
An intelligent query interface
based on ontology navigation

Enrico Franconi
franconi@inf.unibz.it

Paolo Guagliardo
paolo.guagliardo@stud-inf.unibz.it

Marco Trevisan
marco.trevisan@stud-inf.unibz.it

KRDB Research Centre
Free University of Bozen-Bolzano

ABSTRACT
In this paper we present a formal framework and an experi-
mental software supporting the user in the task of formulat-
ing a precise query – which best captures their information
needs – even in the case of complete ignorance of the vocab-
ulary of the underlying information system holding the data.
Our intelligent interface is driven by means of appropriate
automated reasoning techniques over an ontology describ-
ing the domain of the data in the information system.

We will define what a query is and how it is internally repre-
sented, which operations are available to the user in order to
modify the query and how contextual feedback is provided
about it presenting only relevant pieces of information. We
will then describe the elements that constitute the query in-
terface available to the user, providing visual access to the
underlying reasoning services and operations for query ma-
nipulation. Lastly, we will define a suitable representation
in “linear form”, starting from which the query can be more
easily expressed in natural language.

Author Keywords
query formulation support automated reasoning description
logics ontology visual graphical intelligent user interface

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces—Graphical user interfaces (GUI)—Natural language
—Interaction styles

INTRODUCTION
Recent research showed that adopting formal ontologies as
a means for accessing heterogeneous data sources has many
benefits, in that not only does it provide a uniform and flexi-
ble approach to integrating and describing such sources, but
it can also support the final user in querying them, thus im-
proving the usability of the integrated system.

We introduce a framework that enables access to heteroge-

Workshop on Visual Interfaces to the Social
and Semantic Web (VISSW2010), IUI2010,
Feb 7, 2010, Hong Kong, China.
Copyright is held by the author/owner(s).

neous data sources by means of a conceptual schema and
supports the users in the task of formulating a precise query
over it. In describing a specific domain, the ontology defines
a vocabulary which is often richer than the logical schema
of the underlying data and usually closer to the user’s own
vocabulary. The ontology can thus be effectively exploited
by the user in order to formulate a query that best captures
their information need. The user is constantly guided and
assisted in this task by an intuitive visual interface, whose
intelligence is dynamically driven by reasoning over the on-
tology. The inferences drawn on the conceptual schema help
the user in choosing what is more appropriate with respect
to their information need, restricting the possible choices
to only those parts of the ontology which are relevant and
meaningful in a given context.

The most powerful and innovative feature of our framework
lies in the fact that not only do not users need to be aware of
the underlying organisation of the data, but they are also not
required to have any specific knowledge of the vocabulary
used in the ontology. In fact, such knowledge can be grad-
ually acquired by using the tool itself, gaining confidence
with both the vocabulary and the ontology. Users may also
decide to just explore the ontology without actually querying
the information system, with the aim of discovering general
information about the modelled domain.

Another important aspect is that only queries that are logi-
cally consistent with the context and the constraints imposed
by the ontology can be formulated, since contradictory or re-
dundant pieces of information are not presented to the user
at all. This makes user’s choices clearer and simpler, by rul-
ing out irrelevant information that might be distracting and
even generate confusion. Furthermore, it also eliminates the
often frustrating and time-consuming process of finding the
right combination of parts that together constitute a mean-
ingful query. For this reason, the user is free to explore the
ontology without the worry of making a “wrong” choice at
some point and can thus concentrate on expressing their in-
formation need at best.

Queries can be specified through a refinement process con-
sisting in the iteration of few basic operations: the user first
specifies an initial request starting with generic terms, then
refines or deletes some of the previously added terms or in-
troduces new ones, and iterates the process until the resulting
query satisfies their information need. The available opera-
tions on the current query include addition, substitution and
deletion of pieces of information, and all of them are sup-

1



ported by the reasoning services running over the ontology.

The framework is implemented in the form of an experimen-
tal software, called Query Tool, which relies on a web-based
client-server architecture consisting of three components:

• the query logic (QueLo), responsible of “reasoning” over
the ontology in order to provide only relevant information
w.r.t. the current query;

• the natural language generation (NLG) engine, that given
a query and a lexicalization map for the ontology produces
an English sentence;

• the user interface (UI), that provides visual access to the
query and editing facilities for it, allowing to interact with
the QueLo sub-system while benefiting from the services
of the NLG engine.

OVERVIEW
In the paper we will introduce the Query Tool’s formal frame-
work and functional API, that constitute the basis on top of
which different types of user interfaces (UIs) can be devised.
Previous implementations of the Query Tool ([1, 15]) exper-
imented mostly with tree-based and menu-based UIs. In this
section we first describe the behaviour of the Query Tool us-
ing a generic representation over an abstract user interface.
Later on in the paper we will then introduce a concrete inter-
face based on the generation of natural language.

Consider a scenario in which we have a conceptual schema,
say an OWL ontology, we know nothing about. In such situ-
ation, the Query Tool reveals to be particularly useful in that
it allows to discover information about the ontology and the
modelled domain, even when its vocabulary is completely
ignored. What we call intensional navigation of the ontol-
ogy is the process of building a query, starting from a very
general request which is then refined by adding or deleting
constraints according to the user’s information need. In our
abstract representation, the default initial query looks like
the one shown in Figure 1 that generically asks for some
“thing”. Four operations are available for manipulating the
query: add for the addition of new terms and relations; sub-
stitute for replacing a portion of the query with a more gen-
eral, equivalent or more specific term; delete for discarding
parts of the query; and weaken for making a portion of the
query as general as possible.

Figure 1: Initial query

The first step in the refinement of our query consists in be-
ing more specific about what we are looking for. This can be
achieved by selecting something within the query and asking

for a substitution. In our example, we tick the check-box as-
sociated with the term Thing and then press the Substitute
button. As shown in Figure 2, we are presented with a three-
part menu listing all the possible substitutions available for
the selected portion of the query: terms that appear at the top
are more general than the selection, the ones in the middle
are equivalent, while those at the bottom are more specific.
Moreover, these terms are organised in sub-menus according
to the taxonomic information defined in the ontology. Thus,
we can easily navigate the different options choosing the de-
sired level of detail for the substitution. In our case, instead
of Person we choose the further specific term Rich Person
as a replacement for the selection, resulting in the query vis-
ible on the right side of Figure 2.

Figure 2: Example of specialisation

Another way of modifying a query is to add constraints in the
form of new terms or relations. As shown in Figure 3, upon
clicking on the add button a two-part menu is displayed, con-
taining suitable terms and relations that can be safely added
to the query. Terms are shown in the upper part of the menu,
while relations in the lower one. The chosen item is inserted
in a specific place of the query, that can be selected by means
of the radio button present in each line. Figure 3a shows how
the new term Single Person is added to the first (and only)
line of the query, while Figure 3b shows how adding a rela-
tion results in the creation of a new line, indented w.r.t. the
first one and consisting of the name of the relation lives in
followed by the label House associated with its range. Ob-
serve that the menu of Figure 3b, compared to that of Fig-
ure 3a, does not include the term Single Person and the re-
lation married to Person as possible options. In fact, the
former is already present in the query, thus it would be re-
dundant to propose it again; the latter became incompatible
with the query due to the addition of the previous term, and
this means that in our ontology a person who is rich and sin-
gle (or perhaps just single) cannot be married to anyone.

A query can be made more general or “weaker” in a variety
of ways, one of which is the substitution with a more general
term. Other possibilities are given by deletion and weaken-
ing, both of which remove selected elements from the query
but with distinct approaches and outcomes. The difference
between them is shown in Figure 4: while in Figure 4a delet-
ing the selected portion causes the second row of the query
to disappear, in Figure 4b weakening the same portion pre-
serves the row, although the term House is replaced with the
generic term Thing.

Suppose that our ontology states that a rich man who is mar-
ried to a beautiful woman and lives in a beautiful house is in-
deed a lucky person. As a result of the substitution shown in

2



(a)

(b)

Figure 3: Addition of (a) a new term and (b) a new relation

(a)

(b)

Figure 4: Example of (a) deletion and (b) weakening

Figure 5, where the whole query is replaced with the (more
general) term Lucky Person, the second line disappears. In
some situations this “side-effect” is undesired, because we
would perhaps like to operate on that part of the query later
on. The closed padlock icon visible in the third line of the
query indicates that that line is protected against such an “ac-
cidental” deletion and would not inadvertently disappear as
the result of the substitution. However, note that locked por-
tions of the query are still fully affected by explicit deletion.

THE QUERY LOGIC
The Query Tool’s framework and its functional API (QueLo)
have been recently defined from a formal point of view in the
technical report [7], with the purpose of precisely describ-
ing its components and the abstract operations provided for
query manipulation. Here, we concisely summarise the main
definitions introduced in [7] and formally prove the most im-
portant of Query Tool’s properties, namely that it generates
only “meaningful” queries.

Figure 5: Preventing side-effects of substitution

Formal framework
From the point of view of the QueLo sub-system, a query is a
labelled tree where each node corresponds to a variable and
it is associated with a set of concept names from the ontol-
ogy, while each edge is labelled with a role name. Therefore,
for what concerns the expressive power, the Query Tool can
represent tree-shaped conjunctive queries only.

Let N be a countably infinite set of node names, C be a finite
set of concept names and R a finite set of role names, and let
N, C and R be pairwise disjoint. A query Q is a quintuple
〈V, E, o, V, E〉 in which (V,E) is a directed tree rooted in
o ∈ V , with set of nodes V ⊆ N and with set of edges E ⊆
V × V ; V is a total function, called node-labelling function,
associating each node with either a non-empty set of concept
names or with the singleton {>}; and E is called the edge-
labelling function that associates each edge with a role name.
A query consisting of exactly one node, whose set of labels
is a singleton, is called atomic. For an edge e = 〈x, y〉, we
indicate its initial node x with init(e) and its terminal node
with ter(e).

Given queries S and Q, we say that S is a subquery of Q, and
write S ⊆ Q, iff V (S) ⊆ V (Q), E(S) ⊆ E(Q), each node
n ∈ V (S) is s.t. VS(n) ⊆ VQ(n) and every edge e ∈ E(S)
is such that ES(e) = EQ(e). We say that S is a complete sub-
query of Q (in symbols S j Q) if it also holds that, for every
n ∈ V (S), VS(n) ⊇ VQ(n) and every descendant of oS in
Q is a node in S. A selection within a query Q is a subquery
S of Q, which is called simple if S j Q or S consists of
exactly one node, namely its root oS , such that VS(oS) is a
singleton or is equal to VQ(oS). Every selection S within a
query Q partitions the nodes of Q into selected, which be-
long to V (S), and unselected, belonging to V (Q) \ V (S).
The selected nodes can be further partitioned into totally se-
lected, having all of their labels selected, and partially se-
lected, which have some, but not all, of their labels selected.
An example of query as represented is shown in Figure 6,
which also shows the compact graphical notation we use for
representing a selection within a query: selected nodes are
drawn using a double circle and selected labels within each
of them are underlined.

The weakening of a query Q w.r.t. a selection S within Q
is the query Q 	 S obtained from Q by replacing its node-
labelling function VQ with a function that associates each
totally selected node with {>}, each partially selected node
n with VQ(n) \ VS(n) and each unselected node m with
VQ(m).

The last notion we introduce is that of sticky edges, which
are edges that can only be deleted explicitly (that is, when
performing a deletion), but never implicitly (e.g., as the con-
sequence of a substitution). Sticky edges are closed w.r.t. the

3



x

y

marriedTo

w

z

owned by

livesIn

{Man}

{Woman}
{Beautiful, House}

{RichPerson}

Figure 6: Example of query and a selection within it

tree structure of the query, that is, when an edge e is sticky,
then all the edges in the path from the root of the query to
ter(e) are such. The meaning and importance of sticky edges
will become more clear in the next section, where we intro-
duce and describe the two operations delete and substitute.
For the moment, sticky edges can be simply understood as
immutable (to some extent) pieces of information within a
query, which are not modified as a “side effect” of an opera-
tion not directly intended to do so.

Functional API
To draw the inferences that are at the basis of the query for-
mulation tasks, we express a query as a concept of some
description logic (DL) language, for which the containment
test of two conjunctive queries is decidable and available as a
reasoning service. In what follows, we assume the existence
of an underlying knowledge base K in such a DL language
L over C and R. We say that C is a sub-concept of (or sub-
sumes) D in K, and write C vK D, iff K |= C v D, in
which case we also say that D is a super-concept of (or is
subsumed by) C. Two concepts C and D are equivalent in
K, written C ≡K D, iff one subsumes the other and vice
versa. For two concept names c1 and c2 we say that c1 is a
direct sub-concept of c2 (and that c2 is a direct super-concept
of c1) iff c1 subsumes c2 and there is no c ∈ C equivalent to
neither c1 nor c2 and such that c1 vK c vK c2.

Before introducing the functional API, let us first give some
preliminary definitions. Given a query Q and n ∈ V (Q), the
operation roll-up(Q, n) translates Q into an L-concept w.r.t.
n and it is defined as enc-rollup(Q, n, n), where enc-rollup
is the recursive procedure described in Algorithm 1. We use
roll-up(Q) as an abbreviation for roll-up(Q, o), where o is
the root of Q. The concept roll-up(Q, n) is called the context
of Q w.r.t. n, expressing the informative content of Q from
the point of view of a specific node, which we call the focus.
Queries Q1 and Q2 are equivalent, in symbols Q1 ≡ Q2, iff
roll-up(Q1) ≡K roll-up(Q2). We say that a query Q over
a consistent knowledge base K is satisfiable iff its roll-up is
such in K (that is, K 6|= roll-up(Q) v ⊥).

The functional API of the Query Tool is structured in two
main parts:

• the underlying reasoning services, consisting of the oper-
ations getComp, getRel, getSupers, getEquiv, getSubs;

• the operations for query manipulation, including addRel,
addComp, weaken, substitute and delete.

Given a query Q and a node n, we say that a concept name c

Algorithm 1 Calculate enc-rollup(Q, n,m)
Input: a query Q and two nodes n, m ∈ V (Q)
Output: a concept C expressing Q in the description logics
language L

1: C ← c, for some c ∈ V(n)
2: for all x ∈ V(n) such that x 6= c do
3: C ← C u x
4: end for
5: for all children x of n in Q such that x 6= m do
6: R← E(〈n, x〉)
7: C ← C u ∃R . enc-rollup(Q, x, n)
8: end for
9: if n 6= o then

10: Let p be the parent node of n in Q
11: if p 6= m then
12: R← E(〈p, n〉)
13: C ← C u ∃R− . enc-rollup(Q, p, n)
14: end if
15: end if
16: return C

is compatible with Q focused in n iff cu roll-up(Q, n) 6v ⊥,
while a role name r is such iff ∃r−. roll-up(Q, n) 6v ⊥. The
operation getComp(Q, n) returns a directed acyclic graph
(DAG) G, whose nodes are all the concept names that are
compatible with Q focused in n and that are neither sub-
nor super-concepts of roll-up(Q, n), and whose edges are
all the pairs of concept names c1, c2 ∈ V (G) such that c1

is a direct sub-concept of c2. In other words, the output of
getComp is a taxonomy of concept names which are com-
patible with the query and not in hierarchy with the context.
The operation getRel(Q, n) returns a DAG G, whose nodes
are all the pairs 〈r, c〉 of role names and concept names such
that r is compatible with Q focused in n and c is a sub- or
a super-concept of ∃r−. roll-up(Q, n), and whose edges are
the pairs 〈〈r, c1〉, 〈r, c2〉〉 ∈ V (G) × V (G) such that c1 is a
direct super-concept of c2.

Let S be a selection within a query Q. Then, the operations
getSupers, getEquiv and getSubs return the concept names
that are more general than, equivalent to and more specific
than roll-up(S), respectively. Moreover, the concept names
in the output of getSubs(Q, S) are additionally required to
be compatible with Q focused in the root of S.

Let Q be a query and n a focus node. For a concept name c in
the output of getComp(Q, n), the operation addComp adds
c to V(n). More precisely, the result of addComp(Q, n, c) is
the query Q′ obtained from Q by replacing its node-labelling
function V with V ′ := V [n 7→ V(n) ∪ {c}]. For a pair 〈r, c〉
in the output of getRel(Q, n), the operation addRel creates a
new node n′ such that V(m) = {c} and an edge e = 〈n, m〉
with E(e) = r.

Let Q and R be queries and Ẽ be a set of sticky edges. Then,
the operation prune deletes from Q the maximal number of
non-root nodes, having no incoming sticky edge (if any) and
associated with the same concept names both in R and Q,
such that the result is still a query.

Let S be a selection within a query Q and let Ẽ be a set of

4



sticky edges. We define weaken(Q, S) as Q	 S and

delete(Q, S, Ẽ) := prune
(
weaken(Q, S), R, Ẽ

)
,

where R is the query obtained from S by replacing VS with
the function on V (S) associating each node n that is both
in Q and S with VQ(n) ∩ VS(S) if such intersection is non-
empty and with {>} otherwise, and each other node m of
S with VS(m). The last operation we introduce is “substitu-
tion” which, for a concept name c in the output of getSupers
(generalisation) or getEquiv or getSubs (specialisation), is
defined as follows:

substitute(Q, S, Ẽ, c) := delete(Q′, S, Ẽ) ,

where Q′ is the query obtained from Q by adding c to the set
of concept names associated with the root of S.

Properties of the framework
We will now formally state and prove that, starting from an
atomic query that is satisfiable, the query obtained by means
of the operations in the Query Tool’s functional API is satis-
fiable. In order to do that, we first prove that the operations
for query manipulation preserve satisfiability, i.e., the appli-
cation of each of them to a satisfiable query results in a query
that is satisfiable.

LEMMA 1. Each of the operations addComp, substitute,
addRel, weaken and delete preserves query satisfiability.

PROOF SKETCH. Let Q be a satisfiable query and Q′ re-
sult from the application of one the above operations. In the
case of deletion, weakening and substitution with an equiv-
alent or more generic term, the resulting query Q′ is equiva-
lent or more general than the input query Q, which is satisfi-
able by assumption. Therefore, Q′ is also satisfiable. In the
case of addition of a new term/relation and substitution with
a more specific term, the satisfiability of Q′ is ensured by the
satisfiability of Q and the explicit check for compatibility in
the definitions of addComp, addRel and substitute.

The fundamental property of the Query Tool is then proved
by means of a simple induction.

THEOREM 1. The query obtained from an initial satisfi-
able atomic query through a finite sequence of applications
of the operations addComp, addRel, substitute, weaken and
delete is satisfiable.

PROOF. By an easy induction on the sequence of applica-
tions of the operations: the base case holds by assumption,
while the inductive step follows directly from Lemma 1.

THE USER INTERFACE
In this section we describe a concrete UI for the Query Tool,
based on natural language generation. In the UI, the query is
represented as a continuous string of natural language text,
composed of a sequence of coherent text constituents called
spans. Each of the tags occurring in the query is associated
with a span by means of an injective mapping. As for each
edge there is one and only one corresponding edge tag, if a
span is associated with the tag of an edge we simply say that
the span is associated with that edge.

The English sentence representing the query in the UI is gen-

erated by the NLG sub-system, which will be described in
the next section. An example of the textual rendering of the
query in natural language as displayed by the UI is given in
Figure 7.

I’m looking for a man who lives in a beautiful house

owned by a rich person.

Figure 7: Textual representation of a query in natural language

Hovering
In graphical user interfaces terminology, the user hovers on
a graphic element whenever the mouse cursor moves from
some point outside the element to some point inside the ele-
ment. In normal conditions, as the user hovers on the query,
the system gives visual hints about its structure:

• hovering on the span associated with a tag of some node n
causes the span to become lightly highlighted, along with
all the spans associated with the tags occurring in the com-
plete subquery rooted in n;

• hovering on the span associated with the tag of some edge
e causes that span and all the spans associated with the
elements of tags

(
ter(e)

)
to become lightly highlighted.

The highlighting is such that spans associated with different
tags are visualized as distinct, even when adjacent. One way
of obtaining this kind of effect is, for instance, by rounding
the corners of the highlighted rectangular area around each
span. The only case in which highlighting on hovering does
not trigger is when a menu is being displayed.

I’m looking for a man who lives in a beautiful house

owned by a rich person.

Figure 8: Hovering on the span “house”

Associated with each node of the query is a button, called the
add-button, which is displayed as a blue onion with a white
cross inside and located below the text baseline immediately
after the rightmost span associated with a tag of that node.
Hovering on the add-button of some node lightly highlights
all the spans associated with tags of that node.

I’m looking for a man who lives in a beautiful house

owned by a rich person.

Figure 9: Hovering on the add-button at the right of “house”

Sticky edges
An edge can be marked as sticky by clicking on the span as-
sociated with it, at which point the text span is rendered in
boldface. Clicking on a span associated with a sticky edge

5



unmarks the edge as sticky and reverts the text span to its de-
fault (non-bold) representation. Spans associated with node
tags are not visually affected by sticky edges.

I’m looking for a man who lives in a beautiful house

owned by a rich person.

Figure 10: Clicking on “lives in” marks the associated edge as sticky

Selection
The UI provides facilities to easily select portions of the
query. A simple selection can be directly specified by click-
ing on the span associated with a tag of some node n in one
of the following ways:

• a single click results in an atomic selection, highlighting
only the span on which the click occurred;

• a double click results in a node selection, highlighting all
the spans associated with the elements of tags(n);

• a triple click results in a complete selection, highlighting
all the spans in the complete subquery rooted in n.

An example of each of these different types of simple selec-
tion is shown in Figure 11.

I’m looking for a man who lives in a beautiful house

owned by a rich person.

(a)

I’m looking for a man who lives in a beautiful house

owned by a rich person.

(b)

I’m looking for a man who lives in a beautiful house

owned by a rich person.

(c)

Figure 11: Simple selections obtained by (a) single, (b) double and (c)
triple clicking on the span “house”

A selection can be cleared by clicking on an area of the UI
where clicking does not have any other effect (e.g., on the
white space between the lines of text representing the query,
or on a span that is not associated with any tag). Clearing a
selection results in an empty selection.

Observe that when a node has only one node label, an atomic
selection on that node happens to be also a node selection,
and when a node has no children, a node selection is also a
complete selection. Thus, an atomic selection on a node hav-
ing only one label and no children is also a node selection as

well as a complete selection. We consider atomic selections
to have the lowest priority and complete selections the high-
est, and when a simple selection belongs to more than one
class, it is considered to be only of the type with higher pri-
ority. Furthermore, whenever a double click would result in
the same kind of selection a single click would, it yields a
complete selection instead.

A complex selection (non-simple) is obtained from an empty
or simple selection by control-clicking (i.e., clicking while
pressing the CTRL key on the keyboard) on additional spans
associated with node tags, which are consequently included
in the existing selection. Note that a complex selection can
be disconnected, in the sense that it is not a well-formed sub-
query from the formal point of view, because there might be
two selected nodes that are not connected by an edge. Exam-
ples of connected and disconnected complex selections are
given in Figure 12.

I’m looking for a man who lives in a beautiful house

owned by a rich person.

(a)

I’m looking for a man who lives in a beautiful house

owned by a rich person.

(b)

Figure 12: Examples of (a) connected and (b) disconnected complex
selection

From the graphic point of view, spans associated with tags in
a selection are highlighted in a stronger way (e.g., a darker
color) than they are when highlighted because of hovering
and, unlike the highlighting effect triggered by hovering, it is
not possible to distinguish between adjacent selected spans
associated with the same node. When the selection includes
one or more paths between nodes (that is, all of the nodes in
a path within the query are selected), spans associated with
edge tags are also highlighted. The visual appearance of the
spans associated with tags of selected nodes or edges does
not change as the result of an hovering event, as shown in
Figure 13. Moreover, as the reader might already have no-
ticed, when a non-empty selection is present, the add-buttons
become invisible without changing the layout of the text.

I’m looking for a man who lives in a beautiful house

owned by a rich person.

Figure 13: Hovering on either “beautiful” or “house” in presence of a
non-empty selection

Addition
The query logic sub-system provides two operations, namely
addComp and addRel, for refining a query through the addi-
tion of compatible terms and relations to a focus node. The

6



UI makes these operations available to the user by means of
a pop-up menu, activated by clicking on the add-button of a
node which is set as the focus.

The menu contains a list of suitable arguments for the invo-
cation of either addComp or addRel. The menu entries are
concept names and pairs consisting of a role name and a con-
cept name, which are obtained from the output of the QueLo
operations getComp and getRel w.r.t. the current query and
focus. In particular, for a query Q focused in n, the menu is
populated with the nodes in the graph resulting from disjoint
union of the output graphs of getComp(Q, n) and getRel(Q,
n), arranged in the following way:

• nodes with no incoming edge populate a menu of level 0,
which is the topmost menu, where entries corresponding
to concept names are listed before entries associated with
pairs of concept/role names.

• for each node n in a menu at level k, all the nodes that are
reachable from n in one step populate a sub-menu at level
k + 1 associated with entry n.

The actual items shown to the user in the above menu struc-
ture are natural language descriptions of the node-entries (ei-
ther concept names or atomic concept/role pairs) generated
by the NLG sub-system.

Some of the items come with an icon on their left: an upward-
pointed (resp., downward-pointed) triangle is displayed for
concept names (resp., role/concept pairs) indicating that the
option is associated with a nested sub-menu containing more
specific (resp., more generic) options of the same type. Hov-
ering on any of these options opens the pop-up menu associ-
ated with that item and displayed next to it. An example of
the structure of the addition menu is given in Figure 14.

Figure 14: Structure of the addition menu

Clicking on any of the elements in the menu triggers the in-
vocation of either addComp or addRel, according to whether
the clicked item is associated with a concept name or a con-
cept/role pair, respectively. Upon clicking, the menus disap-
pear and the UI updates its representation of the query af-
ter the necessary changes are performed by the QueLo sub-
system.

Weakening and Deletion
The user can weaken (respectively, delete) a selected portion
of the query by pressing the backspace (resp., delete) key on
the keyboard, which invokes the QueLo operation weaken
(resp., delete) with the current query and selection as input
arguments. Upon weakening (resp., deletion), the selection
is cleared and the UI updates its representation to reflect the
changes in the query.

Note that the operations weaken and delete, as defined in our
functional API, cannot directly handle a disconnected com-
plex selection. However, such a selection can be decom-
posed by the UI in a series of connected selections that are
then suitable for the actual invocation of the two operations.

Observe that selected nodes can be deleted even if they have
an incoming sticky edge; in other words, the result of dele-
tion is the same independently of the presence of sticky edges
in the selection. Note also that in some cases deletion pro-
duces the same result as weakening (e.g., for a node selection
rooted in a non-leaf node).

Substitution
The QueLo sub-system provides the operation substitute in
order to allow the substitution of a selection within the query
with a more generic, equivalent or more specific term. The
UI makes this operation available to the user: upon long-
clicking on a selected portion (i.e., strongly highlighted) of
the query a pop-up menu is displayed, listing all the possi-
ble terms with which the selection can be replaced. Such a
menu is populated with concept names that are more gen-
eral than, equivalent to and more specific than the selection
and that are retrieved from the QueLo sub-system by means
of the operations getSupers, getEquiv and getSubs, respec-
tively. More general terms are shown at the top of the list,
equivalent terms in the middle and more specific terms at
the bottom. At the left of each item an icon is shown: an
upward-pointing triangle for more general terms, a square
for equivalent terms and a downward-pointing triangle for
more specific terms.

The substitution menu has a similar hierarchical structure as
the menu for addition, reflecting the taxonomic information
in the output graphs of the operations getSupers, getEquiv
and getSubs. In particular, some (possibly none) of the more
general terms might be further generalised, in which case
hovering on one such item triggers a sub-menu containing its
direct super-concepts; similarly, if some of the more specific
terms can be further specialised, then hovering on one such
item triggers a sub-menu containing its direct sub-concepts
that are compatible with the query. The same rules for fur-
ther generalisation/specialisation apply to the items in the
sub-menus, while equivalent terms (if any) cannot be further
generalised nor specialised.

Figure 15: Structure of the substitution menu

As in the case of addition, the actual items shown to the user
in the substitution menu are natural language descriptions
generated by the NLG sub-system, rather than bare concept
names. Clicking on any of given options triggers the invoca-
tion of substitute with the current selection and the concept
name associated with the clicked item as input arguments.
The selection is then cleared and the UI updates the repre-
sentation of the query after the selected elements have been
replaced with the chosen term.

7



Observe that the operation substitute, as defined in our func-
tional API, cannot deal with disconnected complex selection
and, unlike the case of weakening and deletion, the problem
cannot be overcome by converting such selection in a series
of connected ones. This is due to the fact that substitution re-
lies on the roll-up of the input selection itself, which is thus
required to be tree-shaped (i.e., connected). For this reason,
in the presence of a disconnected selection, the substitution
operation is disabled.

NATURAL LANGUAGE RENDERING
The natural language interface of the Query Tool masks the
composition of a precise query as the composition of English
text describing the equivalent information needs. Interfaces
following this paradigm are known as “menu-based natural
language interfaces to databases”. The users of such systems
edit a query by composing fragments of generated natural
language provided by the system through contextual menus.

In what follows, we describe how the natural language ren-
dering of a query is achieved. We start by defining a particu-
lar linear form of the query that satisfies certain constraints,
necessary to represent the elements of the query using a lin-
ear medium, that is, text. The constraints are enforced at the
API level to ensure that different graphical user interfaces
represent the query in a homologous way. Moreover, a con-
sistent ordering of the query elements needs to be preserved
during the operations for query manipulation to avoid con-
fusing the end user. The linearised version of the query is
then used as a guide for the language generation performed
by the Query Tool’s NLG engine.

Linearisation of a query
Since a concept name can be in general associated with more
than one node in the same query, we introduce the notion of
tag: given a query Q, a node tag is a pair 〈n, c〉 where n ∈
V (Q) and c ∈ V(n), while an edge tag is a pair 〈e, E(e)〉
such that e ∈ E(Q). The set of tags relative to a node n is
given by tags(n) := {〈n, c〉 | c ∈ V(n)}, while the set of all
tags occurring in a query Q is defined as follows:

tags(Q) := {〈e, E(e)〉 | e ∈ E(Q)} ∪
⋃

n∈V (Q)

tags(n)

A linearisation of a query Q is a strict total order C (that is,
a binary relation that is asymmetric, transitive and total) on
tags(Q) such that, for each edge e ∈ E(Q), the following
conditions hold:

∀t ∈ tags(init(e)), t C 〈e, E(e)〉 ; (1a)
∃t ∈ tags(ter(e)), 〈e, E(e)〉 J t ; (1b)

and, for each node n ∈ V (Q), it is the case that:

∀t1, t2 ∈ tags(n), t1 C t C t2 =⇒ t ∈ tags(n) . (1c)

where we use the expression t1 J t2 for indicating that t1 C
t2 and there does not exist t ∈ tags(Q) for which t1 C t C
t2. In such case we say that t1 immediately precedes t2 or,
equivalently, that t2 immediately follows t1. Note that C is
the transitive closure of the relation J.

Informally, the conditions that a strict total order must satisfy
to qualify as a linearisation state that “the tag of each edge

is (1a) preceded by all the tags of its initial node and (1b)
followed by at least one of the tags of its terminal node” and
that (1c) “between any two tags of a node there can only be
(distinct) tags of the same node”. Moreover, from the above
conditions it can be also proved that “the tag of each edge is
followed by all the tags of its terminal node”.

In general, without further restrictions, a query may admit
more than one linearisation, but all of them share some com-
mon properties. In particular, each linearisation C of a query
Q is such that the minimal element is always a tag of the root
and for each subquery S of Q the restriction of C on tags(S)
is itself a linearisation of S. Moreover, every linearisation is
compatible with the tree-order of the query, that is, the tags
of a node n precede the tags of a node m in the linearisation
whenever there is a path from a n to m in the query.

A strict1 total order on the node set of a tree can be obtained
by fixing a total order on the children of each node and per-
forming a complete visit of the tree according to a chosen
traversal strategy. If the tree is visited using a depth-first or
breadth-first traversal, then the resulting order is an exten-
sion of the partial order induced by the tree itself on its node
set. Thus, a linearisation of a query can always be obtained
by additionally fixing a total order on the labels associated
with each node. For our purposes, we decided to use a depth-
first traversal where the labels (resp., children) of a node are
ordered according to the sequence (resp., inverse sequence)
of applications of the operation addComp (resp., addRel) to
that node as focus. The motivation for this choice lies in the
fact that, for cognitive reasons, we want the query to change
as little as possible from the visual point of view and in such
a way that changes are restricted to a limited portion of the
query. As a result, every execution of addComp or addRel
yields one or more new tags whose place in the linearisation
is right after all the node tags relative to the node given as
input argument to the operation.

Natural Language Generation module
The natural language interface (NLI) of the Query Tool re-
lies on a natural language generation (NLG) system to pro-
duce the textual representation of the query, following an
idea first presented in [12] and lately refined in [8].

NLG systems use techniques from artificial intelligence and
computational linguistics to produce human-readable texts
out of machine-readable data. The Query Tool uses NLG to
represent the whole query, along with all the elements that
the user can use to refine it, as English text. The generated
text is enriched with links that connect it to the underlying
logical form of the query. This allows the user to operate on
the query simply by editing an English text.

Unlike most NLG systems, ours is built to let the user deter-
mine the structure of the generated text by inserting, replac-
ing and removing snippets of it. Thus, while in the classic
NLG pipeline the information to be conveyed in the text and
its order is determined by the document planning module, in
the Query Tool it is the user who decides both the informa-
tion to be displayed and its arrangement.

1We only consider orders that are strict (i.e., irreflexive) unless ex-
plicitly stated otherwise.

8



As the Query Tool is not tailored to any specific domain, its
NLG module is simple enough to be adopted in any context
and it is not bundled with all the resources that are needed
to generate text out-of-the-box. Therefore, in order to use it
on a specific knowledge base, the system must be provided
with a lexicon and a template map. The former contains the
words to be used in the generated text; the latter is the bridge
between the natural language and the knowledge represen-
tation language, associating each concept/role name with a
generation template. Each such template contains the syn-
tactic and lexical information necessary to generate a frag-
ment of text representing the associated concept or role.

We selected the syntactic features available in the templates,
hence supported by the generator, in order to keep the sys-
tem simple while still being expressive enough. For this
purpose, we collected and analysed a corpus of more than
12.000 unique relation identifiers and we partitioned them
according to the recurring syntactic patterns. For each class
of the partition, we then proposed a common natural lan-
guage representation template. The result of this study is a
set of simple but effective templates for representing most
ontology relations using natural language.

During the of the generation, linguistic information stored in
the template map and in the lexicon blends with the logic in-
formation encoded in the query into a single structure, known
in the NLG literature as text specification. The text specifica-
tion consists of a list of syntactic trees with inflected lexemes
on its leaves. The NLG system operates on this structure to
aggregate groups of adjacent syntactic structures into single
more complex structures, and to replace existing referring
expressions with more appropriate ones. These two tasks
are known in the literature respectively as aggregation and
referring expressions generation.

During the first stage (microplanning) of the generation, lin-
guistic information stored in the template map and in the lex-
icon blends with the logic information encoded in the query
into a single structure, known in the NLG literature as text
specification and consisting of a list of syntactic trees with
inflected lexemes on its leaves. The NLG system operates on
this structure to aggregate groups of adjacent syntactic struc-
tures into single more complex structures, and to select and
replace existing referring expressions with more appropriate
ones. These two tasks are known in the literature as aggre-
gation and referring expressions generation, respectively. At
the same time, the system keeps track of which element of
the text specification is associated with which element (ei-
ther a node tag or an edge tag) of the query. An association
holds when the syntactic element is the result of the instanti-
ation of a template associated with the element of the query.
These associations are used for enriching the generated text
with links to the underlying query.

The linearisation of the query simplifies the effort required
by the referring expressions generation, as referring expres-
sions that need to be reworked always appear in subject posi-
tion. Our algorithm replaces a subject with a pronoun when-
ever the previous sentence had the same subject, otherwise
the subject is left unchanged. Although ambiguous expres-
sions may occur, ambiguity is not a crucial issue as these ex-
pressions originate from user operations upon a selected el-

ement, which always becomes the target of the referring ex-
pression. Our aggregation module performs relatively sim-
ple aggregation tasks such as aggregating sentences with the
same subject, eliding the subject and parts of the verb when-
ever it is feasible.

Once these operations are completed, the text specification is
ready to be transformed into the final text. This task, known
as surface realisation, produces a list of text tokens, some
of which are connected to edge or node labels. This list is
finally fed to the GUI, that displays it to the user.

Elements populating the menu for addition and substitution
operations undergo a similar processing. To produce the tex-
tual representation of such an element, the system makes a
temporary copy of the portion of query affected by the oper-
ation. The operation is then carried out on this portion and
the resulting structure is fed to the generation pipeline used
for entire queries. The outcome of the generation process is
the text which will appear on the menu.

Automated generation of lexicon and template map
For the Query Tool’s NLI to work with a specific knowledge
base (KB) a lexicon and a template map must be provided
for it. Devising these resources requires an understanding
of both the domain of interest (DOI) and basic linguistic no-
tions such as verb tenses, noun genders and countability. To
ease the burden of developing these resources from scratch,
we experimented with a computational technique to have the
system generate them automatically. This technique follows
an approach to domain independent generation proposed in
[11]. The functionality we implemented allows to produce
all the resources necessary to configure our NLI for use with
a new KB, using as a source of data the ontology itself. How-
ever, the process is not completely reliable, therefore system
engineers must review the result and make the necessary cor-
rections. In the following, we describe the technique to han-
dle relation identifiers, but we adapted it to handle concept
identifiers as well.

The idea is based on the observation that KBs already con-
tain some form of linguistic information. In real-world on-
tologies, every concept and relation has a unique identifier
(ID), which most of the times is not just an arbitrary string,
but a mnemonic chosen by the knowledge engineer to de-
scribe the intended meaning of the identified concept or re-
lation. Moreover, within these IDs, certain syntactic patterns
occur more frequently than others.

In our approach, each relation ID is first tokenized according
to an algorithm that takes advantage of the naming conven-
tions used by ontology engineers. Second, the tokenized ID
is fed to a custom part-of-speech tagger built around QTAG
[14]. The resulting tagged tokenized ID is then lightly pre-
processed before being finally passed to a transformation
rule, chosen among thirteen different ones, that produces a
template for the template map of the NLG system.

For the design of the transformation rules, we analysed our
corpus, containing more than 12.000 relation IDs, in order
to devise a partition of the domain in terms of syntactic pat-
terns. The classes defined in this partition are s.t. to each
relation of the same class can be applied a simple transfor-

9



mation in order to obtain a template. Each such transforma-
tion is also a uniform interpretation of the intended meaning
of each relation ID in the class. Some care is needed when
giving a uniform interpretation to syntactic patterns, as there
are situations in which the same syntactic pattern is to be
interpreted differently. For instance, the relation IDs “coun-
try of nationality” and “language of country” share the same
syntactic structure, but the first relation should be read as
“the country of nationality of X is Y”, while the second as
“the language of X is Y”. Each of the thirteen rules we de-
fined corresponds to one class of the partition, and together
they can handle 93% of the relations of the average ontology.

The system has been tested with some of the ontologies [9]
developed by the national mapping agency of Great Britain
and with the Pizza Ontology [6] by the University of Manch-
ester, contributing 64 unique relations in total. From the IDs
of these relations we automatically generated relation tem-
plates, which were then inspected in order to evaluate their
usability in text generation. The result of the evaluation re-
vealed that for 42 out of 64 relations (65%) the generated
template is suitable for direct use with the Query Tool’s NLI.
The result suggests that although the generation of the tem-
plate map is not totally reliable, it is nevertheless useful in
that it speeds up the work of systems engineers, as they do
not need to create the whole map from scratch, but only have
to review the generated map and repair eventual errors. This
improves the portability of the Query Tool’s NLI, making it
faster and easier to switch to a different knowledge base.

CONCLUSIONS AND FUTURE WORK
A Java implementation of the Query Tool has been devised,
including the query logic and natural languages sub-systems
and a fully functional user interface as described above. The
Query Tool was implemented for the first time in the context
of the European project SEWASIE [10] as a Java web-based
application, later on converted into a stand-alone applica-
tion [15]. Important optimisations were then introduced (see
[16]) with the purpose of minimising the number of reasoner
calls and thus improving the responsiveness of the tool. The
main difference between our implementation of the Query
Tool and the previous one is the fact that while the latter uses
a DIG-based reasoning engine, the former takes advantage
of the OWL-API. Moreover, our implementation follows the
formal specification given in the Query Tool’s framework
and functional API and complies with them.

A usability evaluation of the previous Query Tool’s imple-
mentation was carried out in past work [3, 2] with the pur-
pose of measuring its complexity of use from the user’s point
of view. In particular, the study aimed at determining how
difficult it is for the user to formulate queries using the Query
Tool and to understand the results. The outcome of the ex-
periments showed that the tool can be easily used also by
non-experienced users to query a domain in which they have
no special expertise.

The framework and functional API presented in this paper
consider only the addition of new relations to the query, but
they could be extended to deal with attributes (i.e., properties
relating a concept to a datatype) as well. The only difference
with the current framework would be that a node associated
with a datatype (i.e., the “range” of the attribute) cannot be
the focus of a query for operations other than deletion. This

basically means that such a node is always a leaf of the query
tree and the only operation allowed on it is deletion. Then,
since a node of this kind cannot be refined by adding a com-
patible term or attaching a new property, the query is never
rolled-up with respect to it, thus avoiding the nonsensical
eventuality that an edge associated with an attribute has to
be inverted (going from the datatype to the subject). Though
apparently simple, allowing for attributes poses some inter-
esting questions, that we are currently investigating, in order
to deal with concrete values from the point of view of rea-
soning.

The work in this paper has been partially supported by the
European project ONTORULE.

REFERENCES
1. T. Catarci, T. Di Mascio, P. Dongilli, E. Franconi, G. Santucci, and

S. Tessaris. An ontology based visual tool for query formulation
support. In Proc. 16th Eur. Conf. Artificial Intelligence, 2004.

2. T. Catarci, T. Di Mascio, P. Dongilli, E. Franconi, G. Santucci, and
S. Tessaris. An Ontology-Based Query Manager: Usability
Evaluation. In Proc. HCITALY 2005, 2005.

3. T. Catarci, T. Di Mascio, P. Dongilli, E. Franconi, G. Santucci, and
S. Tessaris. Usability evaluation in the SEWASIE (SEmantic Webs
and AgentS in Integrated Economies) project. In Proc. 11th Int. Conf.
on Human-Computer Interaction, 2005.

4. P. Dongilli. Natural language rendering of a conjunctive query.
Technical Report KRDB08-3, KRDB Research Centre, Free
University of Bozen-Bolzano. http:
//www.inf.unibz.it/krdb/pub/TR/KRDB08-3.pdf, June
2008.

5. P. Dongilli, E. Franconi, and S. Tessaris. Semantics driven support for
query formulation. In Proc. of the 2004 Int. Workshop on Description
Logics, 2004.

6. N. Drummond, M. Horridge, R. Stevens, C. Wroe, and S. Sampaio.
Pizza ontology. The University of Manchester.
http://www.co-ode.org/ontologies/pizza/.

7. P. Guagliardo. Theoretical foundations of an ontology-based visual
tool for query formulation support. Technical Report KRDB09-5,
KRDB Research Centre, Free University of Bozen-Bolzano. http:
//www.inf.unibz.it/krdb/pub/TR/KRDB09-05.pdf,
October 2009.

8. C. Hallett, D. Scott, and R. Power. Composing questions through
conceptual authoring. Computational Linguistics, 33(1):105–133,
2007.

9. Ordnance Survey - Great Britain’s national mapping agency. http:
//www.ordnancesurvey.co.uk/oswebsite/ontology/.

10. The SEmantic Webs and AgentS in Integrated Economies (SEWASIE)
project. http://www.sewasie.org/, 2005.

11. X. Sun and C. Mellish. Domain independent sentence generation from
RDF representations for the Semantic Web. In Proc. ECAI’06
Combined Workshop on Language-Enhanced Educational Technology
and Development and Evaluation of Robust Spoken Dialogue Systems,
2006.

12. H. R. Tennant, K. M. Ross, R. M. Saenz, C. W. Thompson, and J. R.
Miller. Menu-based natural language understanding. In Proc. 21st
Annual Meeting of the Association for Computational Linguistics,
pages 151–158. Association for Computational Linguistics, 1983.

13. M. Trevisan. A portable menu-guided natural language interface to
knowledge bases. Master’s thesis, University of Groningen, 2009.

14. D. Tufis and O. Mason. Tagging Romanian texts: a case study for
QTAG, a language independent probabilistic tagger. Proc. 1st Int.
Conf. on Language Resources and Evaluation (LREC’98), pages
589–596, 1998.

15. I. Zorzi. An Ontology-Based Visual Tool for Query Formulation
Support. Bachelor’s thesis, Faculty of Computer Science, Free
University of Bozen-Bolzano, 2005.

16. I. Zorzi. Improving Responsiveness of Ontology-Based Query
Formulation. Master’s thesis, Faculty of Computer Science, Free
University of Bozen-Bolzano, March 2008.

10

http://www.inf.unibz.it/krdb/pub/TR/KRDB08-3.pdf
http://www.inf.unibz.it/krdb/pub/TR/KRDB08-3.pdf
http://www.co-ode.org/ontologies/pizza/
http://www.inf.unibz.it/krdb/pub/TR/KRDB09-05.pdf
http://www.inf.unibz.it/krdb/pub/TR/KRDB09-05.pdf
http://www.ordnancesurvey.co.uk/oswebsite/ontology/
http://www.ordnancesurvey.co.uk/oswebsite/ontology/
http://www.sewasie.org/

	Introduction
	Overview
	The query logic
	Formal framework
	Functional API
	Properties of the framework

	The user interface
	Hovering
	Sticky edges
	Selection
	Addition
	Weakening and Deletion
	Substitution

	Natural language rendering
	Linearisation of a query
	Natural Language Generation module
	Automated generation of lexicon and template map

	Conclusions and Future Work
	REFERENCES 

