
State-Boundedness in Data-Aware Dynamic Systems

Babak Bagheri Hariri
Diego Calvanese Marco Montali

Free University of Bozen-Bolzano, Italy
lastname@inf.unibz.it

Alin Deutsch
University of California, San Diego

San Diego, CA USA
deutsch@cs.ucsd.edu

Abstract

Verification of dynamic systems that manipulate data, stored
in a database or ontology, has lately received increasing atten-
tion. A plethora of recent works has shown that verification
of systems working over unboundedly many data is decidable
even for very rich temporal properties, provided that the sys-
tem is state-bounded. This condition requires the existence of
an overall bound on the amount of data stored in each single
state along the system evolution. In general, checking state-
boundedness is undecidable. An open question is whether it is
possible to isolate significant classes of dynamic systems for
which state-boundedness is decidable. In this paper we provide
a strong negative answer, by resorting to a novel connection
with variants of Petri nets. In particular, we show undecidabil-
ity for systems whose data component contains unary relations
only, and whose action component queries and updates such
relations in a very limited way. To contrast this result, we
propose interesting relaxations of the sufficient conditions
proposed in the concrete setting of Data-Centric Dynamic
Systems, building on recent results on chase termination for
tuple-generating dependencies.

1 Introduction
The formalization and verification of dynamic systems that
manipulate data, stored in a database or ontology, has lately
received an increasing attention from both a foundational
and a practical point of view (Calvanese, De Giacomo, and
Montali 2013). In particular, business process management
has progressively shifted its focus from a purely control-flow
perspective that under-specifies (if not completely abstracts
away) the data component, to a data-aware perspective where
data have the same importance as system dynamics (Du-
mas 2011). This comprehensive view of dynamic systems
has given rise to a series of paradigms, such as data-centric
workflows (Vianu 2009) and business artifacts (Hull 2008),
where the static (i.e., data-related) and dynamic (i.e., process-
related) system aspects are jointly modelled and managed.

The verification of a data-aware dynamic system is noto-
riously challenging: as soon as it can incorporate (possibly
unbounded) data from the external environment, e.g., due to
interaction with external services or humans, the transition
system representing its execution becomes infinite-state, and

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

verification turns out to be undecidable even for propositional
reachability properties (Deutsch et al. 2009; Belardinelli,
Lomuscio, and Patrizi 2012; Bagheri Hariri et al. 2013b;
2013a). To mitigate this problem, an extensive amount of re-
search has been devoted to find suitable classes of data-aware
dynamic systems for which verification of first-order tem-
poral properties becomes decidable. In particular, a plethora
of recent works has shown that verification of data-aware
dynamic systems working over unboundedly many data is
decidable even for very rich temporal logics, provided that
the system is state-bounded. For example, Belardinelli, Lo-
muscio, and Patrizi (2012) show decidability of verification
of state-bounded (there called b-bounded) artifact centric
multiagent systems (ACMASs) for a first-order, epistemic
variant of CTL, with active domain quantification that ap-
plies across time points. Bagheri Hariri et al. (2013b) give a
key decidability result for the verification of state-bounded
Data-Centric Dynamic Systems (DCDSs) against a first-order
variant of the µ-calculus with a limited form of quantifica-
tion across time. Within the research line of reasoning about
actions, De Giacomo, Lesperance, and Patrizi (2012) show
that (state-)bounded Situation Calculus theories can be ver-
ified against a first-order variant of the µ-calculus, without
quantification across states. Notably, in all these cases state-
boundedness guarantees the existence of a faithful (sound
and complete) finite-state abstraction of the system, paving
the way for the application of standard model checking tools.

Intuitively, state boundedness requires the existence of
an overall bound on the amount of data stored in each sin-
gle state of the system (a database instance or an ABox)
along the system evolution. As shown by Bagheri Hariri et
al. (2013b), checking state-boundedness is in general un-
decidable. The proof is given for the specific framework
of DCDSs, but can be straightforwardly applied to other
similar frameworks, such as ACMASs. Due to undecidabil-
ity of state-boundedness, the existing works have either:
(i) assumed that the system is state-bounded (Belardinelli,
Lomuscio, and Patrizi 2012); (ii) explicitly enforced state-
boundedness by blocking those actions that would lead to ex-
ceed the bound (De Giacomo, Lesperance, and Patrizi 2012;
Solomakhin et al. 2013); (iii) studied sufficient conditions
that can be checked over the dynamic component of the sys-
tem (actions and/or processes) to test whether they guarantee
state-boundedness (Bagheri Hariri et al. 2013b).

458

Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning

An open question is whether it is possible to isolate signifi-
cant classes of dynamic systems for which state-boundedness
is decidable. In this paper we study this problem, devising
a novel connection between variants of Petri nets (Trans-
fer/Reset nets) (Dufourd, Finkel, and Schnoebelen 1998;
Dufourd, Jancar, and Schnoebelen 1999) and DCDSs, and
inter-reducing the problem of checking whether a DCDS is
state-bounded to the problem of checking whether a Trans-
fer/Reset/Petri net is bounded (i.e., ensures that the number
of tokens present in each place of the net never exceeds a
given bound). Observe that DCDSs are expressively equiv-
alent to business artifact formalisms for business process
specification deployed in industrial settings (Bagheri Hariri
et al. 2013b; Solomakhin et al. 2013). Thanks to the con-
nection between DCDSs and Petri nets, we provide a strong
negative answer to the aforementioned open question: we
show undecidability of DCDSs with unary relations, queried
in a very limited way (i.e., without using joins, and with a
very limited usage of inequalities). Furthermore, we show
that undecidability is mainly related to the possibility for re-
lations to lose their content during the application of a single
action, and that decidability is obtained if this is prevented
(though with an intractable complexity lower bound). Also
in this case, the provided results can be transferred to other
similar frameworks, such as ACMASs.

To contrast this negative result, we improve the suffi-
cient (syntactic) conditions proposed by Bagheri Hariri et
al. (2013b) to check whether a DCDS is state-bounded, by
defining a hierarchy of sufficient conditions that progressively
refine the analysis of how data are manipulated by the action
component of the DCDS. To do so, we take inspiration from
recent results on chase termination for tuple-generating de-
pendencies, and in particular from the safety (Meier, Schmidt,
and Lausen 2009) and stratified (Deutsch, Nash, and Remmel
2008) extensions of weak-acyclicity (Fagin et al. 2005).

It is interesting to observe that all our results can be
lifted from the pure relational setting we consider here,
to a knowledge-based setting as the one presented in
(Bagheri Hariri et al. 2013a). This can be immediately done
when the data component is a full-fledged ontology expressed
in a Description Logic that allows for rewriting queries posed
over the ontology as unions of conjunctive queries posed over
the data only (Calvanese et al. 2007).

2 Data-Centric Dynamic Systems
We recall the main aspects of Data-Centric Dynamic Sys-
tems (DCDSs). For a comprehensive treatment, the reader is
referred to (Bagheri Hariri et al. 2013b).

A DCDS S is a pair 〈D,P〉, where D is the data compo-
nent of S, and P is its process component. The data compo-
nent D is a tuple D = 〈C,R, E , I0〉, where: (i) C is a count-
ably infinite set of constants; (ii) R is a database schema,
i.e., a sets of relation schemas; (iii) E is a set of equality
constraints overR; (iv) I0 is the initial database instance of
S , i.e., a database instance conforming toR and E , and made
up of values in C. Given a relation R ∈ R and a database
instance I conforming toR, we denote with |R|I the number
of R-tuples contained in I .

The process layerP defines the progression mechanism for
the DCDS. It is constituted by a process, which queries the
current data maintained by D and determines which actions
are executable; actions, in turn, query and update D, possibly
introducing new values from the external environment, by
issuing service calls. Technically, P = 〈F , A, %〉, where
(i)F is a finite set of functions, each representing the interface
to a (nondeterministic) external service; (ii) A is a finite set
of actions, whose execution updates the data layer, and may
involve external service calls; (iii) % is a finite set of condition-
action rules that form the specification of the overall process,
which tells at any moment which actions can be executed.
By considering a finite set A of action names, an action
α ∈ A is an expressionα(p1, . . . , pn) : {e1, . . . , em}, where:
(i) α(p1, . . . , pn) is its signature, constituted by a name α ∈
A and a sequence p1, . . . , pn of parameters, to be substituted
with values when the action is invoked, and (ii) {e1, . . . , em},
also denoted as EFFECT(α), is a set of specifications of effects,
which are assumed to take place simultaneously. Each ei has
the form q+i ∧Q

−
i Ei, where:

• q+i ∧ Q
−
i is a query over R whose terms are variables,

action parameters, and constants from I0, where q+i is
a union of conjunctive queries, and Q−i is an arbitrary
FO formula whose free variables are among those of q+i .
Intuitively, q+i selects the tuples to instantiate the effect
with, and Q−i filters away some of them.
• Ei is the effect, i.e., a set of facts forR, which includes as

terms: terms in the active domain of I0, free variables of q+i
and Q−i (including action parameters), and Skolem terms
formed by applying a function f∈F to one of the previous
kinds of terms. Such Skolem terms involving functions
represent external (nondeterministic) service calls and are
interpreted as the returned value chosen by an external
user/environment when executing the action.

The process % is a finite set of condition-action rules, of the
form Q 7→ α, where α is an action in A and Q is a FO
query overR whose free variables are exactly the parameters
of α, and whose other terms can be quantified variables or
constants mentioned in I0.

Execution semantics. The execution semantics of a DCDS
S is a possibly infinite transition system ΥS whose states
are labeled by database instances. It represents all possible
computations that the process layer can do on the data layer.
Specifically, ΥS = 〈C,R,Σ, s0, db,⇒〉, where: (i) Σ is
a set of states; (ii) s0 ∈ Σ is the initial state; (iii) db is
a function that, given a state s ∈ Σ, returns the database
of s, which is made up of values in C and conforms to R;
(iv)⇒ ⊆ Σ×A×Σ is a transition relation over states, labeled
by action names.

Given a DCDS S = 〈D,P〉 with D = 〈C,R, E , I0〉 and
P = 〈F , A, %〉, the transition system ΥS is intuitively con-
structed as follows. Starting from I0, all condition-action
rules in % are evaluated, determining which actions are exe-
cutable, and with which ground parameter assignments. Non-
deterministically, one such action with parameter assignment
αρ is selected and executed over I0. To do so, every effect
of α (partially grounded with the parameter assignment ρ)

459

is evaluated, by calculating all the answers of its left-hand
side, and grounding the right-hand side accordingly. If the
right-hand side contains service calls, they are issued, re-
ceiving back for each of them a value nondeterministically
chosen from C. This value is then used to substitute the ser-
vice call with the actual result. The overall set of ground
facts obtained in this way finally constitutes the next database
instance. Notice that upon the execution of αρ, the content
of a relation is lost unless it is explicitly maintained through
dedicated effects of α. The transition system construction
then proceeds by constructing all possible successors, each
of which is obtained by selecting one of the executable ac-
tions with parameters, and one result for each of the involved
service calls. The construction then recursively proceeds over
this newly generated states. For a formal description of the
execution semantics, see (Bagheri Hariri et al. 2013b).

State-Boundedness. Let S = 〈D,P〉 be a DCDS with
D = 〈C,R, E , I0〉 and P = 〈F , A, %〉. We say that S is
state-bounded if every state of ΥS is labeled with a database
instance whose size does not exceed a pre-defined bound. We
say that S is structurally state-bounded if, for every database
instance I ′0 conforming to R and E , and made up of values
in C, 〈D′,P〉 is state-bounded, where D′ = 〈C,R, E , I ′0〉.

3 Relating DCDSs and Reset Transfer Nets
In this section we introduce variants of Petri nets and draw a
formal correspondence with some specific classes of DCDSs.
In Section 4 we leverage on this connection to provide key
results related to (structural) state-boundedness of DCDSs.
We assume the reader has knowledge of standard Petri nets.1

3.1 Reset Transfer Nets
Reset Transfer nets (RT nets) are a restricted form of Reset
Post G-nets, introduced for the first time in (Dufourd, Finkel,
and Schnoebelen 1998). Intuitively, a (standard) Petri net can
consume and produce a fixed amount of tokens when a tran-
sition fires, while all the remaining tokens are left untouched.
The “reset” dimension of RT nets extends this behavior by
allowing to instantaneously emptying the content of some
places when a transition fires. The “transfer” dimension of
RT nets supports instead the possibility of instantaneously
transferring the entire content of some place to another place
when a transition fires. These specific classes exactly corre-
spond to those defined in (Dufourd, Finkel, and Schnoebelen
1998). An RT net combines the capabilities of R and T nets.

A (marked) RT net is a tuple N = 〈P, T, F,m0〉, where:
• P is a set of places;
• T is a set of transitions (with P ∩ T = ∅);
• F : P × T ∪ T × P → P ∪ {0, 1} is a flow function

mapping each pair place/transition (called pre-arc) and
transition/place (called post-arc) to either a place name or
the integers 0 or 1,2, with the following constraints:
– for each place p ∈ P and transition t ∈ T , F (p, t) ∈
{0, 1, p};

1Here Petri net is used to identify a Place Transition (P/T) net.
2Admitting arbitrary integers does not increase the expressive

power of the model.

– for each transition t ∈ T and place p2 ∈ P , if
F (t, p2) = p, then the following two conditions hold:
(i) F (p, t) = p, (ii) for each place p3 ∈ P with p3 6= p2,
F (t, p3) 6= p.

• m0 is the initial marking, i.e., a multiset of places m0 ∈
B(P), with B(P) : P → N the set of multisets over the
set P of places.

Given a place p ∈ P and a transition t ∈ T , we say that p is
an input place for t if F (p, t) = 1, and that (p, t) is a reset
arc if F (p, t) = p. Symmetrically, given a place p2 ∈ P and
a transition t ∈ T , we say that p2 is an output place for t if
F (t, p2) = 1, and that (t, p2) is a copy arc if F (t, p2) = p
for some p ∈ P . In this latter case, the pre-arc (p, t) and the
post-arc (t, p2) form together a transfer arc3.

An RT net N = 〈P, T, F,m0〉 is a:
• Reset Petri net (R net) if for each t ∈ T and p ∈ P ,
F (t, p) ∈ {0, 1};

• Transfer Petri net (T net) if for each p ∈ P and t ∈ T
such that F (p, t) = p, there exists p2 ∈ P such that
F (t, p2) = p;
• Petr net if for each p ∈ P and t ∈ T , F (p, t) ∈ {0, 1} and
F (t, p) ∈ {0, 1}.

Execution Semantics. Given a marking m and a place p,
notation m(p) ∈ N represents the number of tokens as-
signed by m to p, i.e., the number of times p appears in
m. Instrumental to the definition of the net execution se-
mantics is the notion of “token transfer” induced by an arc
of the net for a given marking. This is formally captured
by the function TRANSF, defined as follows: given an RT
net N = 〈P, T, F,m0〉, for every marking m over P , place
p ∈ P , and transition t ∈ T , we have

TRANSFm(p, t) =

{
m(p) if F (p, t) = p

F (p, t) otherwise

TRANSFm(t, p) =

{
m(p′) if F (t, p) = p′

F (t, p) otherwise

Given a marking m and a transition t ∈ T , we say that
t is enabled (or fireable) in m, written m[t〉, if, for every
place p ∈ P , we have that m(p) ≥ TRANSFm(p, t). Given a
transition t and two markings m and m′, we say that t fires
in m producing m′, written m[t〉m′, if and only if: (i) t is
enabled in m, (ii) m′ is such that for every p ∈ P ,

m′(p) = m(p)− TRANSFm(p, t) + TRANSFm(t, p)

The execution semantics of an RT net N = 〈P, T, F,m0〉
is defined in terms of a transition system RG(N) =
〈M,m0,→〉 (called reachability graph), where M ⊆ B(P)
is a set of markings, and→⊆ M × T ×M is a transition
relation labeled with elements from T . Specifically, M and
→ are defined by mutual induction as the smallest sets satis-
fying the following properties: (i) m0 ∈M ; (ii) if m ∈M ,
then for every transition t ∈ T and marking m′ such that
m[t〉m′, we have m′ ∈ M and m t→ m′. An RT net N is
bounded if and only if each marking in RG(N) is bounded or,
equivalently, RG(N) contains a finite number of markings.

3Remember that, by definition, in this case we have F (p, t) = p.

460

An RT net N = 〈P, T, F,m0〉 is structurally bounded if its
boundedness does not depend on the initial marking, i.e., for
every m′0 ∈ B(P), 〈P, T, F,m′0〉 is bounded.

3.2 From RT Nets to DCDSs
We formally define a translation from RT Nets to DCDSs,
and then provide an informal account for it. Specifically, we
introduce a translation function N-TO-D that, given an RT
net N = 〈P, T, F,m0〉, produces a DCDS N-TO-D(N) =
〈DN ,PN 〉 whose execution semantics weakly reproduces
that of RG(N). The data layer is DN = 〈C,RN , ∅, IN0 〉,
where
• Pi/1 ∈ RN if and only if pi ∈ P ;
• IN0 is such that {Pi(d1), . . . , Pi(dk) | dj 6= dh for j, h ∈
{1, . . . , k} and j 6= h} ⊆ IN0 if and only if pk ∈ m0.

The process layer of N-TO-D(N) is PN = 〈FN , AN , %N 〉,
where every transition t ∈ T is translated into a condition-
action rule ξt ∈ %N and a dedicated action αt ∈ AN , which
respectively encode the enablement and firing semantics of t:

ξt =
∧

pini ∈{p|F (p,t)=1}

P ini (xi) 7→ αt(x1, . . . , x|{p|F (p,t)=1}|)

where αt(x1, . . . , xn) contains the following effects:
1. (Lossy maintenance of tokens in input places) For each
pini ∈ P such that F (pini , t) = 1:

P ini (y) ∧ y 6= xi P ini (fi(y)) ∈ EFFECT(αt) (1)

2. (Lossy maintenance of tokens in other places) For each
pl ∈ P such that F (pl, t) = 0:

Pl(y) Pl(hl(y)) ∈ EFFECT(αt) (2)

3. (Lossy token generation) For each poutj ∈ P such that
F (t, poutj) = 1:

true {P outj (gj())} ∈ EFFECT(αt) (3)

4. (Lossy token transfer) For each ptoutk ∈ P such that
F (t, poutk) = ptink :

P tink (y) {P toutk (hk(y))} ∈ EFFECT(αt) (4)

5. No other effect belongs to EFFECT(αt).
The intuition behind the translation is to mimic the fir-
ing of a transition by means of service calls. In the result-
ing DCDS, places become unary relations, and tokens be-
come distinct identifiers from C. The condition-action rule
ξt checks whether each input place for t has a non-empty
extension (i.e., contains at least one token) and, if so, non-
deterministically selects one token from each of such places.
Effects of type (1) and (2) maintain those tokens that are
not affected by the firing, i.e., tokens present in non-input
places, or tokens contained in input places but not selected
by ξt. The maintenance is “lossy” because there is no guar-
antee that the service calls fi will return different identifiers
when called with different values. This notion of lossiness
resembles that proposed by (Mayr 2003) for lossy counter
machines and lossy Petri nets. Effects of type (3) are used to
generate the tokens that t puts in its output places upon firing.

Such generation is also lossy, because there is no guarantee
that service calls gj will return fresh identifiers, distinct from
those already present in the output places. Effects of type (4)
lossily deal with the transfer arcs of t, producing one token
to be put in the transfer destination for each token present
in the transfer source. Note that those places connected to a
transition with a reset arc that does not form a transfer arc,
do not lead to any effect in the translation. This reflects the
“destructive” nature of DCDSs (data not explicitly copied are
lost during the application of an action).

The following theorem states that, despite lossiness, the
obtained DCDS preserves boundedness of the original net.
Theorem 1. For every RT net N , N is bounded if and only
if N-TO-D(N) is state-bounded.

This is proven in two steps. First we show that N-TO-D(N)
obeys to a sort of monotonicity. Given two database instances
I1 and I2 overR, we say that I1 is cardinality-contained in
I2, written I1� I2 if for every relation R ∈ R, |R|I1 ≤ |R|I2 .
Monotonicity is then defined as follows: for every two states
s1 and s2 in Σ such that db(s1)�db(s2), and for each state s′1
such that s1

αt=⇒ s′1, there exists s′2 such that s2
αt=⇒ s′2 and

db(s′1) � db(s′2). Monotonicity implies that, as long as state
boundedness is concerned, for every state s in ΥN-TO-D(N)

it is sufficient to consider only its “maximal successors”
MAX-SUCCαt

(s) = {s′ ∈ Σ | s αt=⇒ s′ and @s′′.s αt=⇒
s′′ and s′ � s′′}.

The second step consists in showing that the portion of
ΥN-TO-D(N) that just considers maximal successors faithfully
reproduces RG(N). To compare the states of ΥN-TO-D(N)

with those of RG(N), we define the following cardinality-
equivalence relation: given a marking m ∈ M and a state
s ∈ Σ, we say that m is cardinality-equivalent to s, written
m ≈ s, if, for each place pi ∈ P , m(p) = n if and only if
|Pi|db(s) = n. By definition, m0 ≈ s0. It can then be shown,
inductively, that, given m ∈M and s ∈ Σ such that m ≈ s,
for every transition t ∈ T (and corresponding αt ∈ AN):
• m[t〉 if and only if αt is executable in s;
• whenever m[t〉, given m′ ∈ M such that m t→ m′, we

have m′ ≈ s′ for every s′ ∈ MAX-SUCCs(αt).
This implies the result, since RG(N) has an unbounded run
if and only if ΥN-TO-D(N) has a state-unbounded run.

As a direct consequence, we obtain:
Corollary 2. For every RT net N , N is structurally bounded
if and only if N-TO-D(N) is structurally state-bounded.

3.3 Lossy Reset Transfer DCDSs
We now introduce a class of DCDSs that resembles those
obtained from RT nets through the application of the N-TO-D
translation function. For this reason, we call such a class
Lossy Reset Transfer (LRT) DCDSs.

An LRT DCDS is a DCDS S = 〈D,P〉, with D =
〈C,R, E , I0〉 and P = 〈F , A, %〉, that obeys to the follow-
ing requirements:
• R = {P1/1, . . . , P|R|/1} (only unary relations are used).
• E = ∅.
• For each action α(~x) ∈ A, % contains a single rule of the

form Q(~x) 7→ α(~x), where Q is a (non-self) cartesian

461

product of a set of unary relations:

Q(x1, . . . , xn) =
∧

i∈{1,...,n}, Pi 6=Pj for i6=j

Pi(xi)

The set of relations in Q is denoted by RELS(Q).
• Every action α(~x) ∈ A, with Q(~x) 7→ α(~x) ∈ %, has the

following shape:
1. for each Pi ∈ RELS(Q), α must contain a lossy

maintain-rest effect of the form

Pi(y) ∧ y 6= xi Pi(fi(y)) (5)

2. for each Pl ∈ R \ RELS(Q), α may contain a lossy
maintain effect of the form

Pl(y) Pl(hl(y)) (6)

3. for each Pj ∈ R \ RELS(Q), α may contain either a
lossy create effect of the form

true Pj(gj()) (7)

or a lossy copy effect of the form

P ′j(y) Pj(hj(y)) (8)

for some P ′j ∈ R \ (RELS(Q) ∪ Pj);
4. no other effect belongs to α.

An LRT DCDS S = 〈D,P〉 with D = 〈C,R, ∅, I0〉 and
P = 〈F , A, %〉 is:
• A Lossy Reset (LR) DCDS if no action α ∈ A contains

lossy-copy effects of the form (8); the “reset” nature comes
from the fact that those relations that are not mentioned in
the left-hand side of any effect in EFFECT(α) loose their
current content when α is executed.
• A Lossy Transfer (LT) DCDS if, for every action α ∈ A

with Q(~x) 7→ α(~x) ∈ %, and every relation Pi ∈ R \
RELS(Q), Pi appears in the left-hand side of at least an
effect of α (which must be either a lossy maintain effect
of the form (6), or a lossy copy effect of the form (8)); in
other words, every relation contributes to determine the
content of the state obtained by the application of α.
• A Lossy Petri (LP) DCDS if, for every action α ∈ A with
Q(~x) 7→ α(~x) ∈ %, and every relation Pi ∈ R\ RELS(Q),
Pi appears only in the left-hand side of a lossy maintain
effect of the form (6) in α (and possibly in the right-hand
side of a lossy create effect).

The following proposition highlights the connection induced
by the N-TO-D translation function between the different
classes of nets and DCDSs studied in this paper.
Proposition 3. Given an RT/R/T/Petri net N , N-TO-D(N)
produces an LRT/LR/LT/LP DCDS.

The proof of this proposition can be obtained by comparing
the definitions for such different classes, and checking that
N-TO-D preserves their properties in the translation.

We conclude this section by pointing out that LRT DCDSs
are very weak in terms of their ability of querying and ma-
nipulating data. In fact, they only contain unary relations,
which are queried without using any joins in the condition-
action rules, and only by means of atomic queries in the
effects. Furthermore, no negative components are used in

such queries, except for a very limited use of inequalities
(always employed to select all tuples of a relation except the
one matching with one of the action parameters). Also, the
content of relations is not guaranteed to be preserved when
executing an action: copy and maintain effects always em-
ploy service calls to transfer data from one state to the other,
which implies that the extension of a relation may change in
content, and decrease in size. Finally, the overall size of the
entire database instance may maximally increase only of a
fixed amount of tuples, determined by the number of lossy
create effects present in the applied action.

3.4 From LRT DCDSs to RT Nets
We define a translation function D-TO-N that, given an
LRT DCDS S = 〈D,P〉 with D = 〈C,R, ∅, I0〉 and
P = 〈F , A, %〉, produces an RT net D-TO-N(S) =
〈PS , TS , FS ,mS0 〉 defined as follows:
• pi ∈ PS if and only if Pi/1 ∈ R;
• pki ∈ mS0 if and only if |Pi|I0 = k;
• tα ∈ T if and only if α ∈ A;
• As for pre-arcs, for each pi ∈ PS and each tα ∈ T :

1. if, given Q(~x) 7→ α(~x) in %, Pi ∈ RELS(Q), then
FS(pi, tα) = 1;

2. else if α contains an effect of the form Pi(y)
Pi(hi(y)),4 then FS(pi, tα) = 0;

3. else FS(pi, tα) = pi.
• As for post-arcs, for each tα ∈ T and pi ∈ PS :

1. if α contains an effect of the form true Pi(gi()),
then F (tα, pi) = 1;

2. if α contains an effect of the form P ′i (y) Pi(hi(y))
with P ′i 6= Pi, then F (tα, pi) = p′i;

3. F (tα, pi) = 0 otherwise.
Intuitively, the translation works as follows. Every relation
mentioned in the condition-action rule for α becomes an in-
put place for tα, and every relation targeted by a lossy create
effect becomes an output place for tα. Relations which are
lossily maintained by α do not contribute as input for tα,
attesting that t will not consume tokens from them. Relations
that do not fall in any of these two categories are consumed
completely by t; this can happen either because their con-
tent is lossily copied, or because they do not appear in the
left-hand side of any effect in α (and hence will loose their
content when α is applied). Finally, lossy copy effects are
translated into a transfer arc passing through t (notice that, in
this case, the definition of LRT DCDSs does not allow the
target relation to be also targeted by a lossy create effect).
Theorem 4. The translation functions N-TO-D and D-TO-N
are one the inverse of the other, i.e., (i) for every RT net
N , N = D-TO-N(N-TO-D(N)); (ii) for every LRT DCDS S,
S = N-TO-D(D-TO-N(S)).

The proof of this theorem is obtained by: (i) considering
each component of an RT net, and showing that the same
component is obtained by applying D-TO-N ◦ N-TO-D on
it, (ii) considering each component of an LRT DCDS, and
showing that the same component is obtained by applying
N-TO-D ◦ D-TO-N on it.

Theorems 4 and 1, together with Proposition 3, imply:
4Note that the same relation Pi is used in both sides of the effect.

462

Corollary 5. Given an LRT/LR/LT/LP DCDS S , D-TO-N(S)
produces an RT/R/T/Petri net.
Theorem 6. For every LRT DCDS S, S is state-bounded if
and only if D-TO-NS is bounded.

As a direct consequence of Theorem 6, we then have:
Corollary 7. For every LRT DCDS S , S is structurally state-
bounded if and only if D-TO-N(S) is structurally bounded.

4 State-Boundedness is Difficult
We now exploit the connection between RT nets (and their
subclasses) and LRT DCDSs (and their subclasses) to show
that state-boundedness is intrinsically difficult to check for
data-aware dynamic systems: either highly-undecidable5 or
intractable even for the low expressive systems expressible
with LRT DCDSs. In particular, we have that: (i) checking
boundedness of R nets reduces to checking state-boundedness
of LR DCDSs (cf. Proposition 3 and Theorem 1); (ii) check-
ing state-boundedness of LP DCDSs reduces to check-
ing boundedness of Petri nets (cf. Corollary 5 and Theo-
rem 6); (iii) checking state-boundedness of LT DCDSs re-
duces to checking boundedness of T nets (cf. Corollary 5
and Theorem 6). Similar reductions hold for structural state-
boundedness, thanks to Proposition 3 and Corollaries 2, 5,
and 7.

Since checking boundedness for R nets is Σ1
1-complete

(Dufourd, Finkel, and Schnoebelen 1998; Dufourd, Jancar,
and Schnoebelen 1999), we thus get:
Theorem 8. Checking state-boundedness is highly undecid-
able for LR (and hence LRT) DCDSs.

Thanks to the fact that checking boundedness is EX-
PSPACE-complete for Petri nets (Esparza and Nielsen 1994),
and decidable for T nets (Dufourd, Jancar, and Schnoebelen
1999), decidability is interestingly obtained for those LRT
DCDSs in which all relations are used in the left-hand side
of effects, i.e., all relations contribute to determine the new
database instance obtained after the application of an action.
The sub-class of LRT DCDSs that enjoy this property is that
of LT (which includes LP) DCDSs:
Theorem 9. Checking state-boundedness is EXPSPACE-
complete for LP DCDSs.
Theorem 10. Checking state-boundedness is decidable and
EXPSPACE-hard for LT DCDSs.

Structural state-boundedness pushes the undecidability
frontier even further, but can be efficiently checked for the
very simple case of LP DCDSs. Specifically, since check-
ing structural boundedness is Π1

2-complete for R nets, Π1
1-

complete for T nets (Dufourd, Jancar, and Schnoebelen 1999),
and decidable in PTIME for Petri nets, (Esparza and Nielsen
1994; Dufourd, Jancar, and Schnoebelen 1999) we get:
Theorem 11. Checking structural state-boundedness is
highly undecidable for LT and LR (and hence LRT) DCDSs.
Theorem 12. Checking structural state-boundedness is de-
cidable in PTIME for LP DCDSs.

5I.e., at the first level or above in the Analytical Hierarchy
(Rogers 1967).

We conclude by observing that a line of reasoning analogus
to that of DCDSs can be repeated for similar frameworks,
e.g., ACMASs (Belardinelli, Lomuscio, and Patrizi 2012).

5 Sufficient State-Boundedness Conditions
In Section 3.1, we have proved that checking (structural) state-
boundedness even for very limited DCDSs is already unde-
cidable. We introduce now sufficient syntactic conditions
that guarantee structural state-boundedness. In particular,
we discuss different dimensions for relaxation of the GR+-
acyclicity condition originally introduced by Bagheri Hariri
et al. (2013b), and based on them we develop our most gen-
eral sufficient condition, called stratified-∃GR++-acyclicity.

5.1 GR++-Acyclicity
The GR+-acyclicity condition for structural state-
boundedness (Bagheri Hariri et al. 2013b) is a syntactic
restriction over the dataflow graph of a DCDS, in which
nodes of the dataflow graph represent relation names that
occur in the schema of the system, and edges represent the
flow of the data between these relations. Here we introduce
GR++-acyclicity as a relaxation of GR+-acyclicity in
which the dataflow graph represents the system behavior at
finer granularity by using as nodes positions of relations,
instead of relations themselves.

We call refined dataflow graph of a set A of actions the
directed edge-labeled graph 〈N,G〉 where: (i) N ⊆ R× N+

is a set of nodes such that for every R/n occurring in A,
〈R, i〉 ∈ N for every i ∈ {1, . . . , n}; (ii) G is a 5-tuple
(R1, id, R2, b, a), where R1 and R2 are two nodes in N , id
is a (unique) edge identifier, b is a Boolean flag used to mark
special edges, and a is flag used to denote the action of
A to which the edge belongs. Formally, G is the minimal
set such that, for each action α in A, each effect e in α of
the form q+ ∧ Q− E, each R(r1, . . . , rm) in q+, each
i ∈ {1, . . . ,m}, each Q(t1, . . . , tn) in E, and each j ∈
{1, . . . , n}, we have that:
• if ti is a free variable and ri = tj , then

(〈R, i〉, id, 〈Q, j〉, false, α) ∈ G.
• if ti is a service call f(s1, . . . , sl), then for each k ∈
{1, . . . , l}, if ri = sk then (〈R, i〉, id, 〈Q, j〉, true) ∈ G.
• if ti is a nullary service call f(), then

(〈R, i〉, id, 〈Q, j〉, true) ∈ G.
in which id is a fresh edge identifier.

Let π1, π2, and π3 be paths in the dataflow graph D of A.
We say that 〈π1, π2, π3〉 is a generate-recall triple if

(i) π1π2π3 forms a path in D,
(ii) π1, π3 are simple cycles, and

(iii) π2 is a path containing a special edge, with edges(π2)\
edges(π1) 6= ∅.

The generate-recall triple 〈π1, π2, π3〉 is called non-
accumulating if there is an edge e ∈ edges(π2) that does
not belong to the same action as any of the edges following
e in π2π3. Finally, we say that A is GR++-acyclic if all its
generate-recall triples are non-accumulating.

We say a process layer P = 〈F , A, %〉 isGR++-acyclic, if
A isGR++-acyclic. A DCDS isGR++-acyclic if its process
layer is GR++-acyclic. The GR+-acyclicity definition by

463

R* * R,1 R,2* *

Figure 1: Dataflow and refined dataflow graphs of Example 1

Bagheri Hariri et al. (2013b) differs only in that the dataflow
graph’s nodes represent entire relations, not their positions
(the dataflow graph by Bagheri Hariri et al. corresponds to
collapsing all refined dataflow graph nodes modeling posi-
tions of relation R into a single node, for every R.)
Example 1. Consider a DCDS D with one action α =
{R(x, y) {R(f(x), h(y))}. It is easy to see that D
is (i) structural state-bounded, (ii) not GR+-acyclic, but
(iii) GR++-acyclic. For (i), observe that the cardinality of
R after executing α is at most the cardinality before exe-
cution (potentially strictly lower if the service calls behave
non-injectively). For (ii), consult the data flow graph on the
left side of Figure 1. The simple cycle π1 can be the left
self-loop on node R, π2 and π3 can coincide with the right
self-loop. For (iii), consult the refined data flow graph on the
right side of Figure 1. Notice now that this graph contains no
generate-recall cycle, since in each connected component π1
and π2 must coincide.
Theorem 13. GR++-acyclicity is a strict relaxation
of GR+-acyclicity that guarantees structural state-
boundedness.

5.2 Safe-GR++-Acyclicity
The main idea of this relaxation is to distinguish different
types of special edges in the dataflow graph to define a more
refined condition for structural state-boundedness. We bor-
rowed the notion of affected positions, which are an overes-
timation of the positions in which a new value can be intro-
duced, from Calı̀, Gottlob, and Kifer (2013), Meier, Schmidt,
and Lausen (2009), to distinguish unbounded edges, which
is an overestimation of the edges of the dataflow graph, in
which unboundedly many different values can flow during
the life of a DCDS.

More formally, we call affected positions of a set A of
actions, denoted with AFF(A), the smallest set of positions π
occurring in A satisfying following conditions:
• If a service call appears in π, then π ∈ AFF(A).
• If in the head of an effect a variable x appears in π, and

occurrences of x in the body of this effect is only limited
to the affected positions.
We use affected positions to determine an overestimation

of unbounded edges of dataflow graph. Given an effect f ,
we say that an edge e from a position p in the body of e to
a position in the head of e is (potentially) unbounded if all
the positions in the body of e that using the same variable
as p are affected positions. Otherwise, we call e bounded.
For instance, consider a DCDS with one action as follows:
{A(x) ∧ B(x) ∧ C(y) A(f(x)), C(h(y))}. 〈A, 1〉 and
〈C, 1〉 are the only affected positions. The edges from the
position 〈A, 1〉 and 〈B, 1〉 to 〈A, 1〉 are bounded edges, since
for each of them there is an unaffected position 〈B, 1〉 in

the body of the effect, while the special edge from 〈C, 1〉 to
〈C, 1〉 is an unbounded edge.

We call safe-refined dataflow graph of a set A of actions
the directed edge-labeled graph 〈N,G〉 where: (i) N ⊆ R×
N+ is a set of nodes such that for every R/n occurring in
A, 〈R, i〉 ∈ N for every i ∈ {1, . . . , n}; (ii) G is a 6-tuple
(R1, id, R2, fs, fb, a), where R1 and R2 are two nodes in N ,
id is a (unique) edge identifier, fs is a flag that specify if the
edge is normal with “−”, or special with “∗”, fb is a flag that
specify if an edge is bounded with “b”, or unbounded with
“u”, and a is flag used to denote the action of A to which
the edge belongs. Formally, G is the minimal set satisfying
the following condition. For each action α in A, each effect
e in α of the form q+ ∧ Q− E, each R(r1, . . . , rm) in
q+, each i ∈ {1, . . . ,m} each Q(t1, . . . , tn) in E, and each
j ∈ {1, . . . , n}:
• If ti is a free variable and ri = tj ,

– if for each position p in the body of e in which the
variable ri occurs, it holds that p ∈ AFF(A), then
(〈R, i〉, id, 〈Q, j〉, -, u, a) ∈ G;

– otherwise, (〈R, i〉, id, 〈Q, j〉, -, b, a) ∈ G.
• If ti is a service call f(s1, . . . , sl) with l ≥ 1, then for

each k ∈ {1, . . . , l}, if ri = sk, then
– If for each position p in the body of e in which the

variable ri happens it holds that p ∈ AFF(A), then
(〈R, i〉, id, 〈Q, j〉, *, u, a) ∈ G;

– otherwise, (〈R, i〉, id, 〈Q, j〉, *, b, a) ∈ G.
• If ti is a nullary service call f(), then

– if for each position p in the body of e it holds that
p ∈ AFF(A) then (〈R, i〉, id, 〈Q, j〉, *, u) ∈ G;

– otherwise, (〈R, i〉, id, 〈Q, j〉, *, b) ∈ G.
in which id is a fresh edge identifier.
We define the notion of generate-recall triple for a safe-

refined dataflow graph exactly as in the case of GR++-
acyclicity. Moreover, a generate-recall triple 〈π1, π2, π3〉 is
called safe if either there is an edge e ∈ edges(π2) that does
not belong to the same action as any of the edges following e
in π2π3, or π3 contains a bounded edge. Finally, we say that
A is safe-GR++-acyclic if all its generate-recall triples are
safe.

Example 2. Consider a DCDS D with one action

α =

A(x) {A(f(x))}
B(x) {B(x)}
A(x) {R(x, f(x))}

R(x, y) ∧B(x) {R(y, x)}

D is (i) structural state-bounded, (ii) not GR++-acyclic, but
(iii) safe-GR++-acyclic.

Given a state I of a DCDS, let’s denote with |Ri|I the
number of different values that occurs in I in the position i
of the relation R. Consider the states I and I ′ of D, in which
I ′ is the result of the execution of α over I .

For (i) observe that |A1|I′ ≤ |A1|I , |B1|I′ = |B1|I ,
|R2|I′ ≤ |A1|I + |B1|I , and |R1|I′ ≤ (|A1|I + |R2|I) ≤
(2.|A1|I+ |B1|I). Given the fact that the cardinality of 〈A, 1〉
and 〈B, 1〉 is not increasing, and the cardinality of all the
positions is linear in the cardinality of these two positions,
the size of the resulting instance by application of α cannot

464

A,1 R,1 R,2 B,1*, u b
u

*, u b

b

b

u

Figure 2: Safe-refined dataflow graph of Example 2. Affected
positions and unbounded edges are shown with thicker lines

increase unboundedly. For (ii) consult the refined dataflow
graph of D given in Figure 2, ignoring the labels for bound-
edness of edges. The path π1 can be the self loop in 〈A, 1〉,
π2 can be the edge from 〈A, 1〉 to 〈R, 1〉, and π3 can be the
simple cycle between 〈R, 1〉 and 〈R, 1〉. For (iii), consult the
safe-refined dataflow graph of Figure 2. 〈A, 1〉 and 〈R2〉 are
affected positions because of occurrences of the service call
f(x) in them. Moreover, because of the third effect, 〈R, 1〉
is also an affected position, but 〈B, 1〉 is not an affected
position. Consequently all the outgoing edges from 〈B, 1〉
are bounded edges. Moreover, because of the occurrences
of 〈B1〉 with the same variable as the 〈R, 1〉 in the body of
the fourth effect, the outgoing edge from 〈R, 1〉 to 〈R, 2〉 is
also a bounded edge. Notice now that this graph contains no
generate-recall cycle π1π2π3 such that all the edges of the
recall cycle are unbounded edges.

Theorem 14. Safe-GR++-acyclicity is a strict relax-
ation of GR++-acyclicity that guarantees structural state-
boundedness.

5.3 Stratified-GR++-Acyclicity
The syntactic restrictions that we have studied until now are
defined over the structure of the effects of the actions, and ig-
nore the conditions under which the actions can be executed,
i.e., the process of the system. Here, we exploit process to
single out larger classes of structural state-bounded DCDSs.
Getting insight from stratified relaxation of weak-acyclicity
in data exchange (Deutsch, Nash, and Remmel 2008), we
specify the potential order of execution of actions of a system,
through what we call the control-flow graph of the system,
and use this graph to determine maximal set of actions that
can violate structural state-boundedness. Remember that ac-
tions of DCDSs are not inflationary, and the next state is only
determined by applying the effects of the action over the cur-
rent state. Consequently, by looking to the head of the effects
of an action α, we can find a superset of the actions that
can be fired after α. We use this idea to relax safe-GR++-
acyclicity.

Given an action α and a set of condition-action rules ρ,
the set of requirements for firing of α wrt ρ is a set of
set of relation names defined as follows: INPUT(ρ, α) =
{{RELATIONS(Q+)} | (Q+ ∧Q 7→ α) ∈ ρ}, in which Q+

is a conjunctive query, and RELATIONS(Q) is the set of rela-
tion names occurring in Q. We denote with OUTPUT(α) the
set of relation names occurring in the head of effects of α.
Given a set of condition-action rules %, and two actions α
and β, we say that β can (potentially) be fired after α wrt %,
written α <% β (or simply α < β), if there exists a set of
relation names S ∈ INPUT(%, β) such that S ⊆ OUTPUT(α).

A,1 C,1 B,1*, u

*, u
*, u

*,b

Figure 3: Safe-refined dataflow graph of Example 3. Affected
positions and unbounded edges are shown with thicker lines

Given a set of condition-action rules % and a set of actions
A, the controlflow graph of A is the directed edge-labeled
graph 〈A,E〉 in which for two actions α, β ∈ Σ we have
that (α, β) ∈ E iff α < β. We say a DCDS with the set
of actions A is stratified-GR++-acyclic if for every set of
actions S that correspond to a maximal strongly connected
component in the controlflow graph of A, the restriction of
A to S is safe-GR++-acyclic.

Example 3. Consider a DCDS D with two actions α(x) =
{A(x) ∧ B(y) {C(x), B(y)} and β(x, y) = {C(x) ∧
C(y) {A(g(x)), A(h(y))} and the set of condition-action
rules {A(x) ∧ B(x) 7→ α(x), C(x) ∧ C(y) 7→ β(x, y)}.
The refined dataflow graph of D is shown in Figure 3. It
is easy to see that D is (i) structural state-bounded, (ii) not
safe-GR++-acyclic, but (iii) stratified-GR++-acyclic.

For (i), observe that after execution of action α it is only
possible to execute action β since the resulting state will not
have any atom with the relation name A, which is needed
for execution of α. Moreover, after executing β, none of the
actions can be fired, since the resulting state will not have any
atom with the relation nameB, which is needed for execution
of α, and not any atom with the relation name of C which is
needed for execution of β. For (ii), consult the safe-refined
dataflow graph of Figure 3. As a witness of the generate-
recall cycle, it is possible to select π1 as the cycle generated
by the top edge from 〈C, 1〉 and 〈A, 1〉 and the edge from
〈A, 1〉 to 〈C, 1〉, π2 as the second edge from 〈C, 1〉 to 〈A, 1〉,
and π3 as the cycle generated by the edge from 〈A, 1〉 to
〈C, 1〉 and the second edge from 〈C, 1〉 to 〈A, 1〉.

For (iii), INPUT(%, α) = {{A,B}}, INPUT(%, β) =
{{C}}, OUTPUT(α) = {B,C}, OUTPUT(β) = {A}. Conse-
quently, α 6< α, α < β, β 6< α, and β 6< β. The controlflow
graph has only one edge from α to β. Since there is no
strongly connected component in the controlflow graph, D
trivially satisfies the condition of stratified-GR++-acyclicity.

Theorem 15. Stratified-GR++-acyclicity is a strict relax-
ation of safe-GR++-acyclicity that guarantees structural
state-boundedness.

5.4 ∃- Acyclicity Relaxations
All the syntactic restrictions presented so far are based on
finding cycles in the corresponding dataflow graphs, as part
of generate-recall pairs. The graph edges are constructed con-
servatively, to reflect possible flow of data between relations
of the data layer. In this section, we observe that edge con-
struction can be over-conservative, and we show a technique
to safely consider fewer edges. This is clearly beneficial, as
removing edges reduces the opportunity for forming cycles.

465

The technique is based on a counterintuitive observation
regarding overestimations of an original DCDS D. These are
rewritings O of D whose effects generate a superset of the
data generated by the effects of D. It turns out that it is possi-
ble for the data flow graph of overestimate O to have a subset
of the edges of the data flow graph of D. Since structural
state-boundedness of O guarantees state-boundedness of D,
checking the data flow graph ofO leads to a relaxed syntactic
restriction for state-boundedness.

One situation in which overestimation of the system re-
sults in smaller dataflow graphs is when a nullary service call
occurs in heads of the DCDS. In the definition of GR++-
acyclicity in Section 5.1, for each nullary service call in the
head of an effect we add a special edge from all the positions
of the body of the effect to the position in which the service
call occurs. Consider an effect e : A(x) ∧ B(y) C(f()).
In the definition of GR++-acyclicity there are special edges
from 〈A, 1〉 and 〈B, 1〉 to 〈C, 1〉 in the dataflow graph. How-
ever, since we are looking for sufficient conditions for state-
boundedness, we can overestimate the result of e by replac-
ing the effect e with e1 : A(x) ∧ B(y) C(f(x)) or
e2 : A(x) ∧ B(y) C(f(y)). Notice although the result-
ing system is an overestimation of the original system, the
resulting dataflow graph has less edges, and consequently, it
is more likely to satisfy the condition of GR++-acyclicity.

A similar situation holds for repeated positions with the
same variables in the body of the effect. Lets assume to
have an effect f : A(x) ∧ B(x) C(x). It is possible
to over estimate f with f1 : A(x) ∧ ∃yB(y) C(x) or
f2 : ∃yA(y)∧B(x) C(x). The resulting dataflow graphs
will have less edges, and consequently, it is more likely to
satisfy the condition of GR++-acyclicity.

More formally, given a DCDS D, OVEREST(D) is a set of
DCDSs obtained from D by applying the following rules for
each of the possible options:
• Replace the nullary service calls in the head of the effects

with a unary service call using as variable, one of the
variables of the body of the effect. Notice that for each
choice of variables for unary service calls, there will be
one DCDS in OVEREST(D).
• Among multiple occurrences of one variable in different

positions of the body of an effect, keep one of them, and
rename and existentially quantify the others. Also notice
that for each possible selection option, there will be a
DCDS in OVEREST(D).

We say that D is ∃GR++-acyclic, if there exists a DCDS
D′ ∈ OVEREST(D), such that D′ is GR++-acyclic.
Example 4. Consider a DCDS D with one actions α =
{A(x) ∧ B(x) ∧ B(y) {A(f()), B(g())}. The dataflow
graph of D is depicted in Figure 4. It is easy to see that D is
(i) state-bounded, and (ii) not stratified-GR++-acyclic, but
(iii) ∃GR++-acyclic. For (i), observe that |A1|I′ ≤ |A1|I ,
and |B1|I′ ≤ |B1|I . For (ii), consult the safe-refined dataflow
graph of Figure 4. As a witness of the generate-recall cycle
consider π1 as the self loop of 〈A, 1〉, π2 as the edge from
〈A, 1〉 to 〈B, 1〉, and π3 as the self loop of 〈B, 1〉.

For (iii), considering the two options for selecting a po-
sition among the positions with the same variable in body
of the only effect of α, and four options for overestimating

A,1 B,1*, u

*, u

*, u

*,u

*,u

*,u

Figure 4: Safe-refined dataflow graph of Example 4

A,1 B,1*
*

D1:

A,1 B,1 *
*

D2:

A,1 B,1* *

D3:

A,1 B,1*

*D4:

Figure 5: Refined dataflow graphs regarding ∃GR++-
acyclicity of Example 4

the two nullary service calls in the head of the effect of α to
unary service calls using the variables x and y of the body,
OVEREST(D) contains eight different overestimations. Here
we represent four of these overestimations D1, . . . , D4, each
of them with one action, namely, α1, . . . , α4 as follows:

α1 : {A(x) ∧ ∃z B(z) ∧B(y) {A(f(x), B(g(x))}}
α2 : {∃z A(z) ∧B(x) ∧B(y) {A(f(x), B(g(x))}}
α3 : {A(x) ∧ ∃z B(z) ∧B(y) {A(f(x), B(g(y))}}
α4 : {A(x) ∧ ∃z B(z) ∧B(y) {A(f(y), B(g(x))}}

For (iii), consult the refined dataflow graphs of D1, . . . , D4

in Figure 5. For ∃GR++-acyclicity, it is enough to have one
of the overestimations GR++-acyclic. In this example, all
four represented overestimations are GR++-acyclic.

Theorem 16. ∃GR++-acyclicity is a strict relaxation of
GR++-acyclicity that guarantees state-boundedness.

A Hierarchy of Acyclicity Classes. The idea for ∃GR++-
acyclicity applies to generate existential relaxations of safe-
GR++-acyclicity and stratified-GR++-acyclicity, called
safe-∃GR++-acyclicity and stratified-∃GR++-acyclicity.
Figure 6 summarizes our results. Note that stratified-∃GR++-
acyclicity is the most relaxed condition, andGR+ is the most
over-conservative. Moreover, we can prove that safe-GR++-
acyclicity and ∃GR++-acyclicity are incomparable.

All acyclicity variants we have introduced are purely syn-
tactic notions. The non-existential ones can be checked in
coNP since the various versions of dataflow graphs have size
polynomial in the size of the process layer specification, and,
if there is a violation of acyclicity, then we can show that
there is a polynomial-sized one. For existential relaxations,
complexity jumps to Σp2, due to the need of guessing the
member of OVEREST(D) to which the coNP check applies.

6 Conclusion
State-boundedness has recently gained a central place in veri-
fication of data-aware dynamic systems. This motivated us to
study whether there are interesting decidable classes of such
systems for which state-boundedness is decidable. Thanks to

466

GR+ GR++

Safe-GR++

∃GR++

Stratified-GR++

Safe-∃GR++

Stratified-∃GR++

Figure 6: Syntactic restrictions for structural state-
boundedness. Arrows show strict containment of classes.
Unconnected classes are incomparable.

novel connections with Petri nets, we answer the question in
the negative, but at the same time paving the way towards an
entire field dedicated to studying sufficient, checkable condi-
tions for state-boundedness. Inspired from sufficient condi-
tions for chase termination in database theory, we show that
there are many non-trivial classes of DCDSs that guarantee
state-boundedness. The flourishing literature on fine-grained
syntactic conditions for chase termination, not considered in
this work, points to promising future research.

Acknowledgments. This research has been partially sup-
ported by the EU IP project Optique (Scalable End-user Ac-
cess to Big Data), grant agreement n. FP7-318338.

References
Bagheri Hariri, B.; Calvanese, D.; Montali, M.; De Giacomo,
G.; De Masellis, R.; and Felli, P. 2013a. Description logic
Knowledge and Action Bases. Journal of Artificial Intelli-
gence Research 46.
Bagheri Hariri, B.; Calvanese, D.; Montali, M.; De Giacomo,
G.; and Deutsch, A. 2013b. Verification of relational data-
centric dynamic systems with external services. In Proc. of
the 32th Symp. on Principles of Database Systems (PODS).
Belardinelli, F.; Lomuscio, A.; and Patrizi, F. 2012. An
abstraction technique for the verification of artifact-centric
systems. In Proc. of the 13th Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR). AAAI
Press.
Calı̀, A.; Gottlob, G.; and Kifer, M. 2013. Taming the infi-
nite chase: Query answering under expressive relational con-
straints. Journal of Artificial Intelligence Research 48:115–
174.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. J. of
Automated Reasoning 39(3):385–429.
Calvanese, D.; De Giacomo, G.; and Montali, M. 2013. Foun-
dations of data-aware process analysis: A database theory
perspective. In Proc. of the 32th Symp. on Principles of
Database Systems (PODS), 1–12. ACM Press.
De Giacomo, G.; Lesperance, Y.; and Patrizi, F. 2012.
Bounded situation calculus action theories and decidable
verification. In Proc. of the 13th Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR), 467–477.

Deutsch, A.; Hull, R.; Patrizi, F.; and Vianu, V. 2009. Auto-
matic verification of data-centric business processes. In Proc.
of the 12th Int. Conf. on Database Theory (ICDT), 252–267.
Deutsch, A.; Nash, A.; and Remmel, J. B. 2008. The chase re-
visited. In Proc. of the 27th Symp. on Principles of Database
Systems (PODS).
Dufourd, C.; Finkel, A.; and Schnoebelen, P. 1998. Reset
nets between decidability and undecidability. In Proc. of
the 25th Coll. on Automata, Languages and Programming
(ICALP), volume 1443, 103–115.
Dufourd, C.; Jancar, P.; and Schnoebelen, P. 1999. Bounded-
ness of reset p/t nets. In Proc. of the 26th Coll. on Automata,
Languages and Programming (ICALP), volume 1644 of Lec-
ture Notes in Computer Science, 301–310. Springer.
Dumas, M. 2011. On the convergence of data and process
engineering. In Proc. of ADBIS, volume 6909 of Lecture
Notes in Computer Science, 19–26. Springer.
Esparza, J., and Nielsen, M. 1994. Decidability issues for
petri nets - a survey. Bulletin of the EATCS 52:244–262.
Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data exchange: Semantics and query answering. Theoretical
Computer Science 336(1):89–124.
Hull, R. 2008. Artifact-centric business process models: Brief
survey of research results and challenges. In Proc. of the On
the Move Confederated Int. Conf. (OTM 2008), volume 5332
of Lecture Notes in Computer Science, 1152–1163. Springer.
Mayr, R. 2003. Undecidable problems in unreliable compu-
tations. Theoretical Computer Science 297(1-3):337–354.
Meier, M.; Schmidt, M.; and Lausen, G. 2009. On chase
termination beyond stratification. PVLDB 2(1).
Rogers, H. 1967. Theory of recursive functions and effective
computability. McGraw-Hill.
Solomakhin, D.; Montali, M.; Tessaris, S.; and De Masellis,
R. 2013. Verification of artifact-centric systems: Decidability
and modeling issues. In Proc. of the 11th Int. Conf. on Service
Oriented Computing (ICSOC).
Vianu, V. 2009. Automatic verification of database-driven
systems: a new frontier. In Proc. of the 12th Int. Conf. on
Database Theory (ICDT), 1–13.

467

