)

f(a)7→a g(a)7→c

P(a) R(a) Q(a,c)

f(a)7→a g(a)7→b

P(a) Q(a,b)

f(a)7→a g(a)7→c

P(a) Q(a,c)

. . .

(a) Concrete transition system

P(a) Q(a,a) f(a)7→a g(a)7→b

P(a) R(a) Q(a,b)

f(a)7→a g(a)7→a

P(a) R(a) Q(a,a)

f(a)7→a g(a)7→b

P(a) Q(a,b)

(b) Abstract transition system

Figure 2: Concrete and abstract transition systems of the DCDS with deterministic services described in Example 4.2; special
relations that store the service calls results are represented using acall 7→ value notation

P(a) Q(a,a)

f(a)7→b g(a)7→b

P(a) R(a) Q(b,b)

f(a)7→b g(a)7→a

P(a) R(a) Q(b,a)

f(a)7→a g(a)7→b

P(a) R(a) Q(a,b)

f(a)7→a g(a)7→a

P(a) R(a) Q(a,a)

f(a)7→c g(a)7→b

P(a) R(a) Q(c,b)

f(a)7→b g(a)7→c

P(a) R(a) Q(b,c)

f(a)7→c g(a)7→c

P(a) R(a) Q(c,c)

f(a)7→a g(a)7→b

P(a) Q(a,b)

f(a)7→b g(a)7→a

P(a) Q(b,a)

f(a)7→b g(a)7→b

P(a) Q(b,b)

f(a)7→c g(a)7→b

P(a) Q(c,b)

f(a)7→b g(a)7→c

P(a) Q(b,c)

f(a)7→c g(a)7→c

P(a) Q(c,c)

. . .

(a) Concrete transition system

P(a) Q(a,a)

f(a)7→b g(a)7→a

P(a) R(a) Q(b,a)

f(a)7→a g(a)7→b

P(a) R(a) Q(a,b)

f(a)7→a g(a)7→a

P(a) R(a) Q(a,a)

f(a)7→b g(a)7→b

P(a) R(a) Q(b,b)

f(a)7→b g(a)7→c

P(a) R(a) Q(b,c)

f(a)7→a g(a)7→b

P(a) Q(a,b)

f(a)7→b g(a)7→a

P(a) Q(b,a)

f(a)7→b g(a)7→b

P(a) Q(b,b)

f(a)7→b g(a)7→c

P(a) Q(b,c)

(b) Abstract transition system

Figure 3: Concrete and abstract transition systems of the DCDS with deterministic services described in Example 4.1; special
relations that store the service calls results are represented using acall 7→ value notation

Let Σ be the set of states ofΘS and ADOM(ΘS) =⋃
si∈Σ ADOM(db(si)). If ΘS is finite-state, then there exists a

boundb such that|ADOM(ΘS)| < b. Consequently, it is possible
to transform aµLA propertyΦ into an equivalentfinite proposi-
tionalµ-calculus formulaPROP(Φ), wherePROP(Φ) is inductively
defined over the structure ofΦ as the identity, except for the follow-
ing case:PROP(∃x.LIVE(x) ∧ Ψ(x)) =

∨
ti∈ADOM(S) LIVE(ti) ∧

PROP(Ψ(ti)). Clearly,ΘS |= Φ if and only ifΘS |= PROP(Φ).

THEOREM 4.4. Verification of µLA properties for run-
bounded DCDSs with deterministic services can be reduced tocon-
ventional model checking of propositionalµ-calculus over a finite
transition system.

By the above theorem, and recalling that model checking of
propositionalµ-calculus formulae over finite transition systems is
decidable [22], we get Theorem 4.2.

We conclude the Section by observing that the approach pre-
sented above forµLA does not extend to fullµL.

THEOREM 4.5. There exists a DCDSS for which it is impossi-
ble to find a faithful finite-state abstraction that satisfiesthe same
µL properties asS .

The Theorem 4.5 is proved by exhibiting, for everyn, aµL prop-
erty that requires the existence of at leastn objects in the transition
system.

Even if this observation does not imply undecidability of model
checkingµL properties over run-bounded DCDSs, it shows that
there is no hope of reducing this problem to standard, finite-state
model checking.

4.3 Weakly Acyclic DCDSs
The results presented in Section 4.2 rely on the hypothesis that

the DCDS under study is run-bounded, which is a semantic restric-
tion. A natural question is whether it is possible to check run-

boundedness of a DCDS. We provide a negative answer to this
question.

THEOREM 4.6. Checking run-boundedness of DCDSs with de-
terministic services is undecidable.

To mitigate this issue, we investigate a sufficient syntactic condi-
tion that can be effectively tested over the process layer ofthe
DCDS: if the condition is met, then the DCDS is guaranteed to
be run-bounded, otherwise nothing can be said. To this end, we re-
cast the approach of [3] in the more abstract and expressive frame-
work here presented. In particular, we first introduce the “posi-
tive approximate” of a DCDS, which abstracts away some of its
aspects. We do so for convenience, but we note that the defini-
tion of weak-acyclicity as well as our results can be stated directly
over the original DCDS (in fact, we do so in condensed presenta-
tions of this work). Technically, given a DCDSS = 〈D,P〉 with
data layerD = 〈C,R, E , I0〉 and process layerP = 〈F ,A, ̺〉,
its positive approximateS+ is a DCDS〈D+,P+〉, whereD+ =
〈C,R, ∅, I0〉 corresponds toD without equality constraints, while
P+ = 〈F ,A+, ̺+〉 is a process layer whose actionsA+ and pro-
cess̺ + are obtained as follows:

• Each condition-action ruleQ 7→ α in ̺ becomestrue 7→ α+

in ̺+. Therefore,̺ + is a process that supports the execution
of every action inA+ at each step.

• Each actionα(p1, . . . , pn) : {e1, . . . , em} in A becomes
α+ : {e+1 , . . . , e

+
m} in A+, where eachei = q+i ∧Q−

i Ei
becomes in turne+i = q+i Ei. Intuitively, the positive
approximate action is obtained from the original action by
removing all the parameters from its signature, and by re-
moving all “negative” components from the query used to
instantiate its effect specifications; note that the variables of
q+i that were parameters inα are now free variables inα+.

The positive approximate fulfils the following key property.

LEMMA 4.1. Given a DCDSS , if its positive approximateS+

is run-bounded, thenS is run-bounded as well.

To derive a sufficient condition forS+ to be run-bounded, we can
exploit a strict correspondence between the execution of anaction
in P+ and a step in the chase of a set of tuple generating dependen-
cies (TGDs) in data exchange[2, 23]. In particular, we resort to a
well-known result in data exchange, namely chase termination for
weakly acyclicTGDs [23].8

In our setting, the weak acyclicity of a process layer is a property
over a dataflow graph constructed by analyzing the corresponding
positive approximate process layer. A non-weakly acyclic DCDS
contains a service that may be repeatedly called, every timeusing
fresh values that are directly or indirectly obtained by manipulat-
ing previous results produced by the same service. This self-
dependency can potentially lead to an infinite number of calls of
the same service along an execution of the system, thus making it
impossible to put a bound on the data used throughout the run (see
also Example 4.3). Weak acyclicity rules out such self dependen-
cies and is actually a sufficient condition for run-boundedness.

Given a DCDSS = 〈D,P〉 with positive approximateS+ =
〈D+,P+〉, the dependency graphof P+ is an edge-labeled di-
rected graph〈N,E〉 where:(i) N ⊆ R×N

+ is a set of nodes such
that〈R, i〉 ∈ N for everyR/n ∈ R and everyi ∈ {1, . . . , n}; (ii)
E ⊆ N ×N × {true, false} is a set of labeled edges where

8Notice that using other variants of weak acyclicity is also possible
[30].

• an ordinary edge〈〈R1, j〉, 〈R2, k〉, false〉 ∈ E if there exists
an actionα+ ∈ A+, an effectq+i Ei ∈ EFFECT(α+)
and a variablex such thatR1(. . . , tj−1, x, tj+1, . . .) occurs
in q+i andR2(. . . , t

′
k−1, x, t

′
k+i, . . .) occurs inEi;

• a special edge〈〈R1, j〉, 〈R2, k〉, true〉 ∈ E if there exists
an actionα+ ∈ A+, an effectq+i Ei ∈ EFFECT(α+)
and a variablex such thatR1(. . . , tj−1, x, tj+1, . . .) oc-
curs in q+i , R2(. . . , t

′
k−1, t, t

′
k+i, . . .) occurs inEi, and

t = f(. . . , x, . . .), with f ∈ F .

P is weakly acyclicif the dependency graph of its approximateP+

does not contain any cycle going through a special edge. We say
that a DCDS is weakly acyclic if its process layer is weakly acyclic
(e.g., see Figure 5(a)).

Intuitively, ordinary edges represent the possible propagation
(copy) of a value across states:〈〈R1, j〉, 〈R2, k〉, false〉 ∈ E re-
flects the possibility that the value currently stored inside thej-th
component of anR1 tuple will be moved to thek-th component
of anR2 tuple in the next state. Contrariwise, special edges repre-
sent that a value can be taken as parameter of a service call, thus
contributing to the creation of (possibly new) values across states:
〈〈R1, j〉, 〈R2, k〉, true〉 ∈ E means that the value currently stored
inside thej-th component of anR1 tuple could be used as param-
eter for a service call, whose result is then stored inside the k-th
component of anR2 tuple.

A cycle going through a special edge, forbidden by the weak
acyclicity condition, represents that a service may be repeatedly
called, every time using fresh values that are indirectly ordirectly
obtained by manipulating previous results produced by the same
service. This self-dependency can potentially lead to an infinite
number of calls of the same service along an execution of the sys-
tem, thus making it impossible to put a bound on the data used
throughout the run.

EXAMPLE 4.3. LetS = 〈D,P〉 be a DCDS with data layer
D = 〈C,R, ∅, I0〉 and process layerP = 〈F ,A, ̺〉, whereF =
{f/1}, R = {R/1, Q/1}, I0 = {R(a)}, ̺ = {true 7→ α} and
A = {α}, whereα : {R(x) Q(f(x)), Q(x) R(x)}.

S is not weakly acyclic, due to the mutual dependency between
R andQ that involves a call to servicef . This can be easily seen
from the dataflow graph (shown in Figure 5(b)), which contains a
special edge from〈R, 1〉 to 〈Q, 1〉, and a normal edge from〈Q, 1〉
to 〈R, 1〉. Notice that, in this case, the positive approximate ofS
coincides withS itself. Starting from the initial state,α callsf(a)
and stores the result insideQ. A second execution ofα transfers
the result off(a) into R. Whenα is executed for the third time,
f is called again, but using as parameter the previously obtained
result. Consequently,f may return a new, fresh result, because
f(f(a)) may be different fromf(a). This chain can be repeated
forever, leading to possibly generate infinitely many distinct values
along the run. The existence of a run in whicha, f(a), f(f(a)),
f(f(f(a))), . . . , are all distinct values, makes it impossible to ob-
tain a finite-state abstraction forS (see Figure 4(b)).

THEOREM 4.7. Every weakly acyclic DCDS with deterministic
services is run-bounded.

Checking weak acyclicity is polynomial in the size of the DCDS.
Thus it gives us an effective way to verify DCDSs.

THEOREM 4.8. Verification of µLA properties for weakly
acyclic DCDSs with deterministic services is decidable, and can
be reduced to model checking of propositionalµ-calculus over a
finite transition system.

R(a)

f(a)7→b

Q(b)

f(a)7→a

Q(a)

f(a)7→c

Q(c)

f(a)7→a

R(a)

f(a)7→b

R(b)

f(a)7→b
f(b)7→b

Q(b)

f(a)7→b
f(b)7→a

Q(a)

f(a)7→b
f(b)7→c

Q(c)

f(a)7→c

R(c)

f(a)7→c
f(c)7→b

Q(b)

f(a)7→c
f(c)7→a

Q(a)

f(a)7→c
f(c)7→c

Q(c)

. . .

. . .

. . .

. . .

.

.

(a) Concrete transition system

R(a) f(a)7→b

Q(b)

f(a)7→a

Q(a)

f(a)7→a

R(a)

f(a)7→b

R(b)

f(a)7→b
f(b)7→a

Q(a)

f(a)7→b
f(b)7→a

R(a)

f(a)7→b
f(b)7→a

Q(b)

f(a)7→b
f(b)7→b

Q(b)

f(a)7→b
f(b)7→b

R(b)

f(a)7→b
f(b)7→c

Q(c)

f(a)7→b
f(b)7→c

R(c)

. . .
.

. . .

(b) Abstract transition system

Figure 4: Concrete and abstract transition systems of the run-unbounded DCDS with deterministic servicesS described in Exam-
ple 4.3; special relations that store the service calls results are represented using acall 7→ value notation

P,1R,1 Q,1

Q,2

*

*

(a) Weakly acyclic dataflow graph for the DCDSs of Example 4.1
and 4.2

R,1 Q,1

*

(b) Non weakly acyclic dataflow graph for the DCDS of Example 4.3

Figure 5: Examples of dataflow graphs for DCDSs with deterministic services; special edges are decorated with *

EXAMPLE 4.4. Consider the DCDSs described in Example 4.1
and 4.2. They have the same dataflow graph, which is weakly
acyclic (see Figure 5(a). This guarantees that they are run-bounded
and that it is possible to find a faithful finite-state abstraction from
them. Two such abstractions are respectively shown in Figure 3(b)
and 2(b).

5. NONDETERMINISTIC SERVICES
We now consider DCDSs under the assumption that services be-

have nondeterministically, i.e., two calls of a service with the same
arguments may return distinct results during the same run. This
case captures both services that model a truly nondeterministic pro-
cess (e.g., human operators, random processes), and services that
model stateful servers. In the remainder of this section, whenever
we refer to a DCDS, services are implicitly assumed nondetermin-
istic.

5.1 Semantics
As in the case of deterministic services, we define the semantics

of a DCDSS in terms of a (possibly infinite) transition systemΥS .
Let S = 〈D,P〉 be a DCDS with data layerD = 〈C,R, E ,I0〉

and process layerP = 〈F ,A, ̺〉. A stateis simply a relational
instance ofR overC satisfying each constraint inE . We denote the
initial statewith I0.

Next, we define the semantics of action application. Letα be an
action inA of the formα(p1, . . . , pm) : {e1, . . . , em} with effects
ei = q+i ∧ Q−

i Ei. The parameters forα are guarded by the
condition-action ruleQ 7→ α ∈ ̺. Letσ be a legal substitution for
the input parametersp1, . . . , pm with values taken fromC.

We reuse the definition ofDO(I, ασ) from Section 4.1, as the in-
stance obtained by evaluating the effects ofα on instanceI. Recall
thatDO() generates an instance over values from the domainC but
also over Skolem terms, which model service calls. For any such

instanceĪ, we denote withCALLS(Ī) the set of calls it contains.
For a given setD ⊆ C, we denote withEVALSD(I, α, σ) the set
of substitutions that replace all service calls inDO(I, α, σ) with
values inD,

EVALSD(I, α, σ) = {θ | θ is a total function
θ : CALLS(DO(I, α, σ)) → D}.

Each substitution inEVALSD(I, α, σ) models the simultaneous
evaluation of all service calls, which replaces the calls with results
selected nondeterministically fromD. In the following, we refer
to these substitutions asevaluations.

Concrete action execution. We introduce a transition relation
N-EXECS between states, calledconcrete executionof ασθ, such
that〈I, ασθ, I′〉 ∈ N-EXECS if the following holds:

1. σ is a legal parameter assignment forα in stateI,
2. θ ∈ EVALSC(I, α, σ),
3. I′ = DO(I, α, σ)θ, and
4. I′ satisfies the constraintsE .

Notice that, in contrast to the deterministic services case, the
choice of evaluationθ is not subject to the requirement that it
evaluates a service call to the same resultacrossconcrete execution
steps. However, notice thatwithin a concrete execution step, all
occurrences of the same service call evaluate to the same result
(modeling the fact that a call with given arguments is invoked only
once per transition, and the returned result is copied as needed).

Concrete transition system. Theconcrete transition systemΥS

for S is a transition system whose states are labeled by databases.
More precisely,
ΥS = 〈C,R,Σ, s0, db,⇒〉 wheres0 = I0 anddb is such that
db(I) = I. Σ and⇒ are defined by simultaneous induction as

the smallest sets satisfying the following properties:(i) I0 ∈ Σ;
(ii) if I ∈ Σ , then for allα, σ, θ andI′ such that〈I, ασθ, I′〉 ∈
N-EXECS , we have thatI′ ∈ Σ, andI ⇒ I′.

5.2 State-Bounded Systems
We consider the verification problem for DCDS with nondeter-

ministic services. As in the deterministic case, restrictions on both
the processes and the properties are required, motivated bythe fol-
lowing undecidability result.

THEOREM 5.1. There exists a DCDSS with nondeterministic
services, and a propositional LTL safety propertyΦ, such that
checkingΥS |= Φ is undecidable.

State-bounded DCDS. Since we are interested in verifying
more expressive temporal properties, we need to consider restricted
classes of DCDS. We observe first that, with nondeterministic ser-
vices, the run-boundedness restriction of Section 4.2 is very limit-
ing on the form of the DCDS, as it boils down to imposing a bound
on how many times each service may be called with the same ar-
guments. Observe that this was not the case for deterministic ser-
vices, where the unlimited same-argument calls are allowed, as they
all return the same result. We propose a less restrictive alternative.
We say that DCDSS is state-boundedif there is a finite boundb
such that for each stateI of ΥS , |ADOM(I)| < b. Notice that, in
contrast to the notion of run-boundedness, state-boundedness does
allow runs in which infinitely many distinct values occur because
infinitely many service calls are issued. The unboundedly many
call results are distributedacrossstates of the run, but may not ac-
cumulatewithin a single state. The following result shows that we
also need to restrict the logic, as the one used in the deterministic
case is too expressive for decidability.

THEOREM 5.2. Verification of µLA properties on state-
bounded DCDSs with nondeterministic services is undecidable.

We therefore restrict the property class to the logicµLP ⊂ µLA
presented in Section 3.2.

THEOREM 5.3. Verification of µLP properties by state-
bounded DCDS with nondeterministic services is decidable.

5.3 Abstract Transition System
We relegate the proof of Theorem 5.3 to Appendix C.3, but pro-

vide the main ideas here.
Given a DCDSS , we show that if concrete transition systemΥS

is state-bounded, then there is a finite-state abstract transition sys-
temΘS whose states and edges are subsets of those inΥS , such
thatΘS is persistence-preserving bisimilar toΥS (and hence sat-
isfies the sameµLP properties, by Theorem 3.2). SinceΘS is
finite-state, the verification ofµLP properties onΥS reduces to
finite-state model checking onΘS , and hence is decidable.

The existence ofΘS follows from the key fact that if two states
of ΥS are isomorphic, then they are persistence-preserving bisim-
ilar. This implies that one can construct a finitely-branching tran-
sition systemΘS (i.e. with finite number of successors per state),
such thatΘS is persistence-preserving bisimilar toΥS , by drop-
ping sibling states fromΥS as follows: instead of listing among
the successors ofs one state for each possible instantiation of the
service call results, just keep arepresentativestate for each isomor-
phism type. Since the number of service calls made in each state
is finite, the number of distinct isomorphism types is finite,so the
finite branching follows. We call a transition systemΘS obtained
as above apruning ofΥS .

Notice that despite being finitely-branching, any pruningΘS can
still have infinitely many states, as it may contain infinitely long
simple runs9 τ , along which the service calls return in each state
“fresh” values, i.e., values distinct from all values appearing in the
predecessors of this state onτ . This problem is solved by judi-
ciously selecting which representatives to keep inΘS for the suc-
cessors of a states. Namely, whenever the representatives of a
given isomorphism typeT include states generated exclusively by
service calls that “recycle” values, select only such states (finitely
many thereof, of course). By recycled values we mean values ap-
pearing on a path leading intos.

If ΥS is state-bounded, then the number of service calls per state
is bounded, and due to the construction’s preference for recycling,
it follows that all simple runs inΘS must have finite length. To-
gether with the finite branching, this implies finiteness ofΘS .

Notice that proving the existence ofΘS does not suffice for de-
cidability, as the proof is non-constructive. We thereforeprovide
an algorithm for constructingΘS (Algorithm RCYCL). One of the
technical problems we need to overcome in developing the algo-
rithm is that we evidently cannot start from the infinite-state con-
crete transition system, instead exploring a portion thereof. This
means that it is not obvious how to decide whether the successors
of a state are generated by recycling service calls, since these calls
may recycle from paths that RCYCL hasn’t explored yet. There-
fore, RCYCL may sometimes select non-recycling service calls
even when a recycling alternative exists. However, we can prove
that RCYCL constructs what we call aneventually recycling prun-
ing, which in essence means it may fail to detect recycling service
calls, but only a bounded number of times.

We formalize the above discussion in Appendix C.3, where we
prove the following result:

THEOREM 5.4. If input DCDSS is state-bounded, then every
possible run of AlgorithmRCYCL terminates, yielding a finite even-
tually recycling pruningΘS of ΥS , withΥS ∼ ΘS .

Theorem 5.4 and Theorem 3.2 directly imply Theorem 5.3.
Figures 7 and 6 illustrate two concrete transition systems,and

possible recycling prunings for them.

5.4 GR-Acyclic DCDSs
As with run-boundedness in the deterministic services case, for

nondeterministic services the state-boundedness restriction is a se-
mantic property. We investigate whether it can be effectively
checked.

THEOREM 5.5. Checking state-boundedness of DCDSs is un-
decidable.

Consequently we propose a sufficient syntactic restriction.
Intuitively, for a run to have unbounded states, it must issue

unboundedly many service calls. Since there are only a bounded
number of effects in the process layer specification, there must ex-
ist some service-calling effect that “cyclically generates” fresh val-
ues (i.e. is invoked infinitely many times during the run). Notice
that unbounded generation of fresh values is insufficient for state-
unboundedness: these values must also accumulate in the states.
But by definition of the DCDS semantics, a transition drops (“for-
gets”) all values that are not explicitly copied (“recalled”) into the
successor. Therefore, to accumulate, a value must be “cyclically re-
called” througout the run (it must be copied infinitely many times
from relation to relation).

9We call a runsimpleif no state appears more than once in the run.

R(a)
R(a)
Q(b)

R(a)
Q(a)

R(a)
Q(c)

R(a)
Q(a)
Q(b)

R(a)
Q(a)
Q(c)

R(a)
Q(a)
Q(d)

R(a)
Q(b)
Q(c)

R(a)
Q(b)
Q(d)

R(a)
Q(c)
Q(d)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

(a) Concrete transition system

R(a)

R(a)
Q(a)

R(a)
Q(b)

R(a)
Q(a)
Q(b)

R(a)
Q(b)
Q(c)

R(a)
Q(a)
Q(b)
Q(c)

R(a)
Q(b)
Q(c)
Q(d)

. . .

. . .

(b) Abstract transition system

Figure 6: Concrete and abstract transition systems of the state-unbounded DCDS with nondeterministic services of Example 5.2.

GR-acyclicity is stated in terms of a dataflow graph constructed
by analyzing the process layer. The graph identifies how service
calls and value recalls can chain. In essence, GR-acyclicity
requires the absence of a “generate cycle” that feeds into a “recall
cycle”.

GR-acycliclicity. Let A be a set of actions, andA+ its positive
approximate (Section 4.3). We calldataflow graphof A the di-
rected edge-labeled graph〈N,E〉 whose setN of nodes is the set
of relation names occurring inA, and in which each edge inE
is a 4-tuple(R1, id , R2, b), whereR1 andR2 are two nodes in
N , id is a (unique) edge identifier, andb is a boolean flag used to
mark specialedges. Formally,E is the minimal set satisfing the
following condition: for each effecte of A+, eachR(t1, . . . , tm)
in the body ofe, eachQ(t′1, . . . , t

′
m′) in the head ofe, and each

i ∈ {1, . . . ,m′}:

• if t′i is either an element ofADOM(I0) or a free variable, then
(R, id , Q, false) ∈ E, whereid is a fresh edge identifier.

• if t′i is a service call, then(R, id , Q, true) ∈ E, whereid is
a fresh edge identifier.

We say thatA is GR-acyclicif there is no pathπ = π1π2π3 in the
dataflow graph ofA, such thatπ1, π3 are simple cycles andπ2 is
a path containing a special edge that is disjoint from the edges of
π1. We say that a process layerP = 〈F ,A, ̺〉 is GR-acyclic, ifA
is GR-acyclic. We call a DCDS GR-acyclic if its process layeris
GR-acyclic.

Notice that GR-acyclicity is a purely syntactic notion. Moreover,
it can be checked in PTIME since the dataflow graph has size poly-
nomial in the size of the process layer specification.

THEOREM 5.6. Any GR-acyclic DCDS is state-bounded.

We show the proof in Appendix C.4 but provide some intuition
here, noting that the dataflow analysis is significantly moresubtle
than suggested above.

First, note that ordinary edges correspond to an effect copying
a value from a relation of the current state to a relation of the suc-
cessor state. Special edges correspond to feeding a value ofthe
current state to a service call and storing the result in a relation of
the successor state. Note that the cyclesπ1 andπ3 allow both kinds
of edges, reflecting the insight that the size of the state is affected
in the same way regardless of whether a value iscopiedto the suc-
cessor, or it isreplacedwith a service call result (see Example 5.2
and Example 5.3 for illustrations of state-unboundedness arising
from each case).π1, π3 are both “recall cycles”: the number of
values moving around them does not decrease (this is of course a
conservative statement; reality depends on the semantics of queries
in the effects, which is abstracted away). Note thatπ2 contains
a special edgeE, which means that the values moving aroundπ1

are cyclically fed into the service callf of E. The key insight
here is that, even if the set of values moving aroundπ1 does not
change (no special edges inπ1 replace them), and thus the service
call f sees the same bounded set of distinct arguments over time, it
can still generate an unbounded number of fresh values becausef
is nondeterministic.π1π2 constitute the “generate cycle” we men-
tion above. The generated values are stored in the recall cycle π3,
where they accumulate and force the size of the relations ofπ3 to
grow unboundedly.

EXAMPLE 5.1. Let us consider again the DCDSS described
in Example 4.3, this time consideringf/1 as a nondeterministic
service. The resulting concrete transition system is shownin Fig-
ure 7(a). Even ifS is not run-bounded, it is state-bounded, because
in every state its database consists of only one tuple. This is attested
by the dataflow graph shown in Figure 7(a), and guarantees theex-

istence of a faithful finite-state abstraction. One such finite-state
abstraction is reported in Figure 7(b).

EXAMPLE 5.2. LetS = 〈D,P〉 be a DCDS with data layer
D = 〈C,R, ∅, I0〉 and process layerP = 〈F ,A, ̺〉, whereF =
{f/1}, R = {R/1, Q/1}, I0 = {R(a)}, ̺ = {true 7→ α}, A =
{α} andα : {R(x) R(x), R(x) Q(f(x)), Q(x) Q(x)}.

S is not GR-acyclic, because eachR tuple is continuously
copied, and at the same time continuously issues a call to servicef
that is then stored into aQ tuple, which is continuously copied as
well. This is attested by the dataflow graph of Figure 8(b)).

The overall effect caused by the iterated application ofα is that
fresh values are continuously generated and accumulated, making
S state-unbounded. Consider for example the application of ac-
tion α in stateI0. It leads to an infinite number of successors,
each one of the form{R(a),Q(v)} wherev is the value returned
by f(a). Consider now a second application ofα in one of these
states. It again leads to an infinite number of successors, due to
the nondeterminism off(a). In particular, each successor has the
form {R(a), Q(v),Q(v′)}, wherev′ is the result of the second
call f(a). Whenv′ 6= v, the number of tuples is increased from
2 to 3. By executingα over and over again, for some successors
the value returned by a new callf(a) will be distinct from all the
ones already stored inQ. This causes an indefinite increment of
the database size due to the continuous insertion of freshQ tuples.
Such behavior is clearly shown in the concrete transition system of
S , depicted in Figure 6(a). Figure 6(b) shows instead one possible
corresponding abstraction; even if the abstraction approach ensures
that the generated transition system is finite-branching, some of its
runs pass through an infinite number of distinct, growing states.

EXAMPLE 5.3. LetS = 〈D,P〉 be a DCDS with data layer
D = 〈C,R, ∅, I0〉 and process layerP = 〈F ,A, ̺〉, whereF =
{f/1, g/1}, R = {R/1}, I0 = {R(a)}, ̺ = {true 7→ α},
A = {α} andα : {R(x) {R(f(x)), R(g(x))}}.

S is not GR-acyclic, because its dataflow graph, shown in Fig-
ure 8(c), contains a unique nodeRwith two distinct special looping
edges fromR to R itself. Indeed, every timeα is executed, each
R tuple contained in the current database may generate twoR tu-
ples in the next state, such that each such new tuple containsa value
different from all the other ones. Therefore, even if the newly gener-
ated values are not accumulated, in the “worst” case the number of
R tuples is doubled every timeα is executed. A sample run of the
system could be the following. Starting fromI0, α callsf(a) and
g(a), gettingb andc as result and obtaining the state{R(b), R(c)}.
A second execution ofα involves now 4 service calls (f(b), g(b),
f(c), g(c)), which may return 4 different new values, e.g. leading
to state{R(d),R(e), R(f), R(g)}, and so on.

GR+-Acyclicity. This relaxation of GR-acyclicity is based on the
insight that, for a cycleΥS in the dataflow graph to truly preserve
the number of values moving in it,ΥS ’s edges must not all be si-
multaneously inactive. We say that an edge isactive in a step of
the run when some action corresponding to it executes. By the
DCDS semantics, if all edges ofΥS are simultaneously inactive,
then none of the corresponding copy/call operations are executed
and all relations involved inΥS forget their value in the next state.
ΥS is effectively flushed.

GR+-Acyclicity is a relaxation that does allow pathπ = π1π2π3

as in the definition of GR-Acyclicity, provided thatπ2 contains an
edgee that cannot be active at the same time as any of the subse-
quent edges inπ2π3.

Semantically this ensures that in order for the generate cycle
π1π2 to push fresh values toward recall cycleπ3, some action corre-
sponding toe must execute, and in the meantime all actions main-
taining the values in cycleπ3 are disabled, thus flushingπ3. π3

thus receives an unbounded number of waves of fresh values from
π1π2, but it forgets each wave before the next arrives.

Of course, the property of being active at the same time is seman-
tic in nature, but we give a sufficient syntactic condition. Associate
with every edgee in the dataflow graph the setactions(e) of ac-
tions it corresponds to (this set can be computed via simple inspec-
tion of the process layer). Then edgese1, e2 are not simultaneously
active ifactions(e1) ∩ actions(e2) = ∅.

The DCDSs discussed in Example 5.2 and 5.3 are not GR+-
acyclic. Indeed, they are not GR-acyclic, and all the edges con-
tained in their dataflow graphs can be simultaneously active, be-
cause they all correspond to a single action.

We observe that GR-acyclicity is not related to weak acyclicity.
In particular, a DCDS may be GR-acyclic but not weakly acyclic
(see Example 5.1).

As with any sufficient syntactic condition for an undecidable
semantic property, an infinite succession of refinements of GR-
acyclicity is possible, each relaxing the condition to allow more
DCDS classes. We propose a very powerful relaxation in Ap-
pendix C.4, GR+-acyclicity. Appendix E shows a full-fledged
DCDS example that conforms to GR+-acyclicity, showing that it
admits a practically relevant DCDS class.

Theorem 5.6 and Theorem 5.3 imply:

THEOREM 5.7. Verification of µLP properties for GR+-
acyclic DCDS with nondeterministic services is decidable.

6. DISCUSSION
Complexity. Both in the case of weakly acyclic DCDSs with
deterministic services and of GR+-acyclic DCDSs with non-
deterministic services, our construction generates a finite transition
system whose number of states is exponential in the size of
the DCDS. LetΦ be aµLA or µLP formula of sizeℓ with k
alternating nested fixpoints. Then, considering the complexity
or propositionalµ-calculus model checking on finite transition
systems [22], the complexity of verification ofΦ over a DCDS of
sizen isO(2n · nℓ)k, hence in EXPTIME.

Comparison of the two semantics. It is natural to ask how the
expressivities of the two DCDS flavors compare. Interestingly, we
can show that for unrestricted DCDSs, the two semantics are equiv-
alent from the point of view of expressive power, i.e. any DCDS
with deterministic services can be simulated by a DCDS with non-
deterministic services, and conversely. However, we show below
that the two semantics are not equivalent with respect to decidabil-
ity of verification.

Consider first the reduction from deterministic to non-
deterministic services.

THEOREM 6.1. LetD be a DCDS with deterministic services
and schemaRD . Then one can rewriteD in linear time to a DCDS
N with nondeterministic services and schemaRN , such that (i)
RN includesRD and (ii) the projection ofΥN to RD coincides
withΥD, and (iii) if D is run-bounded, thenN is state-bounded.

We turn next to the converse reduction.

THEOREM 6.2. Let N be a DCDS with nondeterministic ser-
vices and schemaRN . Then one can rewriteN in linear time to a
DCDSD with deterministic services and schemaRD, such that (i)

R(a) Q(a)

R(b) Q(b)

R(c) Q(c)

.

(a) Concrete transition system

R(a) Q(a)

R(b) Q(b)

(b) Abstract transition system

Figure 7: Concrete and abstract transition systems obtained when the DCDS described in Example 4.3 has nondeterministic services

R Q

*

(a) GR-acyclic dataflow graph for the
DCDSs of Example 4.1 and 4.2

R Q

*

(b) Non GR-acyclic dataflow graph for the
DCDS of Example 5.2

R* *

(c) Non GR-acyclic dependency graph for
the DCDS of Example 5.3

Figure 8: Examples of dependency graphs for DCDSs with nondeterministic services; special edges are decorated with *.

RD includesRN and (ii) the projection ofΥD to RN coincides
withΥN .

The above reductions show that for unrestricted DCDS, deter-
ministic and nondeterministic services are equivalent with respect
to expressive power. However, they are not equivalent with respect
to decidability of verification. This is because state-boundedness
of the DCDS with nondeterministic services does not imply run-
boundedness of the rewritten DCDS with deterministic services.
In fact, one can prove that there exists no reduction from state-
bounded DCDS with nondeterministic services to run-bounded
DCDS with deterministic services: recall that for properties from
µLA − µLP , verification is decidable for the latter (by Theo-
rem 4.3), and undecidable for the former (Theorem 5.2). In par-
ticular, the reduction we use to prove Theorem 6.2 yields a non-
weakly-acyclic DCDS and is therefore not pertinent to verification
decidability.

In contrast, for the converse reduction of Theorem 6.1, observe
that wheneverD is run-bounded,N is state-bounded. Therefore,
if we restrict the property language toµLP , decidability of verifi-
cation for run-bounded DCDSs with deterministic services follows
as a corollary of the reduction. Recall however that decidability
holds even for the larger logicµLA (by Theorem 4.2). Our proof
of Theorem 4.2 exploits the reduction as well, though additional
technical contribution is needed to handleµLA.

Mixed semantics. The reduction in Theorem 6.1 allows us to
verify µLP properties for DCDSs with amix of deterministic
and nondeterministic services, by first rewriting to a DCDS with
exclusively nondeterministic services (as long as the rewritten
DCDS is GR-acyclic). We give an example of a DCDS with mixed
service semantics in Appendix E.

Support for arbitrary integrity constraints. We remark that, by
exploiting the equality constraints, we can extend our decidability
results to support integrity constraints on the database expressed
as arbitrary FO sentences under the active domain semantics. First,

note that the definition of DCDS semantics is independent of the
type of constraints used, as it simply requires their satisfaction by
each state of the concrete transition system. Now consider aDCDS
S with an FO integrity constraintIC defined on its schema. We can
rewriteS to enforceIC using equality constraints. To this end, we
add a binary auxiliary relationaux to the schema, initialized in the
initial state to contain the tuple〈a, b〉 of distinct constants. We add
to each action an effect that simply copiesaux between states, en-
suring the persistence of factaux (a, b) throughout the run. Finally,
we add an equality constraintec := ¬IC ∧ aux (x, y) → x = y.
Notice now thatS ’ will never execute an action that violatesIC,
because that would violateec. Equality constraints also prove
instrumental in modeling artifact systems, described next.

Connection with the artifact model. In terms of expressive capa-
bilities, our DCDS model is equivalent to a business processmodel
known in the literature as theartifact model(see Section 7). While
variations thereof abound, they are virtually all special cases of the
following general model. In it, given a relational schemaT , anarti-
fact of typeT (or T -artifact) is a tuple of schemaT . The attributes
of the tuple are known asartifact variables, and they must include
an id attribute that uniquely identifies each artifact. Anartifact sys-
temhas a schema comprising a collection of types{Ti}i∈{1,...,n},
and the schemaRDB of an underlying relational database. Thein-
stanceof an artifact system consists of a relationIi for each typeTi
and a database of schemaRDB. The artifact system also has a col-
lection of actions (usually called “services”, a term we avoid here to
rule out confusion with the external services of the DCDS model).
The exection of an action evolves the current instance into its suc-
cessor. Each action has apre-conditionwhich is a FO sentence over
the artifact schema, evaluated over the current artifact instance un-
der the active domain semantics. The pre-condition must hold for
an action to be eligible to execute. Actions are also equipped with
a post-conditionwhich is usually an∃FO formula relating the cur-
rent and the successor instances (ifR is a relation in the schema,
the post-condition’sR-atoms refer to the current instance, while

R′ atoms refer to the successor). By∃FO we mean existential FO
logic, in which only existential quantifiers are allowed, and they
must appear in the scope of an even number of negations. Existen-
tially quantified variables are not interpreted over the active domain,
but over the possible infinite domain. They model external inputs
from the environment the artifact system evolves in.

While we do not show a formal reduction between the two mod-
els, we sketch here how a DCDS process can simulate an artifact-
based one. The DCDS can model the setsIi of Ti-artifacts using
an integrity constraint to enforce the uniqueness of theid attribute.
The pre-conditions of artifact actions correspond to the conditions
in the DCDS condition-action rules. Artifact post-conditionsψ can
be simulated by DCDS effects, after rewritingψ to Skolem nor-
mal form and introducing for each resulting Skolem term a nonde-
terministic service call. The fact that post-conditions can contain
disjunction while effects are conjunctive and positive is no imped-
iment: the additional expressivity needed can be transferred to the
DCDS condition-action rules, if necessary modeling one artifact
transition step with several DCDS transition steps.

7. RELATED WORK
As discussed in Section 6, the unrestricted artifact-centric and

DCDS models have equivalent expressive capabilities. Our work
is therefore most closely related to prior work on verification of
artifact-centric business processes. The difference liesin how each
work trades off between restricting the class of business processes
versus the class of properties to verify.

Artifact-centric processes with no database. Work on formal
analysis of artifact-based business processes in restricted contexts
has been reported in [24, 25, 7]. Properties investigated include
reachability [24, 25], general temporal constraints [25],and the
existence of complete execution or dead end [7]. For the variants
considered in each paper, verification is generally undecidable;
decidability results were obtained only under rather severe re-
strictions, e.g., restricting all pre-conditions to be ”true” [24],
restricting to bounded domains [25, 7], or restricting the pre- and
post-conditions to be propositional, and thus not referring to data
values [25]. [15] adopts an artifact model variation with arithmetic
operations but no database. It proposes a criterion for comparing
the expressiveness of specifications using the notion ofdominance,
based on the input/output pairs of business processes. Decidability
relies on restricting runs to bounded length. [37] addresses the
problem of the existence of a run that satisfies a temporal property,
for a restricted case with no database and only propositional LTL
properties. All of these works model no underlying database(and
hence no integrity constraints).

Artifact-centric processes with underlying database. More re-
cently, two lines of work have considered artifact-centricprocesses
that also model an underlying relational database. One considers
branching time, one only linear time.
Branching time. Our approach stems from a line of research that
has started with [16] and continued with [3] and [5] in the context
of artifact-centric processes. The connection between evolution of
data-centric dynamic systems and data exchange that we exploit in
this paper was first devised in [16]. There the dynamic systemtran-
sition relation itself is described in terms of TGDs mappingthe cur-
rent state to the next, and the evolution of the system is essentially
a form of chase. Under suitable weak acyclicity conditions such a
chase terminates, thus making the DCDS transition system finite.
A first-order µ-calculus without first-order quantification across
states is used as the verification formalism for which decidability

is shown. Notice the role of getting new objects/values fromthe
external environment, played here by service calls, is played there
by nulls. These ideas where further developed in [3], where TGDs
where replaced by action rules with the same syntax as here. Se-
mantically however the dynamic system formalism there is deeply
different: what we call here service calls are treated thereas unin-
terpreted Skolem terms. This results in an ad-hoc interpretation of
equality which sees every Skolem term as equal only to itself(as
in the case of nulls [16]). The same first-orderµ-calculus without
first-order quantification across states of [16] is used as the verifica-
tion formalism, and a form of weak acyclicity is used as a sufficient
condition for getting finite-state transition systems and decidability.

In the case of deterministic services, our framework is directly
inspired by [3], though here we do interpret service calls. This
decision is motivated by our goal of modeling real-life external
services, for which two distinct service calls may very wellreturn
equal results, even under the deterministic semantics (forinstance
if the same service is called with different arguments, or ifdistinct
services are invoked). Interpreting service calls raises amajor chal-
lenge: even under the run-bounded restriction, the concrete transi-
tion system is infinite, because it is infinitely branching. (a service
call can be interpreted with any of the constants from the infinite
domain). In contrast to [3], what we show in this case is not that
the concrete transition system is finite (it never is), but that it is
bisimilar to a finite abstract transition system. This leads to a proof
technique that is interesting in its own right, being based on novel
notions of bisimilarity for the consideredµ-calculus variants. The
reason standard bisimilarity is insufficient is that our logics µLP
andµLA allow first-order quantification across states, so bisimilar-
ity must respect the connection between values appearing both in
the current and successor state. Our decision to include first-order
quantification across states was motivated by the need to express
liveness properties that refer to the same data at various points in
time (e.g. “if studentx is enrolled now and continues to be enrolled
in the future, thenx will eventually graduate”).

Inspired by [3], [5] builds a similar framework where actions
are specified via pre- and post-conditions given as FO formulae
interpreted over active domains. The verification logic considered
is a first-order variant of CTL with no quantification across states.
Thus, it inherits the limitations discussed above on expressibility of
liveness properties. In addition, the limited temporal expressivity
of CTL precludes expressing certain desirable properties such
as fairness. [5] shows that under the assumption that each state
has a bounded active domain, one can construct an abstract finite
transition system that can be checked instead of the original
concrete transition system, which is infinite-state in general. The
approach is similar to the one we developed independently for
nondeterministic services, however without quantification across
states, standard bisimilarity suffices. As opposed to our work, the
decidability of checking state-boundedness is not investigated in
[5], and no sufficient syntactic conditions are proposed.
Linear time. Publication [21] considers an artifact model that has
the same expressive capabilities as an unrestricted class of DCDS
in which the infinite domain is equipped with a dense linear order,
which can be mentioned in pre-, post-conditions, and properties.
Runs can receive unbounded external input from an infinite
domain, and this input corresponds to nondeterministic services in
a DCDS. Verification is decidable even if the input accumulates
in states, and runs are neither run-bounded, nor state-bounded.
However, this expressive power requires restrictions thatrender
the result incomparable to ours. First, the property language is
a first-order extension of LTL, and it is shown that extension
to branching time (CTL∗) leads to undecidability. Second, the

DETERMINISTIC SERVICES NONDETERMINISTIC SERVICES

µL µLA µLP µL µLA µLP

unrestricted U ← U ← U 1 unrestricted U ← U ← U 1

↑ ↑

bounded-run ? 2 D 3→ D bounded-state U ← U D 3

1 The result is even stronger: it holds for propositional LTL.
2 Decidability cannot be established via a faithful finite-state abstraction.
3 Decidability is obtained via reduction to finite-state model checking.

Table 1: Summary of our (un)decidability results.

formulae in pre-, post-conditions and properties access read-only
and read-write database relations differently, querying the latter
only in limited fashion. In essence, data can be arbitrarilyaccu-
mulated in read-write relations, but these can be queried only by
checking that they contain a given tuple of constants. It is shown
that this restriction is tight, as even the ability to check emptiness
of a read-write relation leads to undecidability. In addition, no
integrity constraints are supported as it is shown that allowing
a single functional dependency leads to undecidability. [19]
disallows read-write relations entirely (only the artifact variables
are writable), but this allows the extension of the decidability
result to integrity constraints expressed as embedded dependencies
with terminating chase, and to any decidable arithmetic. Again
the result is incomparable to ours, as our modeling needs include
read-write relations and their unrestricted querying.

Infinite-state systems. DCDSs are a particular case of infinite-
state systems. Research on automatic verification of infinite-state
systems has also focused on extending classical model checking
techniques (e.g., see [14] for a survey). However, in much ofthis
work the emphasis is on studying recursive control rather than data,
which is either ignored or finitely abstracted. More recent work
has been focusing specifically on data as a source of infinity.This
includes augmenting recursive procedures with integer parameters
[10], rewriting systems with data [9], Petri nets with data associated
to tokens [28], automata and logics over infinite alphabets [12, 11,
31, 20, 27, 8, 9], and temporal logics manipulating data [20]. How-
ever, the restricted use of data and the particular properties verified
have limited applicability to the business process settingwe target
with the DCDS model.

8. CONCLUSIONS
We summarize our results in Table 1 (arrows denote implications

between results). We note that exhibiting a finite faithful abstrac-
tion of a concrete transition system is more than a means towards
showing decidability, being a desirable goal in its own right as the
most promising avenue towards practical implementation. Notice
that we list as open the verification ofµL properties on bounded-
run DCDSs with deterministic services, but recall from Section 4.2
that in this case there exists no faithful finite-state abstract transi-
tion system.

We believe that DCDSs provide a natural and expressive model
for business processes powered by an underlying database, and thus
are an ideal vehicle for foundational research with potential to trans-
fer to alternative models.

Note that the design space for FO extensions of propositional µ-
calculus is broad, and notoriously contains bounded-statesettings
for which satisfiability of even modest extensions of propositional
LTL is highly undecidable (e.g. LTL with the freeze quantifier over
infinite data words [20]). In light of this, our decidabilityresults

come as a pleasant surprise, and the twoµL variants studied here,
paired with the respective DCDS classes, strike a fortuitous balance
between expressivity and verification feasibility.

9. REFERENCES
[1] S. Abiteboul, P. Bourhis, A. Galland, and B. Marinoiu. The

AXML artifact model. InTIME, 2009.
[2] S. Abiteboul, R. Hull, and V. Vianu.Foundations of

Databases. Addison Wesley, 1995.
[3] B. Bagheri Hariri, D. Calvanese, G. De Giacomo,

R. De Masellis, and P. Felli. Foundations of relational
artifacts verification. InBPM, 2011.

[4] C. Baier and J.-P. Katoen.Principles of model checking. MIT
Press, 2008.

[5] F. Belardinelli, A. Lomuscio, and F. Patrizi. Verification of
deployed artifact systems via data abstraction. InICSOC,
2011.

[6] K. Bhattacharya et al. A model-driven approach to
industrializing discovery processes in pharmaceutical
research.IBM Systems Journal, 44(1), 2005.

[7] K. Bhattacharya, C. E. Gerede, R. Hull, R. Liu, and J. Su.
Towards formal analysis of artifact-centric business process
models. InBPM, 2007.

[8] M. Bojanczyk, A. Muscholl, T. Schwentick, L. Segoufin, and
C. David. Two-variable logic on words with data. InLICS,
pages 7–16, 2006.

[9] A. Bouajjani, P. Habermehl, Y. Jurski, and M. Sighireanu.
Rewriting systems with data. InFCT, 2007.

[10] A. Bouajjani, P. Habermehl, and R. Mayr. Automatic
verification of recursive procedures with one integer
parameter.Theoretical Computer Science, 295, 2003.

[11] P. Bouyer. A logical characterization of data languages. IPL,
84(2), 2002.

[12] P. Bouyer, A. Petit, and D. Thérien. An algebraic approach to
data languages and timed languages.Information and
Computation, 182(2), 2003.

[13] J. Bradfield and C. Stirling. Modal mu-calculi. InHandbook
of Modal Logic, volume 3. Elsevier, 2007.

[14] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification
of infinite structures. InHandbook of Process Algebra.
Elsevier Science, 2001.

[15] D. Calvanese, G. De Giacomo, R. Hull, and J. Su.
Artifact-centric workflow dominance. In
ICSOC-ServiceWave, 2009.

[16] P. Cangialosi, G. De Giacomo, R. De Masellis, and R. Rosati.
Conjunctive artifact-centric services. InICSOC, 2010.

[17] E. M. Clarke, O. Grumberg, and D. A. Peled.Model
checking. The MIT Press, 1999.

[18] D. Cohn and R. Hull. Business artifacts: A data-centric
approach to modeling business operations and processes.
IEEE Data Engineering Bullettin, 32(3), 2009.

[19] E. Damaggio, A. Deutsch, and V. Vianu. Artifact systems
with data dependencies and arithmetic. InICDT, 2011.

[20] S. Demri and R. Lazić. LTL with the freeze quantifier and
register automata.ACM Trans. on Computational Logic,
10(3), 2009.

[21] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic
verification of data-centric business processes. InICDT,
2009.

[22] E. A. Emerson. Model checking and the mu-calculus. In
Descriptive Complexity and Finite Models, 1996.

[23] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: semantics and query answering.Theoretical
Computer Science, 336(1):89–124, 2005.

[24] C. E. Gerede, K. Bhattacharya, and J. Su. Static analysis of
business artifact-centric operational models. InIEEE Int.
Conf. on Service-Oriented Computing and Applications,
2007.

[25] C. E. Gerede and J. Su. Specification and verification of
artifact behaviors in business process models. InICSOC,
2007.

[26] R. Hull. Artifact-centric business process models: Brief
survey of research results and challenges. InOTM 2008
Confederated Int. Conf., volume 5332 ofLNCS, 2008.

[27] M. Jurdzinski and R. Lazić. Alternation-free modal
mu-calculus for data trees. InLICS, 2007.

[28] R. Lazić, T. Newcomb, J. Ouaknine, A. Roscoe, and
J. Worrell. Nets with tokens which carry data. InICATPN,
2007.

[29] D. C. Luckham, D. M. R. Park, and M. Paterson. On
formalised computer programs.J. Computer and System
Sciences, 4(3), 1970.

[30] M. Meier, M. Schmidt, F. Wei, and G. Lausen. Semantic
query optimization in the presence of types. InPODS, pages
111–122, 2010.

[31] F. Neven, T. Schwentick, and V. Vianu. Finite state machines
for strings over infinite alphabets.ACM Trans. on
Computational Logic, 5(3), 2004.

[32] A. Nigam and N. S. Caswell. Business artifacts: An
approach to operational specification.IBM Systems Journal,
42(3), 2003.

[33] D. M. R. Park. Finiteness is mu-ineffable.Theoretical
Computer Science, 3(2), 1976.

[34] A. Pnueli. The temporal logic of programs. InFOCS, 1977.
[35] C. Stirling.Modal and Temporal Properties of Processes.

Springer, 2001.
[36] W. M. P. van der Aalst, P. Barthelmess, C. A. Ellis, and

J. Wainer. Proclets: A framework for lightweight interacting
workflow processes.Int. J. Cooperative Information Systems,
10(4), 2001.

[37] X. Zhao, J. Su, H. Yang, and Z. Qiu. Enforcing constraints
on life cycles of business artifacts. InTASE, 2009.

APPENDIX

A. VERIFICATION
In this appendix we give the bisimulation invariance results for

µLA andµLP .

A.1 History Preserving Mu-Calculus
We provehistory preserving bisimulation invariancefor µLA.

We adopt a two-step approach. We first prove the result for thelogic
LA, obtained fromµLA dropping the predicate variables and the
fixpoint constructs. Such a logic corresponds to a first-order variant
of the Hennessy Milner logic; note that the semantics of thislogic is
completely independent from the second-order valuation. We then
extend the result to the wholeµLA by dealing with fixpoints.

LEMMA A.1. Consider two transition systemsΥ1 = 〈∆1,R,
Σ1,s01,db1,⇒1〉 andΥ2 = 〈∆2,R,Σ2, s02, db2,⇒2〉, a partial
bijectionh between∆1 and∆2 and two statess1 ∈ Σ1 ands2 ∈
Σ2 such thats1 ≈h s2. Then for every (open) formulaΦ of LA,
and every valuationsv1 andv2 that assign to each of its free vari-
ables a valued1 ∈ ADOM(db1(s1)) and d2 ∈ ADOM(db2(s2)),
such thatd2 = h(d1), we have that

Υ1, s1 |= Φv1 if and only ifΥ2, s2 |= Φv2.

PROOF. We proceed by induction on the structure ofΦ.

Local first-order queries (base case)ConsiderΦ = Q, where
Q is an (open) FO query. Sinceh induces an isomor-
phism betweendb(s1) and db(s2), for every valuations
v1 and v2 that assign to each free variable ofQ a value
d1 ∈ ADOM(db1(s1)) and d2 ∈ ADOM(db2(s2)), such
that d2 = h(d1), we have thatans (Qv1, db(s1)) ≡
ans (Qv2, db(s2)).

Negation By induction hypothesis, for every (open) formulaΦ
and every valuationsv1 and v2 that assign to each of its
free variables a valued1 ∈ ADOM(db1(s1)) and d2 ∈
ADOM(db2(s2)), such thatd2 = h(d1), we have that
Υ1, s1 |= Φv1 if and only if Υ2, s2 |= Φv2. By definition,
Υ1, s1 |= (¬Φ)v1 if and only ifΥ1, s1 6|= Φv1, and, by induc-
tion hypothesis,Υ1, s1 6|= Φv1 if and only if Υ2, s2 6|= Φv2,
which corresponds toΥ2, s2 |= (¬Φ)v2.

Conjunction By induction hypothesis, for every (open) formula
Φ and every valuationsv1 and v2 that assign to each of
its free variables a valued1 ∈ ADOM(db1(s1)) and d2 ∈
ADOM(db2(s2)), such thatd2 = h(d1), we have that
Υ1, s1 |= Φiv1 if and only ifΥ2, s2 |= Φiv2, with i ∈ {1, 2}.
Hence,Υ1, s1 |= Φ1v1 and Υ1, s1 |= Φ2v1 if and only
if Υ2, s2 |= Φ1v2 and Υ2, s2 |= Φ2v2. By definition,
we therefore haveΥ1, s1 |= (Φ1 ∧ Φ2)v1 if and only if
Υ2, s2 |= (Φ1 ∧ Φ2)v2.

Modal operator Consider two statess1 ∈ Σ1 ands2 ∈ Σ2 such
that s1 ≈h s2. By definition, given a valuationv1 that as-
signs to each free variable ofΦ a valued1 ∈ ADOM(db1(s1)),
we have thatΥ1, s1 |= (〈−〉Φ)v1 if there exists a transition
s1 ⇒1 s

′
1 such thatΥ1, s

′
1 |= Φv1. Sinces1 ≈h s2, there

exists a transitions2 ⇒2 s′2 such thats′1 ≈h′ s′2, where
h′ extendsh. By induction hypothesis, for every valuation
v2 that assigns to each free variablex of Φ a valued2 ∈
ADOM(db2(s

′
2)), such thatd2 = h′(d1) with x/d1 ∈ v1, we

have thatΥ1, s
′
1 |= Φv1 if and only if Υ2, s

′
2 |= Φv2. Since

h′ is an extension ofh, andv1 assigns to each free variable
of Φ a valued1 ∈ ADOM(db1(s1)) ⊆ DOM(h), we observe
that for every pair of assignmentsx/d1 ∈ v1 andx/d2 ∈ v2,

it holds thatd2 = h′(d1) = h(d1). Furthermore, sinceh in-
duces an isomorphism betweendb1(s1) anddb2(s2), for each
assignmentx/d2 ∈ v2, we have thatd2 ∈ ADOM(db2(s2)).
Considering thats2 ⇒2 s′2, by definition we therefore get
Υ2, s2 |= (〈−〉Φ)v2.

The other direction can be proven in a symmetric way.

Quantification Consider two statess1 ∈ Σ1 ands2 ∈ Σ2 such
that s1 ≈h s2. By definition, given a formulaΦ and a
valuationv′1 that assigns to each free variable ofΦ a value
d1 ∈ DOM(h), we have thatΥ1, s1 |= (∃x.LIVE(x) ∧ Φ)v′1
if and only if there existsd ∈ ADOM(db1(s1)) such that
Υ1, s1 |= Φv1, wherev1 = v′1[x/d]. By induction hypoth-
esis, for every valuationv2 that assigns to each free variable
y of Φ a valued2 ∈ ADOM(db2(s2)), such thatd2 = h(d1)
with y/d1 ∈ v1, we have thatΥ1, s1 |= Φv1 if and only
if Υ2, s2 |= Φv2. More specifically, the structure ofv2 is
v2 = v′2[x/d

′], whered′ = h(d) ∈ ADOM(db2(s2)) because
h induces an isomorphism betweendb1(s1) and db2(s2).
Hence, we getΥ2, s2 |= (∃x.LIVE(x) ∧ Φ)v′2.

The other direction can be proven in a symmetric way.

PROOF OFTHEOREM3.1. We prove the theorem in two steps.
First, we show that Lemma A.1 can be extended to the infinitary
version ofLA that supports arbitrary countable disjunction. Then,
we recall that fixpoints can be translated into this infinitary logic,
thus guaranteeing invariance for the wholeµLA logic.

Let Ψ be a countable ordered set of openLA formulae. Given a
transition systemΥ = 〈∆,R,Σ, s0, db,⇒〉, the semantics of

∨
Ψ

is (
∨

Ψ)Υv =
⋃
ψ∈Ψ(ψ)

Υ
v . Therefore, given a states of Υ and a

variable valuationv that assigns to each free variable ofΨ a value
d ∈ ADOM(db(s)) , we haveΥ, s |= Ψv if and only if Υ, s |= ψv
for someψ ∈ Ψ. Arbitrary countable conjunction is obtained for
free because of negation.

We show that the invariance result proven in Lemma A.1 triv-
ially extends to this arbitrary countable disjunction. Lemma A.1
guarantees that invariance is preserved for any finite disjunction.
Formally, let{Φ1, . . . ,Φn} be a finite set of openLA formulae.
Consider two statess1 ∈ Σ1 ands2 ∈ Σ2 such thats1 ≈h s2.
Then, for every valuationsv1 andv2 that assign to each free vari-
able of {Φ1, . . . ,Φn} a valued1 ∈ ADOM(db1(s1)) and d2 ∈
ADOM(db2(s2)), such thatd2 = h(d1), we have thatΥ1, s1 |=
(
∨
i∈{1,...,n} Φi)v1 if and only ifΥ2, s2 |= (

∨
i∈{1,...,n} Φi)v2.

Now consider two valuationsv′1 and v′2 that assign to each
free variable of

∨
Ψ a valued1 ∈ ADOM(db1(s1)) and d2 ∈

ADOM(db1(s2)), such thatd2 = h(d1). By definition,Υ1, s1 |=
(
∨

Ψ)v′1 if and only if there existsψk ∈ Ψ such thatΥ1, s1 |=
ψkv

′
1. The proof of invariance for the infinitaryLA logic is then ob-

tained by observing thatΥ1, s1 |= (
∨

Ψ)v′1 if and only ifΥ1, s1 |=
(
∨
i∈{1,...,k} ψi)v

′
1 if and only if Υ2, s2 |= (

∨
i∈{1,...,k} ψi)v

′
2 if

and only ifΥ2, s2 |= (
∨

Ψ)v′2.
In order to extend the result to the wholeµLA, we resort to

the well-known result stating that fixpoints of theµ-calculus can
be translated into the infinitary Hennessy Milner logic by iterating
over approximants, where the approximant of indexα is denoted
by µαZ.Φ (ναZ.Φ). This is a standard result that also holds for
µLA. In particular, approximants are built as follows:

µ0Z.Φ = false ν0Z.Φ = true

µβ+1Z.Φ = Φ[Z/µβZ.Φ] νβ+1Z.Φ = Φ[Z/νβZ.Φ]

µλZ.Φ =
∨

β<λ

µβZ.Φ νλZ.Φ =
∧

β<λ

νβZ.Φ

whereλ is a limit ordinal, and where fixpoints and their approxi-
mants are connected by the following properties: given a transition
systemΥ and a states of Υ

• s ∈ (µZ.Φ)Υv,V if and only if there exists an ordinalα such
that s ∈ (µαZ.Φ)Υv,V and, for everyβ < α, it holds that
s 6∈ (µβZ.Φ)Υv,V ;

• s 6∈ (νZ.Φ)Υv,V if and only if there exists an ordinalα such
that s 6∈ (ναZ.Φ)Υv,V and, for everyβ < α, it holds that
s ∈ (νβZ.Φ)Υv,V .

A.2 Persistence Preserving Mu-Calculus
We prove persistence preserving bisimulation invariancefor

µLP . To prove the invariance result, we adopt a two-step approach.
We first prove the result for the logicLP , obtained fromµLP drop-
ping the predicate variables and the fixpoint constructs. Such a
logic corresponds to a first-order variant of the Hennessy Milner
logic; note that the semantics of this logic is completely indepen-
dent from the second-order valuation. We then extend the result to
the wholeµLP by dealing with fixpoints.

LEMMA A.2. Consider two transition systemsΥ1 =
〈∆1,R,Σ1, s01, db1,⇒1〉 andΥ2 = 〈∆2,R,Σ2, s02, db2,⇒2〉,
a partial bijectionh between∆1 and∆2 and two statess1 ∈ Σ1

and s2 ∈ Σ2 such thats1 ∼h s2. Then for every (open)
formula Φ of LP , and every valuationsv1 and v2 that assign
to each of its free variables a valued1 ∈ ADOM(db1(s1)) and
d2 ∈ ADOM(db2(s2)), such thatd2 = h(d1), we have that

Υ1, s1 |= Φv1 if and only ifΥ2, s2 |= Φv2.

PROOF. We proceed by induction on the structure ofΦ. In par-
ticular, we discuss the two base cases of〈−〉(LIVE(x) ∧ Φ) and
[−](LIVE(x)∧Φ′) with one variable. For convenience, we rewrite
the latter case to〈−〉(LIVE(x) → Φ), whereΦ = ¬Φ′. The other
cases are derived, or proven in the same way as done for Lemma
A.1.

Modal operator (conjunction) Consider two statess1 ∈ Σ1 and
s2 ∈ Σ2 such thats1 ∼h s2. Let x be the only free variable
of Φ, andx/d a valuation such thatd ∈ ADOM(db1(s1)).
Then, by definition we have thatΥ1, s1 |= (〈−〉(LIVE(x) ∧
Φ)[x/d] if there exists a transitions1 ⇒1 s′1 such that
d ∈ ADOM(db1(s

′
1)) andΥ1, s

′
1 |= Φ[x/d]. Sinces1 ∼h s2,

there exists a transitions2 ⇒2 s′2 such thats′1 ∼h′ s′2,
whereh′ is compatible withh. By induction hypothesis and
by considering thath′ is an isomorpshim betweendb1(s′1)
anddb2(s′2), we have thatΥ1, s

′
1 |= Φ[x/d] if and only if

h′(d) ∈ ADOM(db2(s
′
2)) andΥ2, s

′
2 |= Φ[x/h′(d)]. Now

we observe thatd ∈ ADOM(db1(s1)) ∩ ADOM(db1(s
′
1)) and

h′ is an extension ofh|ADOM(db1(s1))∩ADOM(db1(s
′

1
)). This im-

plies thath′(d) = h(d) ∈ ADOM(db2(s2)), becauseh is
an isomorphism betweendb1(s1) and db2(s2). Consider-
ing thats2 ⇒2 s

′
2, by definition we therefore getΥ2, s2 |=

(〈−〉(LIVE(x) ∧ Φ))[x/h(d)].
The other direction can be proven in a symmetric way.

Modal operator (implication) Consider two statess1 ∈ Σ1 and
s2 ∈ Σ2 such thats1 ∼h s2. Let x be the only free variable
of Φ, andx/d a valuation such thatd ∈ ADOM(db1(s1)).
Then, by definition we have thatΥ1, s1 |= (〈−〉(LIVE(x) →
Φ)[x/d] if there exists a transitions1 ⇒1 s

′
1 such thatd 6∈

ADOM(db1(s
′
1)) or Υ1, s

′
1 |= Φ[x/d]. Sinces1 ∼h s2, there

exists a transitions2 ⇒2 s′2 such thats′1 ∼h′ s′2, where
h′ is an extension ofh|ADOM(db1(s1))∩ADOM(db1(s

′

1
)) Now we

discuss the two cases in whichd 6∈ ADOM(db1(s
′
1)) andd ∈

ADOM(db1(s
′
1)).

• Assume that d 6∈ ADOM(db1(s
′
1)). Since

s1 ∼h s2, we have thath(d) ∈ ADOM(db2(s2)).
Now, towards contradiction, let us assume that
h(d) ∈ ADOM(db2(s

′
2)). Hence, we have

h(d) ∈ ADOM(db2(s2)) ∩ ADOM(db2(s
′
2)). Observe

that h′ is an extension ofh|ADOM(db1(s1))∩ADOM(db1(s
′

1
)),

which is equivalent to state thath′−1 is an extension
of h−1|ADOM(db2(s2))∩ADOM(db2(s

′

2
)). This implies that

h−1(d) = h′−1(d) = d. Sinceh′ is an isomorphism be-
tweendb1(s′1) anddb2(s

′
2), thend ∈ ADOM(db1(s

′
1)),

and this contradicts the hypothesis.
• Assume thatd ∈ ADOM(db1(s

′
1)). Then we can pro-

ceed following the line of reasoning used for the case of
〈−〉(LIVE(x) ∧ Φ).

The other direction can be proven in a symmetric way.

PROOF OFTHEOREM3.2. The proof is analogous to that of
Theorem 3.1, but now using Lemma A.2.

B. DETERMINISTIC SERVICES

B.2 Run-Bounded Systems
PROOF OFTHEOREM4.1. The proof is by reduction from the

halting problem. Given a deterministic Turing MachineTM, we
define DCDSS with deterministic services and propositional safety
propertyΦ, such thatTM halts if and only ifΥS |= Φ.

Intuitively, every run ofΥS simulates a run ofTM. Each states
of ΥS models a configuration ofTM. A transition inΥS models a
transition inTM. We give the construction next.

The DCDS. To model a configuration ofTM in a relation of
the DCDS state, we model the visited tape segment as a graph
whose nodes are cell identifiers, and whose edges form a linear
path. The edge relation is calledright , with the intended meaning
that right(x, y) declares celly to be the right neighbor of cellx
on the tape. We also introduce a relationsym , with sym(c, s) in-
tended to model that cellc holds symbols. Unary relationhead
models the head position:head(c) means that the head points to
cell c. Finally, unary relationstate keeps the state ofTM, and
a boolean predicatehalted is meant to detect thatTM has halted.
In summary, the data layerD = 〈C,R, E ,I0〉 of S contains the
schemaR = {right/2, sym/2, head/1, halted/0}. We detailE
andI0 after sketching the process layer.

There is a single actionα, in charge of simulating the transitions
of TM. It has no parameters, and its guard is always true:true 7→ α.
α contains the following effects.
ecopy simply copies the part of the tape that stays unchanged in

the transition because the head doesn’t point to it:

ecopy : right(X,Y) ∧ right(Y,Z)∧
sym(X,SX) ∧ sym(Y, SY) ∧ sym(Z, SZ)∧
¬(head(X) ∧ head(Y) ∧ head(Z))

{right(X,Y), right(Y,Z),
sym(X,SX), sym(Y, SY), sym(Z, SZ)}

In addition, we add effects for each entry ofTM’s transition rela-
tion δ.

For instance, if(p, b,→) ∈ δ(s, a) (i.e. δ prescribes that in state
s, if the head points to a cell containing symbola, TM changes state
to p, the cell’s symbol is overwritten withb, and the head moves to
the right), we introduce two effects. One for the case when the tape
needs no extension to the right,

enoexts,a,p,b,→ : right(X,Y) ∧ sym(X, a) ∧ sym(Y, SY) ∧ SY 6= ω∧
head(X) ∧ state(s)

{right(X,Y), sym(X, b), sym(Y, SY),
head(Y), state(p)},

and one when it does:

eexts,a,p,b,→ : right(X,Y) ∧ sym(X, a) ∧ sym(Y, ω)∧
head(X) ∧ state(s)

{right(X,Y), right(Y,newCell(Y)),
sym(X, b), sym(Y,⊥), sym(newCell(Y), ω),
head(Y), state(p)}.

To distinguish among constants and variables in the above effect
specifications, we use capital letters for the latter and lower-case
letters for the former. Notice that the extension is performed by
calling servicenewCell , which is meant to return a fresh cell id
(we show below how to ensure this). Also notice the use of special
symbolω, which is reserved for labeling the end of the tape seg-
ment. Finally, special symbol⊥ is by convention used to initialize
the tape prior to starting the run.

We are not quite done, as we still need to ensure thatright in-
duces a linear order on the collection of cell identifiers generated
during the run. Notice that this cannot be achieved exclusively
by declaring FO constraints inright , as linear orders are not FO-
axiomatizable. The solution must exploit the interplay between
constraints onright and the wayΥS transitions.

Observe that, by definition of the effects that extendright (e.g.
eexts,a,p,b,→ above), at each step the current right end of the tape seg-
ment obtains at most one new successor. However, if the call of
servicenewCell returns a cell id that already appears in the tape
segment, then there can be some cell with several predecessors ac-
cording toright . We rule out this case by declaring the second
component ofright to be a key. It follows thatright must be ei-
ther (i) a linear path (possibly starting from a source node that has a
self-loop), or (ii) it must contain a simple cycle involvingmore than
one cell id. The simple cycle is created at the step whennewCell

returns the id of the leftmost cell.
We wish to force case (i). To rule out case (ii), we proceed as

follows: we initialize right to contain a source node0 that can
never be a cell id because it cannot be returned bynewCell without
violating the key constraint onright . To this end, we initializeI0

to

• rightI0 = {(0, 0), (0, 1), (1, 2)},
• symI0 = {(1, $), (2, ω)},
• headI0 = {2},
• stateI0 = {s0},
• haltedI0 = {},

wheres0 is the initial state ofTM.
Notice that, if we disregard cell0, I0 contains the representation

of an empty tape (symbol$ labels the left end, symbolω the right
end). Also notice thatrightI0 has type (i). An easy induction
shows that every run prefix must also construct aright relation of
type (i), since any attempt to extendright with an edge back to one
of its existing nodes violates the key constraint.

Because symbol$ denotes the left end of the tape, it also follows
easily from the behavior ofTM that during the run, the head will
never reach the special cell0, sohead can only take values from
the suffix ofright starting at cell1, which is a true linear path.

Now assume without loss of generality that theTM is normal-
ized to enter a particular sink stateh when it halts. We add effect

eh, which detects the halting state and sets the boolean predicate
halted .

Observe that for the cases when the head stays in place or moves
left, no tape extension is required, so each such entry in thetransi-
tion relation corresponds to a single effect.

The property. We define the propositional safety propertyΦ as

Φ : G¬halted .

It is easy to see that the runs ofΥS correspond ono-to-one to the
runs ofTM. SinceΦ is a linear-time property, this run correspon-
dence suffices to guarantee thatΥS |= Φ if and only if TM does
not halt.

PROOF OFTHEOREM4.2. The proof is directly obtained from
Theorem 4.4, noticing that model checking of propositional
µ-calculus formulae over finite transition systems is decidable
[22].

Proof of Theorem 4.3. In view of proving this result, we first
introduce a key lemma. We say that a transition system isadom-
inflationary if the active domain of every state is included in its
successor’s active domain. We say that a DCDSS is adom-
inflationary if ΥS is adom-inflationary. We can show that, for
adom-inflationary transition systems, persistence-preserving bisim-
ilarity coincides with history-preserving bisimilarity.

LEMMA B.1. Consider two adom-inflationary DCDSs with
non-deterministic services,S1,S2. ThenΥS1

∼ ΥS2
if and only if

ΥS1
≈ ΥS2

.

PROOF OFLEMMA B.1. A comparison the two notions of
bisimilarity reveals that the difference is in the local condition, as
follows.

Notice first that what both bisimilarity notions have in common
is that they mention bisimilar statess1 ands2 and witness isomor-
phismh, and their successorss1 =⇒ s′1, s1 =⇒ s′2 such thats′1
ands′2 are bisimilar as witnessed by isomorphismh′. The key dif-
ference lies in howh′ andh are related. In the history-preserving
flavor,h′ must extendh, while in the persistence-preserving flavor
h′ must only extendh |ADOM(s1)∩ADOM(s′

1
).

Clearly, history-preserving bisimilarity implies persistence-
preserving bisimilarity. However, notice that if the transition
systems are adom-inflationary, then the converse also holds.
Indeed, assumes1 ∼h s2. By definition, h′ extends
h |ADOM(s1)∩ADOM(s′

1
). But because of adom-inflation,ADOM(s1) ⊆

ADOM(s′1) and henceADOM(s1)∩ADOM(s′1) = ADOM(s1), yield-
ing h |ADOM(s1)∩ADOM(s′

1
)= h. Hence,h′ extendsh, which is the

condition for history-preserving bisimilarity.

PROOF OFTHEOREM4.3. We prove the result by exploiting
the reduction postulated by Theorem 6.1.

Starting from run-bounded DCDSD with deterministic ser-
vices, the reduction gives us state-bounded DCDSN with non-
deterministic services. Moreover, the two transition systems have
the same domains, and the projection ofΥN on the schema ofD
coincides withΥD (Theorem 6.1(ii)). In more detail, denoting the
schema ofD with RD and the schema ofN with RN , there is a
bijection β between the states ofΥD and the states ofΥN , such
thats = β(s) |RD

. Clearly, this implies thatΥD andΥN satisfy
the sameµL formulae.

However, a weaker statement suffices for our purpose. By def-
inition of history-preserving bisimilarity, Theorem 6.1(ii) implies
that

(1) ΥD ≈ ΥN .

We recall that on the way to proving Theorem 5.3, it is shown in
Theorem 5.4 that sinceN is state-bounded, we can construct using
algorithm RCYCL a finite-state abstract transition systemF such
thatΥN ∼ ΥF (F is an eventually recycling pruning ofΥN).

An inspection of the reduction in Theorem 6.1 reveals thatΥN
is adom-inflationary. But sinceΥN ∼ ΥF , it follows that ΥF
is adom-inflationary as well (by the local condition of persistence-
preserving bisimilarity). Thus Lemma B.1 applies, yielding

(2) ΥN ≈ ΥF .

By (1) and (2), and by transitivity of≈, we obtain thatΥD ≈
ΥF .

PROOF OFTHEOREM 4.4. Theorem 4.3 implies that, given a
DCDS S , there exists a finite-state transition systemΘS =
〈U,R,Σa, s

a
0 , dba,=⇒a〉 that is history preserving bisimilar to

the concrete transition systemΥS = 〈U,R,Σ, s0, db,=⇒〉. Thus,
it is possible to useΘS in place ofΥS for verification. In partic-
ular, given aµLA propertyΦ, the verification problem is reduced
to ΘS |= Φ. Let ADOM(ΘS) =

⋃
si∈Σ ADOM(db(si)). If ΘS is

finite-state, then there exists a boundb such that|ADOM(ΘS)| < b.
Consequently, it is possible to transformΦ into an equivalentfinite
propositionalµ-calculus formulaPROP(Φ) as follows:

PROP(Q) = Q

PROP(¬Ψ) = ¬PROP(Ψ)

PROP(Ψ1 ∧Ψ2) = PROP(Ψ1) ∧ PROP(Ψ2)

PROP(〈−〉Ψ) = 〈−〉PROP(Ψ)

PROP(Z) = Z

PROP(µZ.Ψ) = µZ.PROP(Ψ)

PROP(∃x.LIVE(x) ∧Ψ(x)) =
∨

ti∈ADOM(S)

LIVE(ti) ∧ PROP(Ψ(ti))

Clearly,ΘS |= Φ if and only ifΘS |= PROP(Φ). The proof is then
obtained by observing that verification ofµ-calculus formulae over
finite transition systems is decidable [22].

PROOF OFTHEOREM 4.5. The Theorem is proved by exhibit-
ing, for everyn, a µL property that requires the existence of at
leastn objects in the transition system.

Let S = 〈D,P〉 be a DCDS with data layerD = 〈C,R, ∅, I0〉
and process layerP = 〈F ,A, ̺〉, whereF = {f/1}, R =
{R/1, Q/1}, I0 = {R(a)}, ̺ = {R(x) 7→ α(x)} andA =
{α(p)}, whereα(p) : {true {Q(f(p))}}. The concrete transi-
tion systemΥS has the following shape:

• The initial state iss0 = 〈{R(a)}, ∅〉;
• s0 is connected to infinitely many successor states, each

one storing intoQ a distinct valued resulting from the ser-
vice call f(a); each such state has then the formsd =
〈{Q(d)}, {f(a) 7→ d}〉;

• eachsd has no outgoing edge, because there is no applicable
action insd.

S is clearly run-bounded, in particular by a boundb = 3.
Let us now consider the followingµL property without fixpoints:

Φn = ∃x1, . . . , xn.
∧

i6=j

xi 6= xj ∧
∧

i∈{1,...,n}

〈−〉Q(xi)

The property states that there aren distinct values, each of which
is stored into relationQ in one of the successors of the initial state.
It is easy to see thatΥS |= Φn for everyn. On the other hand,
for every finite state abstractionΘS with k successors of the initial
state, we have thatΘS 6|= Φk+1.

B.3 Weakly Acyclic DCDSs

PROOF OFTHEOREM4.6. The proof is by reduction from the
halting problem. We reuse without change the reduction in the
proof of Theorem 4.1. This reduction yields for any Turing Ma-
chineTM a DCDS with deterministic servicesS , such thatS simu-
latesTM’s computation. That is, the runs ofTM correspond one-to-
one to the runs ofΥS . It follows immediately thatTM halts if and
only if S is run-bounded.

PROOF OFLEMMA 4.1. Let S = 〈D,P〉 be a DCDS with
data layerD = 〈C,R, E ,I0〉 and process layerP = 〈F ,A, ̺〉.
Consider nowΥS = 〈C,R,Σ, s0, db,=⇒〉 and ΥS+ =
〈C,R,Σ+, s0, db,=⇒

+〉. SinceS+ is weakly acyclic by hypothe-
sis, to prove that run boundedness ofΥS+ implies run boundedness
of ΥS , we show the following stronger result: for every runτ in
ΥS , there exists a runτ+ in ΥS

+ such that, for all pairs of states
τ (i) = 〈Ii,Mi〉 andτ+(i) = 〈I+

i ,M
+
i 〉, we have

1. M+
i extendsMi;

2. Ii ⊆ I+
i ;

3. for the mappings mentioned inM+
i but not inMi, M+

i

“agrees” with the maps contained in the suffix ofτ [i], i.e.,

M+
i |Ci

= (
⋃

j>i

Mj)|Ci

whereCi = DOM(M+
i) ∩

⋃
j>i DOM(Mj).

We prove this by induction on the length ofτ :

(base case)The initial state of both runs isτ (0) = τ+(0) =
〈I0, ∅〉, and therefore all the three conditions are trivially sat-
isfied.

(inductive step) Consider a pair of corresponding statesτ (i) and
τ+(i), with i > 0. By definition,τ (i) =⇒ τ (i + 1) means
that there exists an actionα ∈ A and a substitutionσ for
the parameters ofα such that〈τ (i), ασ, τ (i+ 1)〉 ∈ EXECS .
We first observe thatα+ can be executed inτ+(i), sinceP+

does not impose any restriction on the executability of actions.
Let Next+ = {s+ ∈ Σ+ | 〈τ+(i), α, s+〉 ∈ EXECS+} be
the set of successor states ofτ+(i) that are obtained from the
application ofα+.

We now show that there existss ∈ Next+ that satisfies the
three claims above. The proof is then obtained by simply im-
posingτ+(i+ 1) = s.

1. By definition, DOM(Mi+1) = DOM(Mi) ∪
CALLS(DO(Ii, ασ)), and, for every sk =
〈M+

k , I
+
k 〉 ∈ Next+, we have DOM(M+

k) =
DOM(M+

i) ∪ CALLS(DO(I+
i , α

+σ)). Consider each
effect specificationq+j ∧ Qj Ej ∈ EFFECT(α). By
definition of q+j andQ−

j , θ ∈ ans ((q+j ∧ Q+
j)σ, Ii)

implies θ ∈ ans (q+j σ, Ii), which in turn im-
plies θ ∈ ans (q+j σ, I

+
i), becauseIi ⊆ I+

i

by induction hypothesis. Consequently, we
have DO(Ii, ασ) ⊆ DO(I+

i , α
+σ), and hence

CALLS(DO(Ii, ασ)) ⊆ CALLS(DO(I+
i , α

+σ)). Since
DOM(Mi) ⊆ DOM(M+

i) by induction hypothesis, then
we obtainDOM(Mi+1) ⊆ DOM(M+

k). SinceS+ has
no equality constraint, the states inNext+ cover every
possible result obtained by calling the service call in
M+

k \ M+
i , including those states for whichM+

k is
an extension ofMi+1. We useNext+ to denote such
states.

2. By definition, for each statesk = 〈M+
k , I

+
k 〉 ∈

Next+, we have thatM+
k extendsMi+1. Therefore,

since DO(Ii, ασ) ⊆ DO(I+
i , α

+σ), we haveIi+1 =
Mi+1(DO(Ii, ασ)) ⊆ I+

k = M+
k (DO(I+

i , α
+σ)).

3. SinceS+ has no equality constraints, we observe that the
states inNext+ cover all possible values for the service
calls that are not mentioned inMi+1. Therefore, there
must exist at least one states ∈ Next+ that satisfies the
third claim. In other words, by imposingτ+(i+ 1) = s,
we have

M+
i+1|Ci+1

= (
⋃

j>i+1

Mj)|Ci+1

PROOF OFTHEOREM 4.7. LetS = 〈D,P〉 be a DCDS with
data layerD = 〈C,R, E ,I0〉 and process layerP = 〈F ,A, ̺〉.
We consider the positive approximateS+, showing that if the the
dependency graphG = 〈N,E〉 of S (which corresponds by defini-
tion to the one ofS+) is weakly acyclic, thenS+ is run-bounded.
The complete proof is then directly obtain by appealing to Lemma
4.1, which states that ifS+ is run-bounded, thenS+ is run-bounded
as well.

To prove that weak acyclicity ofS implies thatS+ is run-
bounded, we exploit the connection with the chase of a set of tuple
generating dependencies (TGDs) in data exchange. In particular,
we resort to the proof given in [23], Theorem 3.9. For every node
p ∈ N , we consider an incoming path to be any (finite or infinite)
path ending inp. For simplicity, we say that a value appears in po-
sition p = 〈Rk, j〉 ∈ N if it appears in thej-th component of an
Rk tuple. We define the rank ofp, denoted rank(p), as the maxi-
mum number of special edges on any such incoming path. Since
S+ is weakly acyclic by hypothesis,G does not contain cycles go-
ing through special edges, and therefore rank(p) is finite. Let r
be the maximum among rank(pi) over all nodes. We observe that
r ≤ |N |; indeed no path can lead to the same node twice using
special edges, otherwiseG would contain a cycle going through
special edges, thus breaking the weak acyclicity hypothesis. No-
tice also that|N | is a constant value, because it is obtained fromR,
which is fixed. We now partition the nodes inN according to their
rank, obtaining a set of sets{N0, N1, . . . , Nr}, whereNi is the set
of all nodes with ranki. The proof is then a natural consequence of
the following claim:

Claim. Consider a traceτ in ΥS+ . For everyi ∈
{1, . . . , r}, the total number of distinct values occurring
in the databases ofτ inside positionp ∈ Ni is bounded
by a polynomialPi(|ADOM(I0)|).

We prove the claim by induction oni:

(Base case)Considerp ∈ N0. By definition,p has no incoming
path containing special edges. Therefore, no new values are
stored inp along the run:p can just store values that are part
of the initial databaseI0. This holds for all nodes inN0, and
hence we can fixP0(|ADOM(I0)|) = |ADOM(I0)|.

(Inductive step) Considerp ∈ Ni, with i ∈ {1, . . . , r}. The first
kind of values that may be stored insidep are those values that
were stored inside the component itself inI0. The number of
such values is at most|ADOM(I0)|. In addition, a value may
be stored inp for two reasons: either it is copied from some
other positionp′ ∈ Nj with i 6= j, or it is generated by means
of a service call.
We first determine how many fresh values can be generated
by service calls. The possibility of generating and storing
a new value inp as a result of an action is reflected by

the presence of special edges. By definition, any special
edge enteringp must start from a nodep′ ∈ N0 ∪ . . . ∪
Ni−1. By induction hypothesis, the number of distinct val-
ues that can exist inp′ is bounded byH(|ADOM(I0)|) =∑
j∈{0,...,i−1} Pj(|ADOM(I0)|). Let ba be the maximum

number of special edges that enter a position, over all posi-
tions in the schema;ba bounds the arity taken by service calls
in F . Then for every choice ofba values inN0 ∪ . . . ∪Ni−1

(one for each special edge that can enter a position) and for
every action inA+, the number of new values generated at
position p is bounded bytf · H(n)ba , wheretf is the to-
tal number of facts mentioned in the effects of actions that
belong toA+. Notice that this number does not depend on
the data inI0. By considering all positions inNi, the total
number of values that can be generated is then bounded by
G(|ADOM(I0)|) = |Ni| · tf ·H(|ADOM(I0)|)

ba . Obviously,
G(·) is a polynomial, becausetf andba are values extracted
from the schemaR of the DCDS, which is fixed.

We count next the number of distinct values that can be copied
to positions ofNi from positions ofNj , with j 6= i. A copy is
represented in the graph as a normal edge going from a node
in Nj to a node inNi, with j 6= i. We observe first that
such normal edges can start only from nodes inN0 ∪ . . . ∪
Ni−1, that is, they cannot start from nodes inNj with j >
i. We prove this by contradiction. Assume that there exists
〈p′, p, false〉 ∈ E, such thatp ∈ Ni andp′ ∈ Nj with j > i.
In this case, the rank ofp would bej > i, which contradicts
the fact thatp ∈ Ni. As a consequence, the number of distinct
values that can be copied to positions inNi is bounded by the
total number of values inN0∪ . . .∪Ni−1, which corresponds
toH(|ADOM(I0)|) from our previous consideration. Putting
it all together, we definePi(|ADOM(I0)|) = |ADOM(I0)| +
G(|ADOM(I0)|) + H(|ADOM(I0)|). Pi(·) is a polynomial,
and therefore the claim is proven.

In the above claim,i is bounded by the maximum rankr, which is
a constant. Hence, there exists a fixed polynomialP (·) such that
the number of distinct values that can exist in the active domains
of the runτ is bounded byP (|ADOM(I0)|). Technically, given
ΥS+ = 〈C,R,Σ, s0, db,=⇒〉, we have:

|
⋃

s state ofτ

db(s)| < P (|ADOM(I0)|)

which attests thatτ is (data) bounded, and consequently thatS is
run-bounded.

C. NONDETERMINISTIC SERVICES

C.2 State-bounded Systems

PROOF OFTHEOREM5.1. We reuse the proof of Theorem 4.1.
Recall that the reduction in this proof constructs for everyTuring
MachineTM a DCDSwith deterministic servicesS that simluates
the computation ofTM. It also constructs a propositional safety
propertyΦ such thatΥS |= Φ if and only if TM halts.

What we need here is a reduction to a DCDS withnondetermin-
istic services. However, we recall from the proof of Theorem 4.1
that the only service in the process layer, servicenewCell , is guar-
anteed to be called only with distinct arguments across distinct tran-
sitions, and so its behavior is unaffected by the choice of determin-
istic versus nondeterministic semantics. Therefore, the reduction
applies unchanged to DCDS with nondeterministic services.

PROOF OFTHEOREM 5.2. We prove a stronger result, namely
for linear-timeµLA sentences. Such sentences can be written using
LTL syntax.

We reduce from the problem of satisfiability of LTL with freeze
quantifier over infinite data words, known to be highly undecidable
(Σ1

1-hard) [20].

Infinite data words [20]. Let Σ be a finite alphabet of labels and
D an infinite set of data values. An infinitedata wordw = {wi}
is an infinite sequence overΣ × D, i.e., eachwi is of the form
(ai, di) with ai ∈ Σ anddi ∈ D.

LTL with freeze quantifier (LTL ↓). This logic operates over
infinite data words, seen as runs. It extends propositional LTL with
a finite number ofregisters, which can record the data value at the
current step of the run (position in the data word), and recall it at
subsequent steps. The operation of recording the data valueat the
current position into registeri is denoted with↓i. ↑i denotes the
boolean comparison of the data value at the current positionwith
the value stored in registeri.

As an example, consider the LTL↓ sentence

ϕex =↓1 X(G(a =⇒ ¬ ↑1))

over alphabet{a, b}, which states that the data value assigned
to each labela at positions greater than one is different from
the data value at the first position of the data word. Notice
that the data value at the first position is recorded in register 1
by operation↓1, and it is compared to subsequent data values by↑1.

The DCDS construction. Given a finite alphabetΣ =
{σi}i∈{1,...,n}, we build a DCDSS = 〈DΣ,PΣ〉 with nondeter-
ministic services, such that each run ofΥS represents an infinite
data word overΣ. In particular, each state in the run holds the label
and data value for a single position in the data word. Moreover,
given an LTL↓ sentenceϕ overΣ, we construct aµLA formulaΦ,
suchΥS |= Φ if and only ifϕ is unsatisfiable.

The idea is to model the registers with existentially quantified
variables, whichµLA allows us to introduce at any given point in
the run and use subsequently, even if in between their binding does
not persist in the run.

More precisely, we define the data layerDΣ of S asDΣ =
〈C,R, ∅, I0〉, whereC = Σ ∪ {0}, R = {LABEL/1, DATUM/1},
and I0 = ∅. Intuitively, LABEL stores the label andDATUM

the data value. We then define the process layerPΣ of S as
PΣ = 〈F ,AΣ, ̺Σ〉, where:

• F = {f/0}.
• For each1 ∈ {1, . . . , n}, ̺Σ contains an actionαi with no

parameters and no guard (true 7→ αi).
• Eachαi ∈ AΣ contains a single effectei, which creates the

position of a data word corresponding to labelσi ∈ Σ:

ei : true LABEL(σi) ∧ DATUM(f())

The service callf() is used to get an arbitrary data value from the
domain during the action execution. It is nondeterministic, and will
therefore return possibly distinct values across the run.

Since actions are always executable, at each step of a run allof
them qualify, and one is nondeterministically chosen. In this way,
the collection of all runs corresponds to all possible infinite data
words. Observe thatS is state-bounded, as each state contains just
one label and one data value.

The property. We now define the property. For simplicity of
presentation, we show it using an LTL-based syntax (branching is
irrelevant here), though it is clearly expressible inµLA.

We obtainϕ′ fromϕ by:

1. replacing each freeze quantifier↓n with ∃xn.DATUM(xn),
and

2. replacing each occurrence of↑n with DATUM(xn), and

3. replacing each propositionσ ∈ Σ with LABEL(σ).

Now letΦ := ¬ϕ′.
We illustrate the rewrite on propertyϕex above, obtaining

ϕ′
ex := ∃x1DATUM(x1)∧XG(LABEL(a) =⇒ ¬DATUM(x1)).

It is easy to see thatϕ is unsatisfiable over infinite data words
using alphabetΣ if and only if ΥS |= Φ.

As a result,µLA verification by state-bounded DCDSs with non-
deterministic services is undecidable.

PROOF OFTHEOREM5.3. See Section C.3.

C.3 Abstract Transition System
We formalize the discussion from Section 5.3. Since DCDSs

with nondeterministic services are modeled by means of transition
systems whose states are constituted by database instances, with a
slight abuse of notation we will directly use the state to refer to its
database instance.

Equality commitments. Consider a setD comprised of constants
and of Skolem terms built by applying a Skolem function to
constant arguments. Anequality commitmentH onD is a partition
of D, i.e. a set of disjoint subsets ofD, calledcells, such that the
union of the cells inH isD. Moreover, each cell contains at most
one constant (but arbitrarily many Skolem terms). For anye ∈ D,
[e]H denotes the celle belongs to. The intention of the partition is
to model equality and non-equality commitments on the members
of D as follows: for everye1, e2 ∈ D, e1 = e2 if and only if
[e1]H = [e2]H.

Service call evaluations that respect equality commitments. It
is convenient to view the concrete transition systemΥS in the fol-
lowing equivalent formulation, which emphasizes equalitycommit-
ments on the service calls: successor states are built by picking an
equality commitmentH, and then picking a service call evaluation
that respectsH. More specifically,

• for each stateI,

• for each actionα,

• for each parameter choiceσ, and

• for each equality commitmentH involving the service
calls in CALLS(DO(I, α, σ)) and the values inADOM(I) ∪
ADOM(I0),

ΥS contains possibly infinitely many successor statesInext, each
obtained fromDO(I, α, σ) by picking a service call evaluation that
respectsH. We say that evaluationθ respectsH if for every two
termst1, t2 ∈ CALLS(DO(I, α, σ))∪ ADOM(I)∪ ADOM(I0), we
have[t1]H = [t2]H if and only if t1θ = t2θ.

GivenI, α, σ andH, we denote the set of all legal evaluations
with

EVALSH(I, α, σ) := {θ | θ ∈ EVALSC(I, α, σ), θ respectsH,
DO(I, α, σ)θ |= E}.

Notice that we consider legal only those evaluations that respect
the equality commitmentH and that, conforming to the semantics
of the concrete transition system, generate successors which satisfy
the constraintsE . Finally, notice thatH determines an isomor-
phism type, as all successors ofI generated by the evaluations in
EVALSH(I, α, σ) are isomorphic to each other.

Prunings. We observe that for each stateI of the concrete transi-
tion systemΥS , the number of possible choices ofα, σ andH are
finite. The sole reason for infinite branching inΥS are the infinitely
many distinct evaluations that respectH, wheneverH states that at
least one service call result is distinct fromADOM(I)∪ADOM(I0):
in that case, the service call can be substituted with any value in
C \ (ADOM(I) ∪ ADOM(I0)).

In contrast, we obtain a finitely-branching transition system if
instead of keeping the successors generated byall evaluations in
EVALSH(I, α, σ,H), we keep the successors generated by afinite
subsetof these evaluations (ifEVALSH(I, α, σ) is non-empty, we
pick a non-empty subset, to ensure that ifH is represented among
the successors ofI in ΥS , it is also represented among the succes-
sors ofI in ΘS). We call any transition system obtained in this way
apruningof ΥS , and we denote withPRUNINGS(ΥS) the set of all
such prunings. By construction, every pruning ofΥS is finitely
branching.

Formally, letS be a DCDS andΥS its concrete transition system,
with statesΣC and initial stateI0. A pruning ofΥS is the restric-
tion of ΥS to a subset of statesΣP ⊆ ΣC , whereΣP satisfies the
following properties:

(i) I0 ∈ ΣP , and

(ii) for each I ∈ ΣC and each equality commitmentH, if H
is represented by some successor ofI in ΥS , it is also rep-
resented by a successor ofI in ΘS . We say thatH is rep-
resentedby successorI′ of I if there existα, σ and θ ∈
EVALSH(I, α, σ) such that〈I, ασθ, I′〉 ∈ N-EXECS .

(iii) for eachI ∈ ΣC , the number of successors ofI that are also
in ΣP is finite.

Clearly, a concrete transition systemΥS admits (potentially
infinitely) many prunings, but we show next that they all are
persistence-preserving bisimilar toΥS (and therefore to each other,
due to transitivity of the∼ relation):

LEMMA C.1. For every concrete transition systemΥS and
pruningΘS ∈ PRUNINGS(ΥS), we have thatΘS ∼ ΥS .

The result follows from the fact that state isomorphism implies
persistence-preserving bisimilarity. In the following, we denote
with s 7→hs

′ the fact thath is an isomorphism from states to s′.

LEMMA C.2. Consider a concrete transition systemΥS with
initial states0 and one of its pruningsΘS . LetsC be a state ofΥS

and sP a state ofΘS . If there exists functionh such thath fixes
ADOM(s0) andsP 7→hsC , thensP ∼h sC .

PROOF OFLEMMA C.2. LetΥS = 〈C,R,ΣC , s0, db,=⇒C〉
andΘS = 〈C,R,ΣP , s0, db,=⇒P 〉. The proof follows from the
following claim:

Claim 1. GivensC ∈ ΣC andsP ∈ ΣP , if sP 7→hsC
andh is the identity onADOM(I0), then for eachs′C
such thatsC =⇒C s

′
C there exists′P andh′ such that

(i) sP =⇒P s
′
P ;

(ii) h′ is an extension ofh |ADOM(sP)∩ADOM(s′
P
);

(iii) h′ is the identity onADOM(I0);

(iv) s′P 7→h′s
′
C .

Indeed, this claim allows us to exhibit the bisimilarity relation

R = {(x, i, y) | x ∈ ΣP , y ∈ ΣC , x 7→iy}.

R is a bisimilarity relation because it satisfies the forth condition
in the definition of persistence-preserving bisimilarity by Claim 1.
It trivially satisfies the back condition becauseP is constructed
by picking a subset of the states ofΥS . Since by construction
(sP , h, sC) ∈ R, we havesP ∼h sC .

To prove Claim 1, we observe that the successors′C of sC is gen-
erated by a particular choice of the actionα (with condition-action
rule Q 7→ α), the parameter instantiationσC (such thatsC |=
QσC), the equality commitmentHC on CALLS(DO(sC , α, σC))∪
ADOM(sC) ∪ ADOM(I0), and the service call evaluationθC ∈
EVALSHC (sC , α, σC): s′C = DO(sC , α, σC)θC . We show how
to constructσP , HP and θP ∈ EVALSHP (sP , α, σP) such that
sP |= QσP ands′P = DO(sP , α, σP)θP satisfies the claim.

We letσP = h−1(σC), observing that sinceQ is a first-order
query, it is preserved under isomorphism, sosC |= QσC implies
sP |= QσP . Thus,σP is a legal parameter instantiation.

To constructHP , θP , we first show that̄sC = DO(sC , α, σC)
ands̄P = DO(sP , α, σP) are isomorphic, as witnessed by the func-
tion h̄ : ADOM(s̄P) → ADOM(s̄C) defined as follows:

h̄ := {c 7→ h(c) | c ∈ ADOM(sP) ∪ ADOM(I0)}

∪ {f(mP , . . . ,mn) 7→ f(h(mP), . . . , h(mn)) |

f(mP , . . . ,mn) ∈ CALLS(s̄P)}.

From the definition of̄h and the fact that the service calls are gen-
erated by queries preserved under isomorphism, it follows immedi-
ately thats̄P 7→h̄s̄C . It is easy to see that̄h is also an isomorphism
betweenCALLS(DO(sC , α, σC)) ∪ ADOM(sC) ∪ ADOM(I0) and
CALLS(DO(sP , α, σP)) ∪ ADOM(sP) ∪ ADOM(I0), (i.e. h̄ pre-
serves the structure of Skolem terms), and therefore between the
sets of corresponding equality commitments.

We therefore pickHP = h̄−1(HC). By construction ofP , each
equality type is represented among a state’s successors inP , i.e.
there existsθP that respectsHP , and there existss′P ∈ ΣP , such
thats′P = s̄P θP .

The existence of legal choices forα, σP ,HP andθP proves item
(i) of Claim 1, namely thatsP =⇒P s

′
P .

To prove the remaining items, we exhibith′ defined as follows:

h′(t) := h̄(t̄)θC ,

for some choice of̄t such that̄tθP = t.
To see whyh′ is well-defined, observe that, by construction of

the successor states inΥS , for eacht ∈ ADOM(s′P) there must
exist t̄ ∈ ADOM(s̄P) such thatθP evaluates̄t to t (t̄θP = t). More-
over, observe that if there are distinctt̄, ū ∈ ADOM(s̄P) such that
t = t̄θP = ūθP , it does not matter which one we pick in the defi-
nition of h′, sinceh̄(t̄)θC = h̄(ū)θC . This is becauseθP respects
HP , and therefore[t̄]HP

= [ū]HP
. SinceHP 7→h̄HC , it follows

that [h̄(t̄)]HC
= [h̄(ū)]HC

, and sinceθC respectsHC , we have
that h̄(t̄)θC = h̄(ū)θC .

Items (ii), (iii) and (iv) of Claim 1 follow by similar reasoning
from the fact that service call evaluations respect the equality com-
mitments, which are isomorphic.

PROOF OFLEMMA C.1. This is a corollary of Lemma C.2.
Indeed, by definition,ΘS ∼ ΥS holds if and only if the initial

statesP0 of ΘS is bisimilar to the initial statesC0 of ΥS , i.e. there
exists isomorphismh such thatsP0 ∼h s

C
0 .

By definition, a concrete transition system shares the initial state
with all its prunings, sosP0 = sC0 . The identity mappingid

witnesses isomorphism:sP0 7→ids
C
0 . By Lemma C.2, we have

sp0 ∼id s
C
0 .

Eventually Recycling Prunings. While all prunings of a concrete
transition system are finitely-branching, they are not guaranteed to
be finite. The reason is that they don’t necessarily rule out infinitely
long simple runsτ , along which the service calls return in each state
I “fresh” values, i.e. values distinct from all values appearing in I
and its predecessors onτ . Towards addressing this problem, we fo-
cus on prunings in which the evaluations are not chosen arbitrarily.

Given a finite runτ ending in stateI of ΥS , an action
α, a parameter choiceσ and an equality commitmentH on
CALLS(DO(I, α, σ)), we say that evaluationθ ∈ EVALSH(I, α, σ)
recycles fromτ if each value in the range ofθ occurs inτ . We say
that pruningΘS is eventually recyclingif every (finite or infinite)
pathτ in ΘS contains only finitely many states generated by non-
recycling evaluations. Formally, ifτ = s0s1 · · · and the service
call evaluation used insi =⇒C si+1 is denoted asθi, then there
are only finitely many indexesj such thatθj does not recycle from
τ [j].

LEMMA C.3. LetΥS be a concrete transition system.

(i) All eventually recycling prunings ofΥS are finite.

(ii) If ΥS is state-bounded, then it has at least one eventually
recycling pruning.

PROOF OFLEMMA C.3. (i): All eventually recycling prunings
are finite.

LetΘS be an eventually recycling pruning of concrete transition
systemΥS . By virtue of being a pruning,ΘS is finitely branch-
ing. We show next that every simple path inΘS has finite length,
which together with finite branching implies finiteness by K¨onig’s
Lemma.

Towards a contradiction, assume that there exists infinite simple
run τ in ΘS . SinceΘS is eventually recycling, there is a finite
prefix of τ such that all values occurring inτ occur also in this
prefix. Therefore,τ contains only finitely many distinct values, and
hence only finitely many distinct states (databases of givenschema
over these values). Ifτ has infinite length, then a pigeonhole
argument contradicts the assumption thatτ is simple.

(ii): If ΥS is state-bounded, then it has an eventually recycling
pruning.

Let ΘS be a pruning obtained fromΥS by picking the finite
subset of evaluationsSE ⊆ EVALSH(s, α, σ) as follows: if there
is a runτ in ΘS from s0 to s such thatEVALSH(s, α, σ) includes
at least one evaluation that recycles fromτ , then SE contains
exclusively recycling evaluations (i.e. for each evaluation θ ∈ SE,
there is a runτ from s0 to s in ΘS such thatθ recycles fromτ).
Otherwise,SE is an arbitrary finite subset ofEVALSH(s, α, σ)).

We prove that pruningΘS is eventually recycling. By defini-
tion, if ΥS is state-bounded then|ADOM(s)| ≤ b for each state
s, whereb is the size bound on the state. Assume towards a con-
tradiction thatΘS contains a runτ = s0s1s2 · · · that includes
infinitely many states generated by evaluations that do not recycle
from τ . It follows that there must exist a finitek ≥ 0 such that
|
⋃k
i=0 ADOM(si)| > 3b and such thatADOM(sk+1) contains at

least one fresh value, i.e.ADOM(sk+1) −
⋃k
i=0 ADOM(si) 6= ∅.

Let θk+1 ∈ EVALSH(sk, α, σ) be the service call evaluation that
generatessk+1. Clearly θk+1 does not recycle fromτ , since it

contains at least one fresh value in its range. However observe
that, since thek-length prefix ofτ contains at least3b distinct
values, this prefix contains at leastb values that are distinct from
the values inADOM(I0)∪ ADOM(sk) (since by state-boundedness,
|ADOM(I0) ∪ ADOM(sk)| ≤ 2b). Call the set of these valuesV.

Also by state-boundedness,θk+1 introduces at mostb fresh val-
ues. Any one of the values inV can be used instead of the fresh
values introduced byθk+1, to obtain another evaluationθrk+1 that
respectsH. Henceθr witnesses an evaluation inEVALSH(sk, α, σ)
thatdoesrecycle fromτ . But this contradicts the definition ofΘS ,
which mandates thatθk+1 be dropped in favor ofθrk+1.

This result implies that ifΥS is state-bounded, then there exists
a finite-state abstract transition systemΘS that is persistence-
preserving bisimilar toΥS . Indeed, any eventually recycling
pruning ofΥS can play the role ofΘS (it is finite by Lemma C.3(i),
it is bisimilar toΥS by Lemma C.1, and one is guaranteed to exist
by Lemma C.3(ii)).

Construction of Eventually Recycling Pruning. The existence
result in Lemma C.3 is non-constructive and therefore does not
yet yield decidability of verification even if the concrete transition
systemΥS is state-bounded. We next present Algorithm RCYCL,
which is guaranteed to construct an eventually recycling pruning
when its input DCDS is state-bounded, but which may diverge
otherwise.

Algorithm RCYCL

Input: S = 〈D,P〉, a DCDS with data layerD = 〈C,R, E , I0〉
and process layerP = 〈F ,A, ̺〉.

Σ := {I0}, =⇒:= ∅, UsedValues := ADOM(I0), Visited := ∅
repeat

pick stateI ∈ Σ, actionα and legal parametersσ
such that(I, α, σ) /∈ Visited

RecyclableValues := UsedValues − (ADOM(I0) ∪ ADOM(I))
pick setV of n service call results such that:

|V| = n = |CALLS(DO(I, α, σ))| and
if |RecyclableValues | ≥ n

then V ⊆ RecyclableValues % recycled values
elseV ⊂ C − UsedValues % fresh values

F := ADOM(I0) ∪ ADOM(I) ∪ V
for each θ ∈ EVALSF (I, α, σ) such thatInext |= E

whereInext := DO(I, α, σ)θ do
Σ := Σ ∪ {Inext}

=⇒ := =⇒ ∪{(I, Inext)}
UsedValues := UsedValues ∪ ADOM(Inext)

Visited := Visited ∪ {(I, α σ)}
end

until Σ and=⇒ no longer change.
return 〈C,R,Σ, I0,=⇒〉

Observe that algorithm RCYCL performs several nondeterminis-
tic choices in each iteration. The particular choices (and their order)
do not matter, by Theorem 5.4.

PROOF OFTHEOREM5.4. (Sketch)
First, we show that algorithm RCYCL builds a pruning. Items (i)

and (iii) in the definition of pruning are trivially satisfiedin every
run of RCYCL. Item (ii) follows from the following claim:

Claim: for any choice of V such that |V| ≥
|CALLS(DO(I, α, σ))|, the set of equality commitments

represented by the successors ofI generated by the eval-
uations inEVALSF (I, α, σ) coincides with the set of
commitments represented by the successors ofI in ΥS .

Next, we show that ifS is state-bounded, every run of RCYCL

terminates. Indeed, state-boundedness guarantees that ineach iter-
ation, only at mostb service call values are needed, whereb is the
state size bound. But after running “sufficiently” long, RCYCL vari-
ableUsedValues accumulates at least3b distinct values. At each
subsequent step of the algorithm, there will therefore exist at least
b values distinct from the active domains ofI0 andI, so the pick
of V will always recycle values (observe that RCYCL only picks
evaluations from setΘS). UsedValues will no longer change, and
thereforeΣ and=⇒ must eventually saturate (a key reason for this
is the bookkeeping of variableVisited , which avoids repeating the
nondeterministic pick for any combination of state, actionand pa-
rameter instantiation(I, α, σ)).

Finally, since RCYCL terminates, then it outputs a finite-state
pruning, which is trivially eventually recycling.

Theorem 5.4 and Theorem 3.2 directly imply Theorem 5.3.

C.4 GR-Acyclic DCDSs

PROOF OFTHEOREM 5.5. For the proof, we reduce from the
undecidable problem of checking if the run of a deterministic Tur-
ing Machine is confined to a bounded-length segment of the tape
(we say that the TM is tape-bounded). This in turn is undecidable
by reduction from the halting problem: Given deterministicTM T,
build TM T’ such that T’ is tape-bounded if and only if T halts.
T’ simulates T but also records on the tape the historical configura-
tions of T. At each step, T’ checks if the most recent configuration
of T was seen in the history. If so, T’ stops simulating T and enters
a loop in which it keeps extending the right end of its tape. Itis
easy to see that T’ is tape-bounded if and only if T halts.

We reuse without change the reduction exhibited in the proofof
Theorem 4.1. Recall that the reduction constructs for everyTur-
ing MachineTM a DCDS with deterministic servicesS that sim-
luates the computation ofTM. We recall from the proof that the
only service in the process layer, servicenewCell , is guaranteed
to be called only with distinct arguments across distinct transitions,
and so its behavior is unaffected by the choice of deterministic ver-
sus nondeterministic semantics. We also note that the stateof the
DCDS has size linear in the length of the tape segment visitedby
TM, so tape-boundedness reduces to state-boundedness.

PROOF OFTHEOREM 5.6 (SKETCH). We prove the result by
counting the maximum number of different values in a state ofthe
transition system.

Since this task is undecidable (by Theorem 5.5), we necessarily
have to approximate this value. The approximation is performed by
analysing a different, much more abstract transition system we call
dataflowtransition system (to distinguish from the abstract system
that is bisimilar to the concrete system).

The dataflow system is a DCDS obtained as follows from the
dataflow graph andI0: For each node of the dataflow graph, there
is a unary relation in the dataflow system, and for each normal(spe-
cial) edge in the dataflow graph, there is a normal (special) tran-
sition in the dataflow system between the corresponding relations.
The schema of the dataflow system is a set of relation names with
arity one, in correspondence to the nodes of the dataflow graph. A
state of the dataflow system is an instantiation of its schemausing
values from the domainC.

For each termt appearing in a relation in the initial state of the
concrete system, there is a termt in the corresponding relation of

the initial state of the dataflow system. Being in one state ofthe
dataflow system, the next state is constructed as follows:

• for each normal transition from a relationA to a relationB,
for each termt in the relationA of the current state, there is a
termt in the relationB of the next state.

• for each special edge from a relationA to a relationB, for
each termt in the nodeA of the current state, there is a fresh
termt′ in nodeB of the next state.

It is easy to see the following claim:

Claim 1. For any runτ of lengthm ≥ 0 in the concrete
system, there is a runτd of lengthm in the dataflow
system, such that the size of the active domain of state
τ (i) is at most the size of the active domain of state
τd(i).

As a result, any state bound for the dataflow system also bounds the
state of the concrete system. We compute such a bound next.

Consider the dataflow graph ofA. GR-acyclicity forces cycles
with special edges to not be connected to any other cycles in the
dataflow graph. More specifically, each connected componentof
the dataflow graph must have one of the following types:

A: A simple cycleC (possibly with special edges), possibly con-
nected with several directed acyclic graphs (DAG)s, such that
the component contains no additional cycle beyondC.

B: Several cyclesC1, . . . , Cm containing only normal edges,
eachCi possibly connected to several DAGs, such that the
component contains no other cycle beyond theCi’s, and there
is no path with special edges connecting two cyclesCi, Cj .

C: A DAG, possibly containing normal and special edges.

Denote with

d: the longest path of the dataflow graph after deleting the cy-
cles,

b: the maximum number of special edges going out of a node of
the dataflow graph plus one, and

n: the number of nodes of the dataflow graph.

It is easy to see that in each transition of the dataflow system, for
each term in the current state, there can be at mostn · b distinct
terms in the next state.

First, consider the components of type A. Call the DAGsD con-
nected to the unique cycleC via edges fromD to C, input DAGs.
Call output DAGsthe DAGs connected via edges fromC toD. It
is easy to see that afterd transition steps, in any run of the dataflow
system there is no term in any relation of an input DAG (all have
been forgotten), and at most

m := |ADOM(I0)|+n·b·|ADOM(I0)|+· · ·+nd ·bd ·|ADOM(I0)|

distinct terms may co-exist within the relations of the cycle. More-
over, afterd steps, the total number of distinct terms in the cycle
will no longer increase in any run suffix starting from stepd + 1.
Consider now how them terms can be copied into the output DAGs.
It is again easy to see that there can be at mostnd · bd ·m distinct
terms in any relation of an outgoing DAG. As a result, in any step
at mostnd+1 · bd ·m distinct terms may co-exist within a type A
component.

Second, consider the components of type B. A similar argument
yields at mostnd+1 ·bd ·m different terms that may co-exist within
a type B component.

Third, it is easy to see that there can be at mostnd · bd ·
|ADOM(I0)| different terms within a type C component.

All in all, at most |ADOM(I0)| · n
2d+1 · b2d distinct terms may

co-exist in a state of the concrete transition system.

D. DISCUSSION

PROOF OF THEOREM6.1 (SKETCH). The technical problem
here is to force the results of nondeterministic service calls to con-
form to historic evaluations.

LetD be a deterministic DCDS. We rewriteD to obtain a new
DCDSN whose semantics under nondeterministic services coin-
cides with that ofD under deterministic services. For each term
f(a1, . . . , an) appearing in some effect ofD e := q+ ∧Q−

 E,
we rewriteD as follows. We extend the schema with a new
n + 1-ary relationRf . Intuitively, Rf (a1, . . . , an, r) states that
the call f(a1, . . . , an) evaluates tor. We extend the effect to
record this fact, replacinge with : e′ := q+ ∧ Q−

 E ∧
Rf (a1, . . . , an, f(a1, . . . , an)). To ensure thatRf records all past
calls off , we add to each action an effect that simply copiesRf .
We also add the functional dependencya1, . . . , an → r on Rf .
Notice that any attempt to record a service call with a resultdis-
tinct from a past invocation violates the functional dependency and
the transition does not occur. It is easy to see that, if we project the
states ofΥN on the schema ofD, we obtainΥD.

PROOF OFTHEOREM 6.2 (SKETCH). The challenge here lies
in forcing a deterministic servicefd to return possibly distinct re-
sults for same-argument calls of the nondeterministic service fn it
corresponds to.

The trick is to callfd with one additional argument, which plays
the role of a timestamp, where each state in the run has its own
unique timestamp. This way same-argument calls offn at distinct
steps in the run correspond to distinct-argument calls offd, which
therefore simulates the desired nondeterministic behavior.

An additional trick is used to get the run to generate a sequence
of unique values to act as timestamps. We use a deterministicser-
vicenew (x) to generate a new timestamp, we record the successor
relation over timestamps in binary relationsucc, and the most re-
cent timestamp in unary relationnow . We add to each action

• the effect

now(x) now(new (x)) ∧ succ(x,new(x))

which extends the successor relation by one timestamp and
sets the new timestamp as most recent; and

• the effect

succ(x, y) succ(x, y)

which accumulates the historicalsuccentries.

We are not quite done, as we still need to ensure thatsuccinduces
a linear order on the collection of timestamps generated during
the run. For this purpose we employ the same trick as the proof
of Theorem 4.1. We describe it below for the sake of proof self-
containment.

Observe that, by definition of the effect extendingsucc, at each
step, the generated timestamp has at most one successor.

However, if the callnew(x) returns a previously seen timestamp,
then there can be some timestamp with several predecessors in succ.
We rule out this case by declaring the second component ofsucc
to be a key. It follows thatsuccmust be either (i) a linear path
over timestamps (possibly starting from a source node that has a
self-loop), or (ii) must contain a simple cycle involving more than
one timestamp. The simple cycle is created whennewreturns the
minimal element of thesuccrelation.

We wish to force case (i). To rule out case (ii), we proceed as fol-
lows: we initializesuccto contain a source node0 that can never
be a timestamp because it cannot be returned bynewwithout vio-
lating the key constraint onsucc. To this end, we initializesuccin

I0 to succI0 = {(0, 0), (0, 1)} andnowI0 = {1}. Notice that
succI0 has type (i). An easy induction shows that every run prefix
must also construct asuccrelation of type (i), since any attempt to
extendsuccwith an edge back to one of its existing nodes violates
the key constraint. It also follows easily that during the run, now
takes values from the linear path starting at1, and never includes
0.

E. EXAMPLE DCDS:
TRAVEL REIMBURSEMENT SYSTEM

We model the process of reimbursing travel expenses in a univer-
sity, and the corresponding audit system, in two different subsys-
tems. In particular, the first subsystem, called therequest system
manges the submission of reimbursement requests by an employee,
and preliminary inspection and approval of the request by anem-
ployee in the accounting department (we shall call her themonitor).
A log of accepted requests will be submitted to the second subsys-
tem, theaudit system, in which requests can be accumulated, and
they can be checked for accuracy by calling external web services
(for instance to obtain the exchange rate from foreign currency to
USD on a past date, or to check that the employee actually was on
the declared flight).

Request system.To keep the example simple we model a travel
reimbursement request as being associated to the name of there-
quester, and infor- mation related to the corresponding flight and
hotel costs. After a request is submitted, a monitor will check the
request and will decide to accept or reject the request. If a request is
rejected, the employee needs to modify the information regarding
hotel and flight, while employee name will not be changed while
updating. After the update by the employee, the monitor willagain
check the request, and the reject-check loop continues until the
monitor accepts the request. After a request is accepted a log of
the request will be sent to the audit system, and the request system
will be ready to process the next travel request.

We model the request system by a DCDSSR = 〈D,P〉, in
which D = 〈C,R, E , I0〉 such thatC is a countably infinite set
of constants, I0 = {Status(‘readyForRequest’), true}, andR is a
database schema as follows:

• Status = 〈status〉, a unary relation that keeps the state of the
request subsystem, and can take three different values:‘ready-
ForRequest’, ‘readyToVerify’, and‘readyToUpdate’,

• Travel = 〈eName〉, holding the name of the employee;

• Hotel = 〈hName, date, price, currency, priceInUSD〉, hold-
ing the hotel cost information of the employee’s travel, which
might have been paid in some other currency than USD,

• Flight = 〈date, fNum, price, currency, priceInUSD〉, hold-
ing the flight cost information.

The process layer is defined asP = 〈F ,A, ̺〉 whereF is a set
of the following nondeterministic service calls, each modeling an
input of an external value by the employee. Specifically,

• INENAME() : models the input of the employee name (filled
in by the employee),

• INHNAME() : hotel name,

• INHDATE() : arrival date,

• INHPRICE() : sum paid to the hotel (possibly in foreign cur-
rency),

• INHCURRENCY() : currency exchange rate at that date,

• INHPINUSD() : amount paid to the hotel in USD,

• INFDATE() : flight date,

• INFNUM() : flight number,

• INFPRICE() : ticket price, possibly in foreign currency,

• INFCURRENCY() : currency exchange rate at date of ticket
payment,

• INFPUSD() : ticket price in USD.

There is one additional service.

• MAKE DECISION() : a nondeterministic service modeling the
decision of the human monitor. It returns‘requestConfirmed’
if the request is accepted, and returns‘readyToUpdate’if the
request needs to be updated by the employee.

The setA of actions includes (among others):

InitiateRequest:

true Status(‘readyToVerify’)

true Travel(INENAME())

true Hotel(INHNAME(),
INHDATE(),
INHPRICE(),
INHCURRENCY(),
INHPINUSD())

true Flight(INFDATE(),
INFNUM(),
INFPRICE(),
INFCURRENCY(),
INFPUSD())

VerifyRequest:

true Status(MAKE DECISION())

Travel(n) Travel(n)

Hotel(x1, . . . , x5) Hotel(x1, . . . , x5)

Flight(x1, . . . , x5) Flight(x1, . . . , x5)

UpdateRequest:

true Status(‘readyToVerify’)

Travel(n) Travel(n)

true Hotel(INHNAME(),
INHDATE(),
INHPRICE(),
INHCURRENCY(),
INHPINUSD())

true Flight(INFDATE(),
INFNUM(),
INFPRICE(),
INFCURRENCY(),
INFPUSD())

AcceptRequest:

Status(‘requestConfirmed’) Status(‘readyForRequest’)

When a request is initiated (modeled by the action
InitiateRequest), (i) the system changes state “to waiting for
verification”, (ii) a travel event is generated and the employee fills
in his name, (iii) the employee fills in all hotel information, and
(iv) the employee fills in all flight information.

Action VerifyRequestmodels the preliminary check by the mon-
itor. Travel event, hotel and flight information are unchanged,

true HotelFlight

Travel Status

*
*
*
*

*

*
*
*
*

*

*
*

Figure 9: Dataflow graph for request system

but the system status is set by the non-deterministic service call
MAKE DECISION(), which models the monitor’s decision for cur-
rent active travel information.

If the monitor rejects, then she sets the next state to
‘readyToUpdate’, which will trigger the actionUpdateRequest,
which in turn collects once again the hotel and flight information
from the employee, and moves the status to‘readyToVerify’.

Finally, action AcceptRequestreturns the system in the state
‘readyForRequest’, in which it is ready to accept a new request.

Notice the use of the always true predicatetrue, with the evident
meaning. A convenient way to model its meaning in the DCDS
framework is to think of it as a nullary relation, initialized to con-
tain the empty tuple, which is copied in perpetuity by each action
(true never changes its interpretation). We omit the corresponding
copy effects, treating them as built-in.

Notice how the condition-action rules in the set̺ below guard
the actions by the current state of the system:

Status (‘readyForRequest’) 7→ InitiateRequest
Status (‘readyToVerify’) 7→ VerifyRequest

Status (‘readyToUpdate’) 7→ UpdateRequest
Status (‘requestConfirmed’) 7→ AcceptRequest

The dataflow graph corresponding to the request system is de-
picted in Figure 9, where special edges are starred. Notice that
there can be multiple special edges between the same two nodes
(these are distinguished by unique edge ids, which we omit inthe
figure to avoid clutter).

In particular, the group of special edges from thetrue node to the
Hotel node corresponds to the action of employee filling in the ho-
tel information, modeled by calls to such services asINHNAME().
Similarly for the special edges fromtrue to Flight.

The special edge betweentrue andTravel is due to the employee
filling in his name into the created travel request. The special edge
from true to Status reflects the monitor’s insertion of her deci-
sion (see the call toMAKE DECISION() in the first effect of action
VerifyRequestin Example E), while the normal edge corresponds to
change of the status without calling a service (this happensin other
actions). The self-loops onFlight, Hotel, andTravel are due to the
remaining (copy) effects ofVerifyRequest. The self-loop on node
true is due to the modeling of this value by a singleton nullary rela-
tion containing the empty tuple, which keeps being copied ineach
action.

An inspection of this dataflow graph reveals that the requestsys-
tem is not GR-acyclic, since it contains several instances of two
simple cycles connected by a path that includes a special edge. For
instance, the pathπ comprised of the self-loops aroundtrue and
Travel, and the special edge beetween them. However, the request
system is GR+-acyclic. To illustrate this, notice that the pathπ is al-
lowed by GR+-acyclicity because the special edge leading into the
Travel loop is caused by actionInitiateRequest, while all the sub-
sequent edges inπ are caused by other actions (in this case there
is only one subsequent edge inπ, namely the self-loop onTravel,
caused by actionsVerifyRequestandUpdateRequest).

We illustrate someµLP properties pertaining to the proper oper-
ation of the request system:

A property of interest is that once initiated, a request willeven-
tually be decided by the monitor, and the decision can only be
‘readyToUpdate’or ‘requestConfirmed’(a liveness property). We
show the property in the easier-to-read CTL syntactic sugar:

AG(∀n Travel(n) →

A(Travel(n)U(Status(‘readyToUpdate’) ∨
Status(‘requestConfirmed’))

The until operatorU (for this example, it is the strong flavor, in
whichψUφ means thatφ is guaranteed to eventually hold, and un-
til it doesψ must hold in every step). We note that for a property to
belong toµLP , it must require the bindings of quantified variables
to be continuously live between the step when the quantification
was evaluated and the step when the variable is used. This canbe
done by usingLIVE or by using any relation, in our exampleTravel.
TheµLP version of the property is given below:

νX.(∀n.Travel(n) →
µY.(Status(‘readyToUpdate’) ∨ Status(‘requestConfirmed’)

∨ [−](Travel(n) ∧ Y))) ∧ [−]X

Another property of interest is that if the flight cost is not speci-
fied, then the request is not accepted (a safety property). Weuse the
special constant⊥ to denote a null value (this need not be treated
specially in the semantics, any value of the domain can be reserved
for this purpose):

G¬(Status(‘requestConfirmed’)∧
∃x1, . . . , x4 Flight(x1, x2,⊥, x3, x4)).

TheµLP version is given below:

νX.{¬(Status(‘requestConfirmed’) ∧
∃x1, . . . , x4.Flight(x1, x2,⊥, x3, x4))} ∧ [−]X

Audit system. After a request is verified by the monitor in the re-
quest system, it will be migrated to the audit system. The migration
is performed by a logging subsystem which might perform such
operations as: we extend each travel event with a freshly generated
travel id, which guarantees uniqueness across the entire history of
requests. We store these tuples in a database. We can model this
migration using the DCDS formalism, but we omit the specification
and focus directly on the audit system.

More specifically, we model the audit system by a DCDSSA =
〈DA,PA〉, in whichDA = 〈C,R, E , I0〉. C is a countably infinite
set ofconstants. R is a database schema as follows:

• Status = 〈status〉 is a unary relation keeping the state of re-
quest subsystem, which can take two different values:‘check-
Price’, and ‘checkTravel’, whose role is to sequence the ac-
tions of the audit system appropriately.

• Travel = 〈id, eName, passed〉 extends the homonymous re-
lation of the request system with two fields:id (the travel
identifier), andpassed, which will be set by the audit system
to reflect whether both the hotel and the flight price checks
succeed.

• Hotel = 〈trId, hName, date, price, currency, priceInUSD,
passed〉, wheretrId is a foreign key to the travel id andpassed
is set by the audit system to reflect whether the claimed price
and the calculated price match.

• Flight = 〈trId, fNum, date, price, currency, priceInUSD,
passed〉, wheretrId andpassed are analogous to the ones in
theHotel relation.

Finally, I0 is the output of the logging subsystem to which we
add the factStatus(‘checkPrice’), to initialize the audit system sta-
tus.

The process layer is defined asP = 〈F ,A, ̺〉 in
which F contains a deterministic service, where the call
CONVERTANDCHECK(price, currency , date , priceInUSD) per-
foms the official exchange rate acquisition and computationde-
scribed above, returning true if and only if the claimed price and
the computed one match.

A = {CheckPrice,CheckTravel} includes the following actions.

CheckPrice:

true Status(‘checkTravel’)

Travel(i, n, v) Travel(i, n, v)

Hotel(x1, x2, date , price, currency , priceInUSD , x7)

Hotel(x1, x2, date , price, currency , priceInUSD ,

CONVERTANDCHECK(date , price, currency , priceInUSD))

Flight(x1, x2, date , price , currency , priceInUSD , x7)

Flight(x1, x2, date , price , currency , priceInUSD ,

CONVERTANDCHECK(date , price, currency , priceInUSD))

Notice that the first effect changes the audit system’s stateto enter
the stage in which the the two checks (for hotel and flight) are
combined. The second effect simply copies the request informa-
tion. The third and fourth each check the claimed price (for hotel,
respectively flight), performing the conversion describedabove.

The second action works on the result of the first (this is ensured
by the appropriate status changes).

CheckTravel:

true Status(‘checkPrice’)

Travel(x1, x2, x3) ∧

Hotel(x1, y1 . . . , y5, ph) ∧

Flight(x1, z1 . . . , z7, pf) ∧ ¬(ph ∧ pf) Travel(x1, x2, false)

Travel(x1, x2, x3) ∧

Hotel(x1, y1 . . . , y5, true) ∧

Flight(x1, z1 . . . , z7, true) Travel(x1, x2, true)

Hotel(x1, . . . , x7) Hotel(x1, . . . , x7)

Flight(x1, . . . , x7) Flight(x1, . . . , x7)

Notice that the second and third effects set thepassed field
for the request, computed as the conjunction of the corresponding
fields set by the price check on flight and hotel.

The process̺ is defined as follows:

Status(‘checkPrice’) 7→ CheckPrice
Status(‘checkTravel’) 7→ CheckTravel

The corresponding dependency graph is as shown in Figure 10.
In this picture nodes correspond to the positions of the schema. To

avoid clutter, we represent each relation by its first letter, and denote
the position number with a subscript. For instance,T1 stands for
the first (id) position of the relationTravel, andS stands for the
only position of the relationStatus. Moreover, the edges without
label represent regular edges in the dependency graph, while the
starred edges depict special edges. For instance, the edgeF5

∗
−→

F7 is introduced due to the fourth effect of actionCheckPrice. It is
starred because it reflects the service call ofCONVERTANDCHECK,
taking as argument the currency attribute ofFlight (at position5),
and storing its result in anFlight tuple at position7 (the passed

attribute).
An inspection of the dependency graph reveals that the auditsys-

tem is weakly acyclic, since there is no cycle including a special
edge.

H3

H4

H5
H6

H7

T3

F3

F4

F5

F6

F7

H1 T1 F1 F2 H2 T2 S

*

*
* *

*

*

*

* *

*

Figure 10: Weakly-acyclic dependency graph of the audit sys-
tem

We illustrate a desirable property of the audit system: it guar-
antees that the request cannot pass the audit if one of the flight or
hotel checks fail:

AG(∃i, n, v, x2, . . . , x6.Travel(i, n, v) ∧

(Hotel(i, x2, . . . , x6, false) ∨ Flight(i, x2, . . . , x6, false))

→ F Travel(i, n, false))

TheµLA version of the property is given below:

νX.(∃i, n, v, x2, . . . , x6.Travel(i, n, v) ∧

(Hotel(i, x2, . . . , x6, false) ∨ Flight(i, x2, . . . , x6, false))

→ µY.(Travel(i, n, false) ∨ 〈−〉Y)) ∧ [−]X

Notice that, since the audit system uses deterministic services,
if we wish to verify it in isolation from the other subsystems, we
can verify anµLA property, which is what the above is (we are not
enforcing the liveness of the variablesi, v, n between the step at
which the quantification was evaluated, and the eventual step when
thepassed attribute ofTravel is set tofalse).

Recall however from Section 6 that we can verify mixed seman-
tics DCDS by reduction to non-deterministic services. If wewished
to verify the above property over the collection of subsystems, we

would have to express it as anµLP property. This is easily done us-
ing an until operatorU (as illustrated above for the request system).
Moreover, it is actually compatible with our expectation about the
system’s operation: while a request is being audited, we expect it
to persist in the system.

	1 Introduction
	2 Data-Centric Dynamic Systems
	2.1 Data Layer
	2.2 Process Layer
	2.3 Semantics via Transition System

	3 Verification
	3.1 History Preserving Mu-Calculus
	3.2 Persistence Preserving Mu-Calculus

	4 Deterministic Services
	4.1 Semantics
	4.2 Run-Bounded Systems
	4.3 Weakly Acyclic DCDS s

	5 Nondeterministic Services
	5.1 Semantics
	5.2 State-Bounded Systems
	5.3 Abstract Transition System
	5.4 GR-Acyclic DCDS s

	6 Discussion
	7 Related Work
	8 Conclusions
	9 References
	A Verification
	A.1 History Preserving Mu-Calculus
	A.2 Persistence Preserving Mu-Calculus

	B Deterministic Services
	B.2 Run-Bounded Systems
	B.3 Weakly Acyclic DCDS s

	C Nondeterministic Services
	C.2 State-bounded Systems
	C.3 Abstract Transition System
	C.4 GR-Acyclic DCDS s

	D Discussion
	E Example DCDS: Travel Reimbursement System

