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Abstract. We present a vision of smart, goal-oriented web services that
reason about other services’ policies and evaluate the possibility of fu-
ture interactions. We assume web services whose behavioural interface
is specified in terms of reactive rules. Such rules can be made public,
in order for other web services to answer the following question: “is it
possible to inter-operate with a given web service and achieve a given
goal?”. In this article we focus on the underlying reasoning process, and
we propose a declarative and operational abductive logic programming-
based framework, called WAVe. We show how this framework can be
used for a-priori verification of web services interaction.

1 Introduction

Service Oriented Computing (SOC) is rapidly emerging as a new programming
paradigm, propelled by the wide availability of network infrastructures, such
as the Internet. Web service-based technologies are an implementation of SOC,
aimed at overcoming the intrinsic difficulties of integrating different platforms,
operating systems, languages, etc., into new applications. It is in the spirit of
SOC to take off-the-shelf solutions, like web services, and compose them into
new applications. Service composition is very attractive for its support to rapid
prototyping and possibility to create complex applications from simple elements.

If we adopt the SOC paradigm, how to exploit the potential of a growing base
of web services, in order to decide which service could be used for inter-operating,
becomes a strategic issue. A partial answer is given by service discovery through
yellow pages or other registries. This solves part of the problem: as through
discovery we only know that there are some potentially useful services, but un-
derstanding whether interacting with them will be profitable or detrimental is
far from being a trivial question. In this article we consider web serivces that
need to understand, pairwise, and based on a run-time exchange of policies, if
they can inter-operate or not. We present a vision of smart, goal-oriented web
services that reason about other services’ specifications, with the aim to separate
out those that can lead to a fruitful interaction. We assume that each web ser-
vice publishes, alongside with its WSDL, its behavioural interface specification.
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Fig. 1. The architecture of WAVe

By reasoning on the information available about other web services’ behavioural
interface, each web service can verify which goals can be reached by interacting.

To achieve our vision, we propose a proof theoretic approach, based on com-
putational logic – in fact, on abductive logic programming. We formalise service
policies in a declarative language which is a modification of the SCIFF language
[7]. Policies are defined with integrity constraints (ICs): a sort of reactive rules
used to generate and reason about expectations on possible evolutions of a given
interaction. We believe that, as advocated by Alferes et al. [9], an approach
based on logic programming allows us to express knowledge in form of rules and
to make inference with them. As claimed in [11], a rule-based approach to reac-
tivity on the Web provides several benefits over conventional approaches. Rules
are easy to understand for humans, and requirements often already come in the
form of rules; they are well-suited for processing and analyzing by machines, and
can be managed in a centralized knowledge base or distributed over the Web.

Based onSCIFF, we propose a new declarative semantics and a proof-procedure
that combines forward, reactive reasoning with backward, goal-oriented reason-
ing. The new framework, called WAVe (Web-service Abductive Verification), fea-
tures a language for logically defining the behavioural interface of web services
(suitably encoded in RuleML), primitives for acquiring rules from the web and
reasoning about them, and goal-directed discovery of web services with whom
interaction could be successful.

2 The WAVe Framework

Fig. 1 depicts our general reference architecture. The layered design of a web
service has WAVe at the top of the stack, performing reasoning based on its own
knowledge and on the specifications of other web services. Web services exchange
their specifications/policies encoded in a Rule Interchange Format (RIF).

In WAVe, the observable behaviour of web services is represented by events :
Event ::= H(Sender, Receiver, Message, T ime).

Since we focus on (explicit) interaction between web services, events represent
exchanged messages. Events are hypothesised, when reasoning about the capa-
bilities of a given service. Each web service tries to foresee the future course of
events that will happen, assuming that its own policies, encoded in the published
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specifications, will be respected by the other peers. Expected events are atoms
that represent a message that the web service ws is expecting will be exchanged:

Expectation ::= Ews(Sender, Receiver, Message, T ime).
The subscript indicates the web service holding the expectation. If a correspond-
ing event (H) indeed happens, the expectation is fulfilled, otherwise it is violated.

Web service specifications in WAVe are relations among happened and ex-
pected events, expressed by an Abductive Logic Program (ALP). In general, an
ALP [15] is a triplet 〈P, Ab, IC〉, where P is a logic program, Ab is a set of pred-
icates named abducibles, and IC is a set of integrity constraints. Intuitively, P
contains definitions of predicates, Ab represents unknown predicates (not defined
in P ), and IC constrains the way elements of Ab are hypothesised, or “abduced”.
Reasoning in ALP is usually goal-directed: given a goal G, the aim is to find a
set of hypotheses Δ ⊆ Ab such that P ∪Δ |= G and P ∪Δ |= IC.

Definition 1 (Behavioural Interface Specification). Given a web service
ws, its behavioural interface specification Pws is the ALP 〈KBws, Ews, ICws〉,
where KBws is ws’s Knowledge Base, Ews is ws’s set of abducible predicates,
and ICsws is ws’s set of Integrity Constraints.

Ews includes predicates not defined in KBws, as well as expectations.
KBws is a set of clauses which declaratively specifies pieces of knowledge of

the web service. In WAVe, clauses can contain abducible literals (with signature
in Ews), as well as constraints à la Constraint Logic Programming (CLP) [13].

IC ::= Body → Head
Body ::= (Event|Expectation)[∧(Event|Expectation|Atom|Constr)]�

Head ::= Disjunct [ ∨Disjunct ]� | false
Disjunct ::= (Expectation | Constr)[ ∧ (Expectation | Constr | Atom)]�

(1)

Integrity Constraints (ICs) are forward rules, that can involve the various types
of literals in our language, namely expectations, happened events, literals of
predicates defined in the KB, other abducible predicates, and CLP constraints.
The syntax of ICws (Eq. 1) is a modification of the integrity constraints in the
SCIFF language [7]. In particular, in WAVe each expectation is labelled with the
name of the web service that is expecting the event. Happened events (H) are
always acquired from the external in SCIFF, while in WAVe they are abducible
during reasoning phase. Intuitively, the operational behaviour of ICs is similar
to forward rules: whenever the body is true, the head should also be proven true.

3 Modeling in WAVe

Let us consider the following running example, showing how the involved services
are modeled in WAVe. Evelyn is a customer who wants to obtain an electronic
book by tomorrow, encrypted with algorithm best; she can pay cash or by credit
card (cc), and knows two shops potentially able to satisfy her requirements.

The first shop accepts payments only with credit card and supports the en-
cryption of goods. In our syntax, we can express that if a request arrives, then
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the shop will plan to reply asking for a payment, and expect the customer to pay
for the good. Thus, the eShop1 raises an expectation about its own behaviour
(I should ask for money), and one about the behaviour of the peer (you should
pay)1:

H(X, eShop1, request(Item, enc(Alg)), Ts)
→EeShop1(eShop1, X, ask(pay(Item, cc)), Ta)
∧EeShop1(X, eShop1, pay(Item, cc), Tcc).

(eShop1.1)

If the shop received the money at least 48 hours earlier, it will deliver the item:

H(X, eShop1, request(Item, enc(Alg)), Ts)
∧H(X, eShop1, pay(Item, How), Tp)

→EeShop1(eShop1, X, deliver(Item, enc(Alg)), Ts), Tp + 48 < Ts

(eShop1.2)

eShop2 accepts payments either by cash or credit card:

H(X, eShop2, request(Item, enc(Alg)), Ts)
→EeShop2(X, eShop2, pay(Item, How), Tp), How::[cc, cash]
∧EeShop2(X, eShop2, pay(Item, How), Tcc).

(eShop2.1)

Furthermore, it delivers goods in encrypted form only if the client has paid with
credit card:

H(X, eShop2, pay(Item, cash), Tp)
→EeShop2(eShop2, X, deliver(Item, enc(none)), Ts)

(eShop2.2)

H(X, eShop2, pay(Item, cc), Tp)
→EeShop2(eShop2, X, deliver(Item, enc(best)), Ts)

(eShop2.3)

In this simple example, Evelyn knows the two shops and their URL. In a
real world situation, the addresses could be collected from a yellow-pages ser-
vice, or by advertisements broadcasted by the shops or sent directly to Evelyn.
The known services, togheter with their corresponding URL, can be recorded in
Evelyn’s KB by using a list of facts of the type known service(Service, URL)
(e.g. known service(eShop1, ”http : //www.eShop1.com”)).

Evelyn’s goal is to find a web service that provides her the book within 24
hours

Gevelyn = Eevelyn(S, evelyn, deliver(book, enc(best)), T ), T ≤ 24. (Goal)

Evelyn’s ICs say that upon request of payment, she will perform the payment,
either by credit card or by cash:

H(X, evelyn, ask(pay(Item, How)), Tp)
→Eevelyn(evelyn, X, pay(Item, How), Tp), How::[cc, cash]

(evelyn1)

1 The symbol “::” represents a domain constraint.
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Moreover, Evelyn has a plan about how she could get an item; if she wants an
item to be delivered her, she should request someone to deliver it:

Eevelyn(S, evelyn, deliver(Item, enc(How)), Td)
→Eevelyn(evelyn, S, request(Item, enc(How)), Tr), Tr < Td,

f ind conformant(S).
(evelyn2)

Predicate find conformant is also defined in Evelyn’s KB:

find conformant(Service)← known service(Service,URL),
download(URL, ICS), impose ics(ICS).

Primitive download retrieves information from the web (and can be imple-
mented, e.g., with the PiLLoW library [12]). In our framework, web services
expose their behavioural interface on the web, so in this case Evelyn downloads
the ICs of the peer she wants to interact with. Finally, impose ics is a meta-
predicate that adds a set of implications to the current set of ICs, and is used
by Evelyn to put its own policies togheter with those of the other peer.

4 Declarative and Operational Semantics

We assume that all web services have their own behavioural interface specified
in the language of ICs. This behavioural interface could be thought of as an
extension of WSDL, that can be used by other web services to reason about the
specifications, or to check if inter-operability is possible.

The web service initiating the interaction has a goal G, which is a given state
of affairs. Typical goals are to access resources, retrieve information, or obtain
services from another web service. G can be any conjunction of expectations,
CLP constraints, and any other literals, in the syntax of ICws Disjuncts (Eq. 1).

A web service ws reasons about the possibility to achieve a goal G by interact-
ing with a peer ws′ using KBws, ICws, G, and the information obtained about
ws′’s policies, ICws′ (Fig. 1). The idea is to obtain, through abductive reasoning,
a possible course of events that together with KBws entails ICws ∪ICws′ and G.
Definition 2 (Possible interaction about G). A possible interaction about
a goal G between two web services ws and ws′ is an A-minimal [6] set HAP ∪
EXP ∪ΔA such that Eq. 2, 3 and 4 hold:

KBws ∪HAP ∪ EXP ∪ΔA |= G (2)

KBws ∪HAP ∪ EXP ∪ΔA |= ICws ∪ ICws′ (3)

KBws ∪HAP ∪ EXP ∪ΔA |= EX(X, Receiver,Action, T ime)→ (4)

H(X, Receiver,Action, T ime).

where HAP is a conjunction of H atoms, EXP a conjunction of E atoms, and
ΔA a conjunction of abducible atoms.

We ground the notion of entailment on a model theoretic semantics defined for
Abductive Disjunctive Logic Programs [6], a slight modification of the semantics
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presented in [17]. Rule 4 means that we assume all the web services will behave
rationally, i.e., they will perform all actions that fulfil their own expectations.

Note that currently in our framework web services do not expose their knowl-
edge base, but only the integrity constraints. However, in general integrity con-
straints can involve predicates defined in the KB. In this case, the web service ws
that reasons upon the specifications of ws′ will make hypotheses on the possible
truth value of the predicates defined in the (unknown) KBws′ ; such hypotheses
are abduced and recorded in the set ΔA. 2

Among all possible interactions about G, some of them are fruitful, and some
are not. An interaction only based on expectations which are not matched by
corresponding events is not fruitful: for example, the goal of ws might not have
a corresponding event, thus G is not actually reached, but only expected. Or, one
of the web services could be waiting for a message from the other fellow, which
will never arrive, thus undermining the inter-operability.

We select, among the possible interactions, those whose history satisfies all
the expectations of both the web services. After the abductive phase, we have a
verification phase in which there are no abducibles, and in which the previously
abduced predicates H and E are now considered as defined by atoms in HAP
and EXP, and they have to match. If there is a possible interaction satisfying
all expectations, then ws has found a sequence of actions that obtains the goal.

Definition 3 (Possible interaction achieving G). Given two web services,
ws and ws′, and a goal G, a possible interaction achieving G is a possible inter-
action about G satisfying (for all X ∈ {ws, ws′})

HAP ∪EXP |= EX(S, R, Action, T )↔ H(S, R, Action, T ) (5)

Intuitively, the “→” implication in Eq. 5 avoids situations in which a web service
waits for an event that the peer will never produce. The “←” implication avoids
that one web service sends unexpected messages, which in the best case may not
be understood (and in the worst cases may lead to faulty behaviour).

4.1 Operational Semantics

The operational semantics is a modification of the SCIFF proof-procedure [7].
SCIFF was initially developed to specify and verify agent interaction proto-
cols in open environments. It processes events drawing from HAP and abduces
expectations, checking that all of them are fulfilled by a happened event.

WAVe extends SCIFF and abduces H events as well as expectations. The
events history is not taken as input, but all possible interactions are hypothesised.
Moreover, in WAVe events not matched by an expectation (accepatble in an
open scenario) cannot be part of a possible interaction achieving the goal. For
this reason, in WAVe a new transition labels each H events with an expected
flag as soon as a matching expectation is abduced. At the end of the derivation,
2 Possibly, the result of the abductive phase can be sent to the peer ws′, that can accept

or refuse such a proposal. In other words, a contracting phase could be initiated.
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unflagged H will cause failure. Also, in WAVe new ICs can be dinamically added.
A transition accounts for this need: if the selected literal is impose ics(X) it adds
the set X to the ICs.

Finally, note that soundness and completeness results, proven for the SCIFF
proof-procedure under reasonable assumptions, also hold for WAVe. In partic-
ular, adding dynamically new ICs can be performed in SCIFF, because the
success nodes do not change if ICs are dynamically added with respect to the
case in which they are stated from the beginning of the derivation. 3

5 Verification

WAVe supports different types of verification, using the same description of web
services in terms of ICs. For space reasons, we will consider only the a-priori ver-
ification, in which web services check whether there exists a possible interaction
for obtaining the desired goal. After finding the possible interactions achieving
its goal, the service can submit them to the other party, to establish an agree-
ment, which could be considered as a contract, where the allowed interactions are
(implicitly) listed. At this step both web services know which are the approved
communications, so if they stick to what has been agreed the interaction should
be successful. However, at execution time violations could always happen: on-
the-fly verification aims at finding such possible violations. We have addressed
this issue in [5], where the same web service specification is used to verify if the
interacting parties actually behave in a conformant manner.

5.1 A-Priori Verification

Starting from her goal (Eq. Goal), Evelyn abduces that she wants the electronic
book delivered to her within one day (24 hours):

Eevelyn(S, evelyn, deliver(book, enc(best)), T ), T ≤ 24. (6)

This expectation triggers the Rule evelyn2, and another expectation is abduced.
By rationality (Eq. 4), such expectation becomes a happened event

H(evelyn, S, request(book, enc(best)), Tr), Tr < 24. (7)

Now, Evelyn invokes find conformant , that will choose one of the shops,
download its interface, and test if it is conformant. Let us suppose to start with
eShop1: rule eShop1.1 will trigger, as its antecedent is true because of event (7).

eShop1 is thus supposed to generate two expectations: it will ask Evelyn to
pay by cc, and will expect Evelyn to do it. Again, by rationality, the expectation

3 One way to see this property is using a lemma of the soundness theorem [7]. To prove
that an IC can be added dynamically, it is enough to insert in the body a fictitious
event and add such event dynamically. Propagation of this IC is thus delayed until
such event occurs. The effect is the same as adding the IC dynamically.
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of eShop1 about its own behaviour becomes a happened event, and Evelyn will
react to it by performing the payment:

H(eShop1, evelyn, ask(pay(book, cc)), Ta) ∧How :: [cc, cash]
H(evelyn, eShop1, pay(book, cc), Tp).

eShop1 can now trigger its Rule eShop1.2, generating an expectation about its
own behaviour, that will be translated by rationality into the event:

H(eShop1, evelyn, deliver(book, enc(best)), Ts) ∧ Tp + 48 < Ts.

Now the proof-procedure tries to match such event with Evelyn’s expectation
(6). The propagation of CLP constraints infers Tp < −24, reminding Evelyn that
she should have made her request one day earlier. The proof-procedure signals
a deadline violation: there is no way to obtain the book on time from eShop1.

Evelyn can now download the behavioural interface of eShop2. Since the be-
haviour of eShop2 depends on the chosen payment method, we have two possible
interactions. In the first one she pays by cash, obtaining the following history:

H(evelyn, eShop2, request(book, enc(best)), Tr), Tr < 24
H(eShop2, evelyn, ask(pay(book, cash)), Ta)
H(evelyn, eShop2, pay(book, cash), Tp)
H(eShop2, evelyn, deliver(book, enc(none)), Ts).

This time there are no missed deadlines, but the book is sent unencrypted:
Evelyn’s expectation (6) is not matched by any event. Luckily, Evelyn has
another branch to explore, i.e. the one in which she actually pays by cc. In this
case, eShop2 will use the best algorithm (rule eShop2.3): the generated history
satisfies all expectations of both peers, thus eShop2 is considered conformant.

6 Rule Mark-Up

In WAVe, the ICs can be exchanged between web services, as well as advertised
together with their WSDL. As the exchanged information is made of rules, the
natural choice for the web-friendly interchange format is RuleML [3].

WAVe embeds two types of rules: ICs and clauses. ICs are forward rules, used
to react to events and generate new expectations. Clauses are backward rules,
used to plan, reason upon events and perform proactive reasoning. RuleML 0.9
contains a direction attribute to represent both kinds of rules. Being based on
abduction, WAVe can deal both with negation as failure and negation by default,
that have an appropriate tagging in RuleML. In this work, we only used standard
RuleML syntax; in future work we might be interested in distinguishing between
defined and abducible predicates, or between expectations and events.

WAVe was implemented in SICStus Prolog, which contains an implementation
of PiLLoW [12], making it easy to access information on the web, and an XML
parser, useful to easily implement a bidirectional RuleML parser.
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7 Discussion and Related Work

WAVe is a framework for defining declaratively the behavioural interface of web
services, and for testing the possibility of fruitful interaction between them. It
uses and extends a technology initially developed for online compliance verifica-
tion of agent interaction to protocols [7]. The extension of SCIFF to the context
of web services, centering around the concept of policies seems very promising.

In a companion paper [6] we propose the use of SCIFF in the context of
discovery engines. We present a fundamentally different architecture, in which
a third party (i.e. a discovery engine) reasons on behalf of the requesting web
service. Specifically, we focus on the “contracting” stage of service discovery, in
which, following ontological matchmaking, the third party needs to understand
if there exists a concrete interaction between the “requestor” and a “provider”
web service that achieves a given requestor’s objective. D ifferently from what we
show here, such interaction is not defined based on a “total expectation” concept
(see Section 4, Eq. 5), but it may include “unexpected” events, which leads to a
different semantics. This is due to the different architecture, in which the third
party has to reason under the assumption of incomplete knowledge – thus even
sequences of events that are not totally expected by the third party may lead to
achieving the requestor’s objective. We are working on the combination of the
two proposed approaches into a unified architecture.

The idea of policies for web services and policy-based reasoning is also adopted
by many other authors, among which Finin et al. [14], and Bradshaw et al. [18].
The first has an emphasis on representation of actions, the latter on the deontic
semantic aspects of web service interaction. Previous work on SCIFF addressed
the links between deontic operators and expectation-based reasoning [8].

The outcome of the WAVe reasoning process could be intended as a sort of
“contract agreement”, provided that each peer is tightly bounded to the policies
it has previously published. The dynamic agreement on contracts (e-contracting)
is addressed in [10], where Situated Courteous Logic is adopted for reasoning
about rules that define business provisions policies.

In this work we mainly focus on the reasoning process upon the policies of
both the peers, without considering ontologies. Many other approaches focus on
the latter issue (as for example OWL-S [2]), hence our proposal could be seen
as a complementary functionality. In [1] it is proposed a language for semantic
web service specification (using logic), and a notion of mediator is introduced
to overcome differences between ontologies. In [16], the authors present a frame-
work for automated web service discovery that uses the Web Service Modeling
Ontology (WSMO) as the conceptual model, and distinguishes between a discov-
ery phase and a contracting phase. Both the approaches perform hypothetical
reasoning; however, in [16,1], only the client’s goal is considered, while in WAVe

also behavioural interfaces are taken into account. Therefore, our framework can
be exploited to verify interoperability between behavioural interfaces [4].
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