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Abstract. Existing process modeling notations ranging from Petri nets
to BPMN have difficulties capturing the data manipulated by processes.
Process models often focus on the control flow, lacking an explicit, con-
ceptually well-founded integration with real data models, such as ER
diagrams or UML class diagrams. To overcome this limitation, Object-
Centric Behavioral Constraints (OCBC) models were recently proposed
as a new notation that combines full-fledged data models with control-
flow constraints inspired by declarative process modeling notations such
as DECLARE and DCR Graphs. We propose a formalization of the
OCBC model using temporal description logics. The obtained formaliza-
tion allows us to lift all reasoning services defined for constraint-based
process modeling notations without data, to the much more sophisticated
scenario of OCBC. Furthermore, we show how reasoning over OCBC
models can be reformulated into decidable, standard reasoning tasks over
the corresponding temporal description logic knowledge base.

1 Introduction

Despite the plethora of notations available to model business processes, process
modelers struggle to capture real-life processes using mainstream notations such
as Business Process Model and Notation (BPMN), Event-driven Process Chains
(EPC), and UML activity diagrams. All such notations require the simplifying
assumption that each process model focuses on a single, explicitly defined case
notion (also referred to as process instance). The discrepancy between the single
case view and reality becomes evident when using process mining techniques
to reconstruct processes based on the available data [2]. Process mining starts
from the available data and, unless one is using a Business Process Management
(BPM) or Workflow Management (WFM) system for process execution, explicit
case information is typically missing. Process-centric diagrams using BPMN,
EPCs, or UML describe the life-cycle of individual cases. When formal languages
like Petri nets, automata, and process algebras are used to describe business
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processes, they tend to model cases in isolation, and the data perspective is
secondary or missing completely. Languages like BPMN allow modelers to attach
data to processes, but without the possibility to express complex constraints
over such data (e.g., cardinality constraints, is-a links, disjointness, covering,
etc. as in ER/UML/ORM data models). Mainstream business process modeling
notations describe the lifecycle of one type of process instance at a time missing
the opportunity to capture the co-evolution of multiple, interacting instances. In
particular, complex constraints over data attached to processes must influence
the behavior of the process itself—e.g., consider the management of different
orders, where the evolution of one order impacts on the possible evolutions of
the related orders.

Object-Centric Behavioral Constraint (OCBC) [3,21,22] models have been
proposed as a modeling language that combines ideas from declarative,
constraint-based languages like DECLARE [1], and from data modeling lan-
guages. OCBC allows to: (i) describe the temporal interaction between activi-
ties in a given process and to attach (structured) data to processes in a unified
framework ; (ii) model the interactions between multiple process instances, specif-
ically when there is a one-to-many or many-to-many relationship between them.
Figure 1 illustrates the way in which OCBC models tackle the above two issues.
Register Email and Send Invite are two activities related to object classes
Person and Meeting, respectively. A meeting is organized by many persons,
each of which can in turn organize many meetings. The double-headed arrow
connecting Register Email and Send Invite expresses the constraint that an
invitation for a meeting can be sent only if at least one organizer of that meet-
ing has previously registered her e-mail. Assuming that the object targeted by
each activity is indeed a case for that activity, this simple example already con-
tains two distinct case notions (Person and Meeting) that are intertwined. In
conventional notations, this can only be modeled from the viewpoint of one of
the two instances: the registration process of a person or the invitation process
for a meeting. Taking the latter viewpoint using conventional notations such as
BPMN would require to explicitly introduce a loop to handle the registration
of one or more persons organizing a meeting. However, this is incorrect because
one registration may be followed by many meetings. One-to-many and many-to-
many relationships lead to convergence and divergence problems that cannot be
handled in notations describing isolated cases.

Fig. 1. An OCBC constraint

OCBC models are related to artifact- and
data-centric approaches [12,16,19] aiming to
integrate data and processes. However, this
is not done in a single diagram representing
different types of process instances and their
interactions. In addition, these approaches
usually assume complete knowledge over the
data, and require to fully spell out data
updates when specifying the activities [14,26]. The few proposals dealing with
artifact-centric models with incomplete knowledge [10] do not come with a fully
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Fig. 2. Example of an OCBC model

integrated, declarative semantics as done here, but follow instead the Levesque
functional approach [20] to separate the evolution of the system from the inspec-
tion of (incomplete) knowledge in each state.

This paper provides a complete characterization of the formal semantics of
the OCBC approach, unambiguously defining the logical meaning of OCBC con-
straints. We provide a visual and textual syntax for OCBC, then defining the
semantics of the different modeling constructs in terms of temporal description
logics, i.e., a temporal extension of (fragments of) the well-known OWL language.
The obtained formalization, in turn, allows us to lift all reasoning services defined
for constraint-based process modeling notations without data, to the much more
sophisticated setting of OCBC. In particular, we show how reasoning over OCBC
models can be reformulated into decidable, standard reasoning tasks over the cor-
responding temporal description logic knowledge base, giving solid foundations
to the boundaries of decidability and complexity of reasoning over processes and
their manipulated data.

The paper is organized as follows. We present a running example in Sect. 2.
Section 3 briefly illustrates the temporal DL that will be used to encode and
reason over OCBC models. Section 4 shows the syntax for OCBC models and
their semantics via the temporal DL encoding. Reasoning and verification tasks
for OCBC models are tackled in Sect. 5. We present our remarks and future work
in Sect. 6.

2 Running Example

The driving assumption underlying our proposal is that processes are modeled as
a mirror of their manipulated data. Such data is structured according to complex
data modeling constraints (see the lower part of Fig. 2). Data can be attached
to activities (see the dotted lines of Fig. 2) and ad-hoc co-reference constraints
can be expressed on those manipulated data (see the dash-dotted lines of Fig. 2)
describing how activities can share/reuse the same data objects.
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Fig. 3. Trace fragment for the OCBC model in Fig. 2

Example 1. Figure 2 shows an OCBC model for a process composed by five activ-
ities (CreateOrder, PickItem, WrapItem, PayOrder and DeliverItems) and
five object classes in the data model (Order, OrderLine, Delivery, Product
and Customer). The top part describes the temporal ordering of activities and
the bottom part how objects relevant for the process execution are structured
(read the lower part as a standard UML class diagram). The middle layer
(dotted lines) relates activities and data. We now informally describe the con-
structs highlighted in Fig. 2. 1 There is a one-to-one correspondence between a
CreateOrder activity and an Order, i.e., the execution of a CreateOrder activ-
ity creates a unique Order and, vice-versa, due to the 1 on the CreateOrder side,
each Order has been generated by a single execution of a CreateOrder activ-
ity. 2 Every execution of the PickItem activity refers to a unique OrderLine
and each OrderLine has been generated by an execution of a PickItem activity
(and not by a WrapItem activity). 3 Each CreateOrder activity is followed
by exactly one (single arrow) PayOrder activity related to the same order. 4
Each PayOrder activity is preceded by possibly many (double arrow) PickItem
activities. 5 Whenever we execute PayOrder we will never execute PickItem
on the same paid order. 6 The dash-dotted line denotes a co-reference con-
straint over an object class, imposes that when the CreateOrder creates an order
instance, that order instance will eventually be paid by executing a PayOrder
activity. 7 The dash-dotted line is, in this case, a co-reference constraint now
over a relationship which imposes that when we fill an order line it must have
been contained in exactly one order created by executing a CreateOrder activ-
ity. Since an order line instance could not exist at the same time we create
an order instance and relationships are instantiated by co-existing objects, the
UML model correctly specifies that, at each point in time, each order partici-
pates zero or more times in the contains relation. On the other hand, the co-
reference constraint together with the mandatory cardinalities constraints and
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the temporal constraints between CreateOrder, PayOrder and PickItem imply
the eventual existence of at least one order line contained in any given order. 8
The dash-dotted line starting with a × denotes a negative co-reference constraint
that forbids filling with further order lines an order that has been closed by a
PayOrder activity.

A possible execution of an OCBC process, called in the following trace frag-
ment, records at once events, with their execution time, and the objects they
operate on. In addition, it also captures facts that are known to hold over such
objects in a given timestamp, in particular, the classes to which objects belong
to at that time, as well as how objects are related to each other. In addition,
the trace fragment captures, as customary in a standard first-order logic set-
ting, incomplete knowledge about a process execution, and OCBC constraints
are hence interpreted under the open-world semantics. This means that a trace
fragment conforms to an OCBC model if it can be extended towards a full trace
that satisfies all the constraints contained therein. A trace fragment conforming
to the OCBC model of Fig. 2 is depicted in Fig. 3 and shown in the following
first-order logic notation (but also as a DL ABox after a small transformation).
We abbreviate activity names with their initials. Instances of activities, classes
and relationships are timestamped denoting the execution time of the activity,
and the time point when the described fact holds (timestamps respect the time
ordering starting from t0).
CO(co1, t0), PI(pi1, t1), PI(pi2, t2), WI(wi1, t3), WI(wi2, t4), PI(pi3, t5), WI(wi3, t6), PO(po1, t7),

DI(di1, t8), DI(di2, t9), creates(co1, o1, t0), fills(pi1, ol1, t1), contains(o1, ol1, t1), fills(pi2, ol2, t2),

contains(o1, ol2, t2), prepares(wi1, ol1, t3), prepares(wi2, ol2, t4), fills(pi3, ol3, t5),

contains(o1, ol3, t5), prepares(wi3, ol3, t6), closes(po1, o1, t7), refers to(di1, d1, t8),

results in(ol1, d1, t8), results in(ol2, d1, t8), refers to(di2, d2, t9), results in(ol3, d2, t9),

The process described in the example cannot be modeled using conventional
process modeling languages, because (a) three different types of instances (of
activities, classes and also relationships instances) are intertwined in a uniform
framework so that no further coding or annotations are needed, and (b) cardi-
nality and structural constraints in the object class model influence the allowed
behavior of activities, and vice-versa. Take, e.g., the fact that in the example we
have three different OrderLine instances (ol1, ol2, ol3), then, together with the
co-reference constraints on OrderLine, we implicitly enforce the occurrence of
three different PickItem and WrapItem activities.

3 A Gentle Introduction to Temporal DLs

Since description logics (DLs) are able to capture data models [4,11,17] and are
the logical formalism underpinning ontologies expressed in the standard Web
Ontology Language OWL (www.w3.org/2007/OWL), while the linear tempo-
ral logic (LTL) is able to formalize the temporal interweaving of the activities
in a process [1], we propose here to use temporal description logics based on
TUSALCQI and its fragments [8,18,27] to formally describe the semantics of

www.w3.org/2007/OWL
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OCBC models and to capture in a uniform formalism both the processes and
their attached data.

TUSALCQI is one of the most expressive and still decidable temporal descrip-
tion logics. The language alphabet contains object names a0, a1, . . ., concept
names A0, A1, . . . and role names P0, P1, . . . . Then, roles R and concepts C
are given by the following grammar:

R ::= Pi | R− C ::= � | Ai | (≥ q R C) | ¬C | C1 � C2 | C1 U C2 | C1 S C2

where R− denotes the inverse of the role R (obtained by reversing the relation
R) and q is a positive integer. We use the standard abbreviations: C1 � C2 =
¬(¬C1 � ¬C2), ⊥ = ¬�, ∃R = (≥ 1 R �), ∃R.C = (≥ 1 R C), (≤ q R C) =
¬(≥ (q + 1) R C). Furthermore, all the temporal operators used in LTL can
be expressed via S ‘since’ and U ‘until’ [18]. Operators ♦F and ♦P (‘sometime
in the future/past’) can be expressed as ♦FC = � U C and ♦PC = � S C;
operators �F (‘always in the future’) and �P (‘always in the past’) are defined
as dual to ♦F and ♦P , i.e., �FC = ¬♦F¬C and �PC = ¬♦P¬C. The non-strict
operators (including the current evaluation time), denoted as ♦+

P and ♦+
F , can

be captured as ♦+
P C = C � ♦PC and ♦+

F C = C � ♦FC (similarly, �+
P and �+

F

are defined as the dual operators of ♦+
P and ♦+

F , respectively). The ‘always’
operator �∗ can be expressed as �∗ C = �F�PC, while the dual ‘sometime’ is
defined as ♦∗ C = ¬�∗ ¬C. Finally, the temporal operators ©

F (‘next time’) and
©

P (‘previous time’) can be defined as ©
FC = ⊥ U C and ©

PC = ⊥ S C.
A TUSALCQI TBox T is a finite set of concept and role inclusion axioms of

the form C1 
 C2 and R1 
 R2, respectively. An ABox, A, consists of assertions
of the form ©nAk(ai), ©nPk(ai, aj), where Ak is a concept name, Pk a role
name, ai, aj object names and, for n ∈ Z,

©n = ©
F · · · ©

F
︸ ︷︷ ︸

n times

, if n ≥ 0, and ©n = ©
P · · · ©

P
︸ ︷︷ ︸

−n times

, if n < 0.

Taken together, the TBox T and ABox A form the knowledge base (KB) K =
(T ,A). In this paper, OCBC models will be encoded using TBoxes (see Sect. 4.4),
while single process executions (i.e., trace fragments as shown in Example 1) are
encoded as ABoxes (e.g., CO(co1, t0) is encoded as ©t0CO(co1)).

A temporal interpretation is a structure of the form I = ((Z, <),ΔI , {·I |
n ∈ Z}), where (Z, <) is the linear model of time, ΔI is a non-empty inter-
pretation domain and I(n) gives a standard DL interpretation for each time
instant n ∈ Z: I(n) =

(

ΔI , a
I(n)
0 , A

I(n)
0 , . . . , P

I(n)
0 , . . .

)

, assigning to each con-
cept name Ai a unary predicate A

I(n)
i ⊆ ΔI and to each role name Pi a binary

relation P
I(n)
i ⊆ ΔI × ΔI . We assume that the domain ΔI and the interpre-

tations aI
i ∈ ΔI of object names are the same for all n ∈ Z, i.e., we adopt the

constant domain assumption and rigid designators (consult [18] for more details
on these assumptions). At each time instant n ∈ Z, role and concept constructs
are interpreted as follows
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(R−)I(n) = {(y, x) ∈ ΔI × ΔI | (x, y) ∈ RI(n)},

(≥q R C)I(n) =
{

x ∈ ΔI | �{y ∈ CI(n) | (x, y) ∈ RI(n)} ≥ q
}

,

(¬C)I(n) = ΔI \ CI(n), �I = ΔI , (C1 � C2)I(n) = C
I(n)
1 ∩ C

I(n)
2 ,

(C1 U C2)I(n) =
⋃

k>n

(

C
I(k)
2 ∩

⋂

n<m<k

C
I(m)
1

)

,

(C1 S C2)I(n) =
⋃

k<n

(

C
I(k)
2 ∩

⋂

n>m>k

C
I(m)
1

)

,

where �X denotes the cardinality of X. Thus, for example, x ∈ (C1 U C2)I(n) iff
there is a moment k > n such that x ∈ CI(k)

2 and x ∈ CI(m)
1 , for all moments m

between n and k. Note that the operators S and U are ‘strict’ in the sense that
their semantics does not include the current moment of time.

Concept and role inclusion axioms (TBox) are interpreted in I globally :

I |= C1 
 C2 iff C
I(n)
1 ⊆ C

I(n)
2 for all n ∈ Z,

I |= R1 
 R2 iff R
I(n)
1 ⊆ R

I(n)
2 for all n ∈ Z.

ABox assertions are interpreted relatively to the initial moment, 0:

I |= ©nAk(ai) iff aI
i ∈ A

I(n)
k ,

I |= ©nPk(ai, aj) iff (aI
i , aI

j ) ∈ P
I(n)
k .

We call I a model of a KB K = (T ,A) and write I |= K if I satisfies all inclusions
in T and all assertions in A. A KB K is satisfiable if it has a model. A concept
C (role R) is satisfiable with respect to K if there are a model I of K and n ∈ Z

such that CI(n) �= ∅ (respectively, RI(n) �= ∅). It is readily seen that the concept
and role satisfiability problems are equivalent to KB satisfiability.

Reasoning in TUSALCQI w.r.t. to a KB is a problem which has been proven
to be ExpTime-complete [18,27]. To achieve better complexity results frag-
ments of ALCQI must be considered. Nice results have been gained when
temporalizing DL-Lite logics [6,13]—see, e.g., the temporal DL-Lite called
TUSDL-Lite

(HN )
bool where reasoning has the same complexity of LTL reasoning,

i.e., PSpace-complete [8].

4 The OCBC Model

We now present the syntax and graphical appearance of OCBC models, together
with their formal semantics. The original proposal of the OCBC model is the way
activities and data are related. In particular, an OCBC model captures, at once:
(i) Data dependencies, represented using standard data modeling constructs, i.e.,
classes, relationships and constraints between them; (ii) Activities, accounting
for units of work within a process; (iii) Mutual relationships between activities
and classes, linking the execution of activities in a given process with the data
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objects they manipulate; (iv) Temporal constraints between activities; (v) Co-
reference constraints that enforce the application of temporal constraints, and
in particular limit their application to those activities that indirectly co-refer
thanks to the objects and relationships they point to.

4.1 The Data Model – ClaM

Data used by the activities of an OCBC model is structured according to a
standard modeling language, i.e., ER/UML/ORM. While ALCQI is able to fully
capture the semantics of such data models (see [4,11,17] and references therein)
in the following, just for the sake of simplicity and lack of space, we present only
a subset of the complete set of modeling constructs allowed in those standard
data modeling languages and denote such set of modeling constructs as the ClaM
data model (which stands for CLAss data Model). In particular, the following
syntax limits ClaM to capture object classes that can be organized along ISA
hierarchies (with possibly disjoint sub-classes and covering constraints), binary
relationships between object classes and cardinalities expressing participation
constraints of object classes in relationships.

Definition 1 (ClaM Syntax). A conceptual schema Σ in the Class Model,
ClaM, is a tuple Σ = (UC ,UR, τ,#dom,#ran, ISA,disj,cov), where:

– UC is the universe of object classes. We denote object classes as O1, O2, . . .;
– UR is the universe of binary relationships among object classes. We denote

relationships as R1, R2, . . .;
– τ : UR → UC × UC is a total function associating a signature to each binary

relationship. If τ(R) = (O1, O2) then O1 is the range and O2 the domain of
the relationship;

– #dom : UR × UC �→ N × (N ∪ {∞}) is a partial function defining cardinality
constraints on the domain of a relationship. #dom(R,O) is defined only if
τ(R) = (O,O1);

– #ran : UR × UC �→ N × (N ∪ {∞}) is a partial function defining cardinal-
ity constraints on the range of a relationship. #ran(R,O) is defined only if
τ(R) = (O1, O);

– ISA ⊆ UC × UC is a binary relation defining the super-class and sub-class
hierarchy on object classes. If ISA(C1, C2) then C1 is said to be a sub-class
of C2 while C2 is said to be a super-class of C1;

– disj ⊆ 2UC × UC is a binary relation defining the set of disjoint sub-classes
in an ISA hierarchy;

– cov ⊆ 2UC × UC is a binary relation defining the set of sub-classes covering
the super-class in an ISA hierarchy.

As for the full-fledged syntax of ER/UML/ORM, their formal set-theoretic
semantics, and their translation as ALCQI KBs we refer to [4,11,17]. Concerning
the semantics of the ClaM constructs, cardinality constraints are interpreted as
the number of times each instance of the involved class participates in the given
relationship, ISA is interpreted as sub-setting, disj and cov are interpreted
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A B

response

A B

unary-response

A B

non-response

A B

precedence

A B

unary-precedence

A B

non-precedence

A B

responded-existence

A B

non-coexistence

response(A,B) If A is executed, then B must be executed afterwards.
unary-response(A,B) If A is executed, then B must be executed exactly once afterwards.
precedence(A,B) If A is executed, then B must have been executed before.
unary-precedence(A,B) If A is executed, then B must have been executed exactly once before.
responded-existence(A,B) If A is executed, then B must also be executed (either before or afterwards).
non-response(A,B) If A is executed, then B will not be executed afterwards.
non-precedence(A,B) If A is executed, then B was never executed before.
non-coexistence(A,B) A and B cannot be both executed.

Fig. 4. Types of temporal constraints between activities and their intuitive semantics

in the obvious way using disjointness/union between classes, relationships are
interpreted as binary predicates, while the relationship signature acts as a typing
for its arguments.

Example 2. The lower part of the OCBC model shown in Fig. 2 captures the
data model as a ClaM diagram with:

UC = {Order, OrderLine, Product, Customer, Delivery};
UR = {contains, belongs to, is for, results in, receives};
τ(contains) = (Order, OrderLine), . . .
#dom(contains, Order) = (0,∞); #ran(contains, OrderLine) = (1, 1); . . .

Cardinalities are shown in the diagram following the UML reading.

4.2 Temporal Constraints over Activities

Taking inspiration from the DECLARE patterns [1], we present here the tem-
poral constraints between (pairs of) activities that can be expressed in OCBC.
Figure 4 graphically renders such constraints together with their intuitive mean-
ing. In the following we present their syntax.

Definition 2 (Temporal constraints). Let

– UA be the universe of activities, denoted with capital letters A1, A2, . . .;
– UTC be the universe of temporal constraints, i.e., UTC = {response,

unary-response, precedence, unary-precedence, responded-existence,
non- response, non-precedence, non-coexistence}, where each tc ∈ UTC

is a binary relation over activities, i.e., tc ⊆ UA × UA.

The set of temporal constraints in a given OCBC model is denoted as ΣTC and
is conceived as a set of elements of the form tc(A1, A2), where tc ∈ UTC and
A1, A2 ∈ UA.
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Remark 1. We observe that the non-precedence constraint is syntactic
sugar, as it can be emulated using non-response: non-precedence(A,B) ≡
non-response(B,A). Thus, in the following we will not consider it anymore.
When defining later on the OCBC model we will consider the set Σ+

TC

of positive constraints containing response, unary-response, precedence,
unary-precedence, and responded-existence, and the set Σ−

TC of negative
constraints containing non-response and non-coexistence.

4.3 Syntax of OCBC Models

We are now ready to define the OCBC model starting from data models and
temporal constraints as respectively defined in Sects. 4.1 and 4.2.

Definition 3 (OCBC syntax). An OCBC model, M, is a tuple:
(ClaM, ΣTC,UA,URAC

, τRAC
,#act,#obj, cref,neg-cref), where:

– ClaM is a data model as in Definition 1, and ΣTC a set of temporal constraints
as in Definition 2;

– UA is the universe of activities;
– URAC

is the universe of activity-object relationships being a set of binary
relationships;

– τRAC
: URAC

→ UA × UC is a total function associating a signature to each
activity-object relationship. If τRAC

(R) = (A,O) then A ∈ UA and O ∈ UC ;
– #act : URAC

× UA �→ N× (N∪ {∞}) is a partial function defining cardinality
constraints on the participation of activities in activity-object relationships.
#act(R,A) is defined only if τRAC

(R) = (A,O);
– #obj : URAC

× UC �→ {1} is a partial function denoting the activity that
generated a given object in O. #obj(R,O) is defined only if τRAC

(R) = (A,O);
– cref is the partial function of co-reference constraints s.t.

cref : Σ+
TC × URAC

× URAC
�→ UC ∪ UR;

– neg-cref is the partial function of negative co-reference constraints s.t.
neg-cref : Σ−

TC × URAC
× URAC

�→ UC ∪ UR.

Inverses of activity-object relationships are assumed to be functional capturing
the intuition that a single occurrence of an activity can manipulate an object at
a given point in time. To clarify the syntax of the OCBC modeling language we
illustrate the scenario provided in Example 1.

Example 3. We consider the OCBC model in Fig. 2 where the activities
are depicted in the upper part of the figure while the lower part shows
the ClaM data model for the data manipulated by the activities of the
process. The set URAC

of the activity-object relationships is: URAC
=

{create, closes, fills, prepares, refers to} connecting an activity with the
manipulated objects as an effect of executing the activity itself. For exam-
ple, the activity CreateOrder creates an instance of the object class Order
when it is executed. Cardinality constraints can be added to activity-object
relationships to specify participation constraints either on the activity side or
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on the object class side. For example, each execution of PickItem fills one
and only one OrderLine, i.e., #act(fills, PickItem) = (1, 1). On the other
hand, any OrderLine must be necessarily filled by executing a PickItem activity,
i.e., #obj(fills, OrderLine) = 1. The co-reference constraints involving object
classes specify constraints on how objects connected to different activities can be
shared. For example, the OrderLine instance filled by a PickItem is the same as
the one prepared by the corresponding WrapItem. These co-reference constraints
can be expressed using the following OCBC syntax:

cref
(

unary-response(PickItem, WrapItem), fills, prepares
)

= OrderLine,
cref

(

unary-precedence(WrapItem, PickItem), prepares, fills
)

= OrderLine.

The co-reference constraint 7 , and the negative co-reference constraint 8 are
expressed as, respectively:

cref(unary-precedence(PickItem, CreateOrder), fills, creates)= contains;
neg-cref(non-response(PayOrder, PickItem), closes, fills)= contains.

4.4 Semantics of OCBC Models

We now focus on the semantics of OCBC models. As pointed out in Sect. 2,
OCBC models are interpreted using traces that capture the occurrence of events,
the relationships between events and objects, and the evolution of objects and
relationships over time. Here, we base the OCBC semantics on infinite traces
(cf. Sect. 6 for a remark on finite traces). The information recorded in an actual
execution trace is interpreted under incomplete knowledge, i.e., as a trace frag-
ment containing explicit factual knowledge that is known to certainly hold but,
in general, only partially capturing what actually occurred. Thus, the notion of
trace as used in event log formats such as the XES IEEE standard has to be
interpreted, in our setting, as a trace fragment.

Our effort is to reconcile the process flow semantics with the data model
semantics. We thus resort to a knowledge base expressed in the temporal
DL TUSALCQI. In particular, we map both activities and object classes to
TUSALCQI concepts, while activity-object relationships and relationships of
the data model are mapped to TUSALCQI roles. Such an encoding of OCBC
models using KBs in the temporal DL TUSALCQI interprets constraints of an
OCBC model over infinite traces, while the ABox, that encodes the explicit fac-
tual knowledge, i.e., the trace fragment at hand, is interpreted as a finite portion
of such infinite traces. Here we detail the encoding.

Concerning the semantics of the ClaM data model, we interpret it via a
mapping to ALCQI as already discussed in Sect. 4.1. Furthermore, we can add to
the data model temporal constraints captured in TUSALCQI as shown in [5,7].

As for activity-object relationships, let R ∈ URAC
so that τRAC

(R) = (A,O).
The following TUSALCQI axioms captures inverse functionality, and domain
and range restrictions for R:

(≥ 2 R− �) 
 ⊥, ∃R 
 A, ∃R− 
 O. (1)



150 A. Artale et al.

A1 A2

O

R1 R2

(a)

A1 A2

O1 O2
R

R1 R2

(b)

A1 A2

O

R1 R2

(c)

A1 A2

O1 O2
R

R1 R2

(d)

Fig. 5. Co-reference (response) constraints over (a) object classes and (b) relationships,
with their negated versions (c-d)

A cardinality constraint of the form #obj(R,O) = 1, denoting the activity
that generated an object of class O, is captured as:

O 
 ♦+
P (O � ∃R−).

Cardinality constraints for the participation of activities in activity-object rela-
tionships (#act) are instead captured as classical cardinalities in data models
(see [5,7,11]).

Semantics of Co-reference Constraints. Having fixed the semantics for the
ClaM data model and the one for the activity-object relationships we are left
with the most tricky aspect of OCBC, namely the semantics of co-reference
constraints. In the following, we consider the different kinds of co-reference
constraints which, according to Definition 3, can be either positive or nega-
tive, and can range either over object classes (as illustrated in Fig. 5a and c)
or over relationships (as illustrated in Fig. 5b and d). Let R1, R2 ∈ URAC

,
A1, A2 ∈ UA and O ∈ UC s.t. tc(A1, A2) ∈ Σ+

TC , τRAC
(R1) = (A1, O),

τRAC
(R2) = (A2, O) and cref be a co-reference constraint over object classes

of the form: cref(tc(A1, A2), R1, R2) = O (as in Fig. 5a). Then, co-reference over
object classes when tc is the response temporal constraint is captured by the
axiom:

∃R−
1 
 ♦F∃R−

2 (2)

This expresses that “whenever an object is in the range of R1 then sometime
in the future it must be also in the range of R2”. This semantics enforces a
temporal constraint over the activities via the co-referenced object, i.e., when
the activity A1 is linked via R1 to an object in O then it must be followed by
an execution of A2 referencing the same object via R2. Formally, the following
logical implication holds:

{(1), (2), A1 
 ∃R1} |= A1 
 ∃R1.♦F∃R−
2 .A2 (3)

When tc is the unary-response temporal constraint we need to add to for-
mula (2) another formula that guarantees a unique occurrence of A2 over the
co-referenced object:

∃R−
2 � ♦P∃R−

1 
 �F¬∃R−
2 (4)
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o1 . . .

a1 : A1 b1 : A2 b2 : A2

t0 t1 t2

R1 R2 R2

(a)

o1 : O1

o2 : O2

. . .

. . .

a1 : A1 b1 : A2 b2 : A2

t0 t1 t2

R1 R2

R

R2

(b)

Fig. 6. (a) Trace fragment for (2) but not (4); (b) trace fragment for (8) but not (10)

Figure 6a shows a possible instantiation of the OCBC model in Fig. 5a which,
in turn, is not a valid fragment in case the temporal constraint is changed to
unary-response.

Similar formulas hold when tc is a temporal constraint over the past, i.e.,
either precedence (formula (5)), unary-precedence (formulas (5) and (6)) or
responded-existence (formula (7)).

∃R−
1 
 ♦P∃R−

2 (5)

∃R−
2 � ♦F∃R−

1 
 �P¬∃R−
2 (6)

∃R−
1 
 ♦∗ ∃R−

2 (7)

We now consider co-reference constraints over relationships. As in Fig. 5b, let
O1, O2 ∈ UC , R ∈ UR, with τ(R) = (O1, O2), τRAC

(R1) = (A1, O1), τRAC
(R2) =

(A2, O2) and cref be a co-reference of the form: cref(tc(A1, A2), R1, R2) = R.
Then, the semantics of co-reference over relationships when tc is the response
constraint is captured by:

∃R−
1 
 ♦F∃R. ∃R−

2 (8)

Expressing that “every object in the range of R1 sometime in the future should
be connected via R to an object in the range of R2.” A logical implication similar
to (3) holds:

{(1), (8), A1 
 ∃R1} |= A1 
 ∃R1.♦F∃R.∃R−
2 .A2 (9)

When tc is unary-response we should add to formula (8) another formula that
guarantees that activity A1 is followed by a single occurrence of A2 via R. The
following axiom expresses that “whenever an object is in the range of R2 (thus
under the occurrence of A2) and is connected via R− to an object that before
was in the range of R1 (due to the occurrence of the activity A1) then, it will
never be in the range of R2.”

∃R−
2 � ∃R−.♦P∃R−

1 
 �F¬∃R−
2 (10)

Figure 6b shows an instantiation of the OCBC model in Fig. 5b that, in turn,
is not anymore a valid fragment in case the temporal constraint is changed to
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unary-response (because o2 is pointed to by two different instances—b1, b2—of
the activity A2).

Similar formulas hold when tc is precedence (axiom (11)), unary-precedence
(axioms (11) and (12)) and responded-existence (axiom (13))

∃R−
1 
 ∃R.♦P∃R−

2 (11)

∃R−
2 � ♦F∃R−. ∃R−

1 
 �P¬∃R−
2 (12)

∃R−
1 
 ♦∗ ∃R.♦∗ ∃R−

2 (13)

Note that axiom (13) allows for responded-existence to be symmetric—as for
axiom (7)—i.e., {(13)} |= ∃R−

2 
 ♦∗ ∃R−.♦∗ ∃R−
1 .

We now consider co-references in the presence of negative behavioral con-
straints (see Fig. 5c-d). We start with co-reference over object classes. In case tc
is non-response (as in Fig. 5c) then the following axiom expresses that “when-
ever an object is in the range of R1 then never in the future it could be in the
range of R2”:

∃R−
1 
 �F¬∃R−

2 . (14)

As a consequence of this axiom, and of the fact that the domains of R1 and R2

are activities A1 and A2, while they both range over the same class O, we can
also read this negative co-reference as “every instance of activity A1 can never
be followed by instances of A2 sharing the same object in O”. The right-hand
side of the axiom is the negation of the right-hand side of axiom (2). When tc
is non-coexistence, we have

∃R−
1 
 �∗ ¬∃R−

2 (15)

Again, the right-hand side is the negation of the right-hand side of axiom (7).
When negative co-references involve a relationship and tc is non-response

(as in Fig. 5d) the following axiom expresses that “whenever an object is in the
range of R1 then never in the future it could be connected via R to an object in
the range of R2 (thus under the occurrence of A2)”:

∃R−
1 
 �F¬∃R.∃R−

2 (16)

implying that “every instance of activity A1 can never be followed by instances of
A2 sharing the same pair of objects in R”. Notice again that the right-hand side
of the above axiom is the negation of the right-hand side of axiom (8). Finally,
by negating the right-hand side of axiom (13) we capture the case when tc is
non-coexistence

∃R−
1 
 �∗ ¬∃R.♦∗ ∃R−

2 (17)
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Similar to responded-existence, non-coexistence over both object classes (15)
and relationships (17) is obviously symmetric. Formally, considering the co-
reference over a relationship, {(17)} |= ∃R−

2 
 �∗ ¬∃R−.♦∗ ∃R−
1 .

Altogether, an OCBC model can be captured via a TBox in TUSALCQI,
and its trace fragments using corresponding ABoxes. Overall, a TUSALCQI KB
is thus able to provide a uniform representation for OCBC, on which we can
apply ad hoc reasoning services as described in the following section.

5 Verification and Reasoning over OCBC Models

The main motivation to provide a mapping from OCBC models to a DL Knowl-
edge Base is the possibility of carrying out automated reasoning over them.
We discuss how the typical services for verifying declarative, constraint-based
process models can be lifted to the more sophisticated setting of OCBC. To
do so, we build on the services defined for the well-established DECLARE lan-
guage [24,25]. In the following, we show how such services can be reformulated
as standard reasoning tasks over TUSALCQI knowledge bases, in turn inheriting
their decidability and worst-case complexity.

Let M be an OCBC model of interest, and ρ a trace fragment over M. We
denote by TM and Aρ the TBox and ABox obtained by encoding M and ρ in
TUSALCQI, and by KM,ρ the resulting TUSALCQI KB, i.e., KM,ρ = (TM,Aρ).

Model Consistency. The most fundamental service is to check whether M is
consistent, that is, supports the empty trace fragment (in turn witnessesing that
it supports at least one full trace). This directly reduces to check whether TM
is satisfiable.

Activity Executability. An OCBC model may be consistent, but including
so-called dead activities [25], i.e., activities that cannot be executed at all. We
can show whether an activity A in M can be executed by verifying whether such
an activity is not logically implied to be empty in the corresponding TBox, i.e.,
TM �|= A 
 ⊥.

Create
Order

Pay
Order

Order

creates closes

(a)
Pay
Order

Wrap
Item

Order Order Line
contains

closes prepares

(b)

Fig. 7. Implied (a) and non-implied (b)
constraints by the OCBC model of Fig. 2

Implied Properties. Let α be
a model property expressible in
TUSALCQI. We can check whether
M |= α by checking whether KM,ρ |=
α. E.g., (3) is a property implied by
M. The presented encoding of OCBC
into TUSALCQI allows us to use its
reasoning capabilities to detect so-
called hidden constraints [24], i.e., con-
straints that are implicitly present in
M even though they are not shown
graphically.
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Example 4. Consider again the OCBC model of Fig. 2 and the two constraints
in Fig. 7 where Fig. 7a captures that an order can be paid only if it has been
created before, and Fig. 7b that no order line of an order can be wrapped after
that order is paid. It is easy to verify that the former constraint is indeed implied,
while the latter constraint it is not. While it is true that once an order is paid
no further items can be picked for it, already picked order lines may still need
to be wrapped.

Execution Trace Compliance. This amounts to check whether a trace frag-
ment ρ satisfies the constraints in M. Since ρ is a trace fragment, we require
that no explicit violation is contained in ρ and that ρ can be’completed’ into a
fully specified, infinite trace that satisfies M. This corresponds to the notion of
conditional compliance recently introduced in [15]. In our setting, this amounts
to check whether the ABox Aρ encoding ρ is satisfiable w.r.t. the TBox TM, i.e.,
whether the KB KM,ρ is satisfiable.

Complexity Considerations. Notice that, KB satisfiability and logical impli-
cation are mutually reducible in ALCQI [6] (and thus in TUSALCQI) and
these reasoning problems over TUSALCQI are ExpTime-complete [18,27], which
establishes an ExpTime upper bound for verifying properties of OCBC models.
The need to use ALCQI as the base DL is due to co-reference constraints over
relationships, which requires the power of qualified existential (∃R.C) and its
dual. If we renounce such constraints (i.e., only consider OCBC constraints co-
referring on classes), we could use a temporalized version of a DL-Lite dialect.
In particular, the temporal DL-Lite fragment TUSDL-Lite

(HN )
bool , showed to be

PSpace-complete in [8], is able to capture OCBC models with the exception of
co-reference constraints over relationships while, at the level of the data model,
TUSDL-Lite

(HN )
bool captures the main constructs of UML—with the exception of

ISA between relationships and n-ary relationships (cf. [4,7] for details).

6 Conclusions

We presented the first, complete formalization of object-centric behavioral con-
straints (OCBC): a new approach to business process modeling where data
models and declarative constraints over activities are seamlessly integrated. Our
approach comes with a logic-based semantics for OCBC in terms of an encoding
into the temporal DL TUSALCQI. This unambiguously defines the meaning of
OCBC models, and lays the foundations for reasoning over them, allowing us to
understand the (decidability and) complexity boundaries of reasoning tasks over
OCBC models. TUSALCQI interprets time as a linear, infinite structure, which
contrasts with the finite-trace semantics adopted in other declarative process
modeling languages such as Declare. The study of temporal description logics
with finite-time semantics is rather novel [9], and may constitute the basis for
reasoning over OCBC models on finite traces.
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We have considered here standard data models to capture the structural
aspects of OCBC. Variants of OCBC with non-conventional temporalized cardi-
nality constraints over relationships have been used [21,22]. We intend to study
whether such constraints may impact on the decidability and complexity of rea-
soning over OCBC models.

In our research agenda, we are interested not only in design-time reasoning
of OCBC models, but also in enactment, monitoring, and runtime verification.
This poses two major challenges. On the one hand, a monitored trace has to
be considered under a “partially closed” semantics, that is, by interpreting it
as a complete record of what happened so far, while missing information about
the future. On the other hand, a more fine-grained analysis, in the style of [23],
regarding if and how a monitored trace conforms to an OCBC model is needed.
We intend to attack this problem by combining finite and infinite reasoning over
a partially closed knowledge base.

Acknowledgments. This research has been partially supported by the UNIBZ CRC
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