
An Intelligent Query Interface with Natural Language Support

Paolo Dongilli and Enrico Franconi
KRDB Centre, Faculty of Computer Science, Free University of Bozen-Bolzano

Dominikanerplatz 3, 39100 Bozen, Italy
lastname@inf.unibz.it

Abstract

The project described by the present paper aims at
building a bridge between Intelligent Query Interfaces
and Natural Language Generation technologies. The
idea is to have a query interface enabling the users to
access heterogeneous data sources by means of an in-
tegrated ontology. This paper shows how we are re-
designing our intelligent query interface by rendering
the logic-based queries in natural language, leverag-
ing the results achieved to-date by applied Systemic-
Functional Linguistics.

Introduction
The project described by the present paper aims at build-
ing a bridge between Intelligent Query Interfaces and Natu-
ral Language Generation technologies. The idea is to have
a query interface enabling the users to access heteroge-
neous data sources by means of an integrated ontology. The
query interface supports the users in formulating a precise
conjunctive query where the intelligence of the interface is
driven by an ontology describing the domain of the data in
the information system. The main challenge is that the un-
derlying conjunctive query must be presented to the user in
natural language and the stepwise refinements of the query
made by the user are refinements that maintain the gram-
maticality of the sentences representing the query. This can
be considered a step towards an assisted question answering
system where the question is not freely inserted by the user,
but instead the user is guided in building it according to the
entities found in the knowledge domain chosen.

This paper is organized in two main parts: first it gives
a close look to our work in terms of intelligent query inter-
faces, then it shows how we are enhancing the system we
devised, by adding natural language support to query for-
mulation.

Overview of an Intelligent Query Interface
In general terms, query interfaces are meant to support users
in formulating a precise query against a database described
by a specificdata model. Queries are specified by means
of special purposequery languages, where a query lan-
guage is a set of formally defined operators allowing re-
quests to be expressed to a database. By executing a query,
the user expects that the produced results extracted from the

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

stored data are coherent with the intended meaning of the
request. The most widely used database query languages
have been programming languages which require knowl-
edge about language syntax, technical background, and in-
formation of both the system application domain and its in-
teraction mechanisms. Such languages do not help to under-
stand the meaning of data, nor do they provide any guidance
in satisfying the user’s needs. In general, they do not fulfil
the requirements of user friendliness and ease of use (Catarci
et al. 1997).

Our recent contribution to the design of an intelli-
gent query interface (Dongilli, Franconi, & Tessaris 2004;
Catarciet al. 2004) dealt with a relatively new problem,
namely providing the user with a visual interface to query
heterogeneous data sources through an integrated ontology;
only little work has been done in this specific context (see,
e.g., the extensive survey on Visual Query Systems (VQS)
(Catarciet al. 1997). Our proposal stems from the prelim-
inary work in (Bresciani & Franconi 1996; Franconi 2000;
Bresciani, Nori, & Pedot 2000; Bresciani & Fontana 2002).
Similar work from the point of view of the visual interface
paradigm, but without the well founded support of a logic-
based semantics was carried out in (Proper 1994) and in
the context of the TAMBIS project (Murray, Goble, & Paton
1998; Bechhoferet al. 1999). (Benzi, Maio, & Rizzi 1999)
contains an interesting approach from the point of view of
the visual interface, but the system does not consider a logic-
based semantics. In fact, only recently research has started
to have a serious interest in query processing and informa-
tion access supported by (logic-based) ontologies. Recent
work has come up with proper semantics and with advanced
reasoning techniques for query evaluation and rewriting
using views under the constraints given by the ontology
– also called view-based query processing (Ullman 1997;
Calvanese, Giacomo, & Lenzerini 2000). This means that
the notion of accessing information through the navigation
of an ontology modelling the information domain has its for-
mal foundations.

A closer look will be given now to the first intelligent
query interface we designed, which will be referred to as
Query Interface (QI) hereinafter. First the user perspective
will be analyzed, then we will delve into the internals of the
QI explaining what conjunctive queries are, and how reason-
ing services are employed

The User Perspective
Initially the user is presented with a choice of different query
scenarios which provide a meaningful starting point for the

query construction. In other terms the user can choose the
domain (ontology) where she wants to query on. The inter-
face guides then the user in the construction of a query by
means of a diagrammatic interface, which enables the gen-
eration of precise and unambiguous query expressions.

Query expressions are compositional, and their logical
structure is not flat but tree shaped; i.e. a node with an ar-
bitrary number of branches connecting to other nodes. A
query is composed by a list of terms (classes) coming from
the ontology; e.g. “off-roader” or “car dealer”. Branches are
constituted by properties (relations or attributes) with their
value restriction which is a query expression itself. Refer-
ring to the underlying ontology, arelation is an association
between a concept and another generic concept, while an
attribute is an association between a concept and a simple
data-type class (String, Boolean, Integer,. . .) or a concept
subsumed by a simple data-type class.

For instance, in “car sold by car dealer”, “sold by” is a re-
lation, “car” and “car dealer” are ontology terms (see figure
1). “Land Rover” is the value (or restriction) of the concept
“model” which is subsumed by the simple data-type class
“String”.

Figure 1: Query example (in the automotive domain) with
focus set on the concept “car dealer”.

The manipulation of the query is always restricted to a
well defined, and visually delimited, subpart of the whole
query calledfocus. The compositional nature of the query
language induces a natural navigation mechanism for mov-
ing the focus across the query expression (nodes of the cor-
responding tree). A constant feedback of the focus is pro-
vided on the interface by means of the kind of operations
which are allowed. The system suggests only the operations
which arecompatiblewith the current query expression, in
the sense that do not cause the query to be unsatisfiable
(see paragraph “Reasoning Services and Query Interface”
below). This is verified against the formal model describing
the data sources.

The QI is divided into two panes: the upper one (query
display pane) representing the tree-shaped query composed
by the user, and the bottom one which is thequery manipu-
lation pane.

After focusing on an ontology term in the query display
pane, the user can perform the following operations in the
manipulation pane: (i) generalize or specialize the term, (ii)
add a compatible concept, (iii) substitute term with an equiv-
alent one, (iv) add a property (relation or attribute), (v) delete
the focused concept.

With the first operation the user can choose among a list
of more general or specific concepts where the selected one
will substitute the focused term; e.g. in figure 1 the concept
“off-roader” could be focused, substituted with the more
general concept “car” and specialized again into “sedan”.

In the refinement by compatible terms (ii), the selected
term is simply added to the focus as unary query term. The
system driven by the reasoner suggests terms from the on-
tology whose overlap with the focus can be non-empty (the
compatibilityrequirement). In the example, “used car” was
among the compatible terms for the concept “off-roader”,
and was added by the user. The concept “new car” was also
among the compatibles, but now it is no more visible be-
cause of the disjointness with “used car”.

It can be the case (not happening for the focus in figure
1) that there are terms in the ontology which are equivalent
to the logical expression represented by the query with the
focus acting as root. In this case the user is offered to replace
the whole subtree with the equivalent term by the activation
of the “Replace Equivalent” button.

The property extension (iv) enables the user to add at-
tributes (e.g. “car dealerwith e-maile-mail address”) or re-
lations (e.g. “car dealerlocated incountry”), and these ac-
tions correspond to the creation of a new branch of the query
tree.

Finally (iv), the deletion of the focused term has as con-
sequence the deletion of the incoming property connected to
it.

A First Glance at the System Internals
Conjunctive Queries Since the interface is built around
the concept of classes and their properties, we consider con-
junctive queries composed by unary (classes) and binary (at-
tributes and relations) terms. The body of a query can be
considered as a graph as e.g. the one shown in figure 2 in
which variables (and constants) are nodes, and binary terms
are edges. A query is connected (or acyclic) if the corre-
sponding graph is acyclic. Given the form of query expres-
sions composed by the interface introduced above, we re-
strict ourselves to acyclic connected queries. This restriction
has been adopted because, up till now, we did not find any
graphical representation for cyclic queries intuitive enough
to be easily understandable and usable by a non-trained user.
Note that the query language restrictions do not affect the
ontology language, where the terms are defined by a differ-
ent (in our case more expressive) language. The complexity
of the ontology language is left completely hidden to the
user, who doesn’t need to know anything about it.

To transform any query expression in a conjunctive query
we proceed in a recursive fashion starting from the top level,
and transforming each branch. A new variable is associated
to each node: the list of ontology terms corresponds to the
list of unary terms. For each branch, the binary query term
corresponding to the property is then added, and its restric-
tion is recursively expanded in the same way.

Let us consider a part of the query of figure 2: “Find
off-roader, make Land Rover, model Defender, sold by car
dealer located in Germany”.

off-roader

diesel

runs on

car dealer

sold by

make model A/C

 equipped with

central
locking

 equipped with

leather
seats

 equipped with

price mileage

Germany

located in

name city
phone

number
Land Rover Defender

Figure 2: Graphical representation of a query.

Firstly, a new variable(x1) is associated to the top level
“off-roader”. Assuming that the top level variable is by
default part of the distinguished variables, the conjunctive
query becomes

{x1|off-roader(x1), ...},

where the dots mean that there is still part of the query to
be expanded. Then we consider the property “sold by”,
with its value restriction “car dealer”: this introduces a new
variablex1,1. The remaining properties of the concept “car
dealer” are then similarly expanded, generating the conjunc-
tive query

{x1| off-roader(x1), sold by(x1, x1,1), car dealer(x1,1),

locatedin(x1,1, x1,1,1), Germany(x1,1,1),

hasmake(x1, x1,2), x1,2 ∈ {LandRover},

hasmodel(x1, x1,3), x1,3 ∈ {Defender}} (1)

This transformation is bidirectional, so that a connected
acyclic conjunctive query can be represented as a query ex-
pression by dropping the variable names. As a matter of fact,
the system is using this inverse transformation since the in-
ternal representation of queries is as conjunctive queries.

Reasoning Services and Query Interface Reasoning ser-
vices w.r.t. the ontology are used by the system to drive the
query interface. In particular, they are used to discover the
terms and properties (with the related concepts) which are
proposed to the user to manipulate the query. The main idea
is to be as less restrictive as possible on the requirements for
the ontology language. In this way, the same technology can
be adopted for different frameworks, while the user is never
exposed to the complexity (and peculiarities) of a particular
ontology language.

In our context, an ontology is composed by a set of pred-
icates (unary, binary), together with a set of constraints re-
stricting the set of valid interpretations (i.e. databases) for
the predicates. The kind of constraints which can be ex-
pressed defines the expressiveness of the ontology language.
Note that these assumptions are general enough to take ac-
count of widely used modelling formalisms, like UML for
example.

We do not impose general restrictions on the expressive-
ness of the ontology language; however, we require the
availability of two decidable reasoning services: satisfia-
bility of a conjunctive query, andcontainment testof two
conjunctive queries, both w.r.t. the constraints. If the query
language includes the empty query (i.e. a query whose ex-
tension is always empty), then query containment is enough
(a query is satisfiable if and only if it is not contained in the
empty query).

Although our approach is not tight to any ontology lan-
guage, in the test implementation of our system we are using
Description Logics (DLs). The reasons for this choice lie in
the facts that DLs can capture a wide range of widespread
modelling frameworks, and the availability of efficient and
complete DL reasoners.

We adopted the Description LogicsSHIQ (see (Hor-
rocks & Sattler 2002)) which is expressive enough for our
purposes, and for which there are state of the art reasoners.
Note that the adoption ofSHIQ allow us to use ontologies
written in standard web ontology languages like OWL–DL
(Horrocks & Patel-Schneider 2003).

Our implementation uses the DL reasoner Racer
(Haarslev & Möller 2001), which fully supports theSHIQ
DL. The interaction with the DL reasoner is based on the
DIG 1.0 interface API (Bechhofer, Möller, & Crowther
2003), a standard to communicate with DL reasoners de-
veloped among different DL systems implementors. This
choice makes our system independent from a particular DL
reasoner, which can be any DIG based one (as e.g. FACT
(FaCT 2005), RACER (Racer 2005) or PELLET (Pellet
2005)).

Adding Natural Language Support
As described above, the strength of the intelligent QI we
designed and developed at the KRDB Centre of the Free
University of Bozen-Bolzano lays behind the solid formal
foundations characterizing it in terms of information access
through the navigation of an ontology.

Usability evaluation tests accompanying the user-centered
design methodology we adopted, highlighted the user satis-
faction after achieving the specific query-composition tasks
assigned (Catarciet al. 2005). We also noticed that the
amount of time spent to construct queries is independent of
the domain expertise of the user, confirming that the QI is us-
able by both domain-experts and non-domain-expert users.

On the other side, though, we intended to enhance the sys-
tem from the man-machine interaction viewpoint. Instead of
a tree-shaped query the intention is to have it expressed in
natural language in order to increase the level of user friend-
liness of the QI. This does not mean that we intend to allow
the user to ask any natural language question but that the
QI, given the domain of interest, guides the user during the
stepwise creation of a NL query within the boundaries of the
chosen domain.

The New User Perspective
The new Query Interface (QI) which is under development,
is divided as before into two main areas as shown in the
screenshot of figure 3.

The upper area embeds the query represented as one or
more NL sentences. The concept selected by the user (off-
roader) is the current focus; it is marked in every sentence
in which it appears, clearly also when it is in pronominal
form. The user can select only concepts and restrictions,
since we noticed that it wasn’t natural at all for the user to
interact with properties within the query area; furthermore
the only action permitted was the deletion of the property,
operation that is now accomplished by deleting the concept
representing the range of the same property.

The bottom area, instead, shows all operations that can be
done on the focused concept: it is possible to delete it (delet-
ing the whole subtree and the incoming property), choose

Figure 3: Query example in the new QI, with focus set on
the concept “off-roader”.

a generalization, a specialization, or add a compatible con-
cept. Related concepts can be chosen: here, in order to re-
duce the quantity of information shown to the user, the name
of attributes (usuallyhas. . .) are hidden and only the range
concepts are visible (e.g.exterior color, number of doors,
power. . .). On the contrary, relations between concepts are
shown (equipped with. . . , runs on. . .).

Every action done in the bottom area reflects on the whole
NL query which is regenerated again: noun phrases repre-
senting concepts are changed (generalization or specializa-
tion of the focus), coordinate clauses are added (when se-
lecting compatible concepts), other coordinate/subordinate
clauses are added or new sentences written (when related
concepts are chosen).

We move behind the new interface now, to see how the
system is being extended.

Inside the New System
The Query Interface (QI) (figure 4) exists in two versions:
a web application and a stand-alone Java program. The
ontology-based query construction mechanism relies upon
reasoning services accessible through a DIG protocol (Bech-
hofer, Möller, & Crowther 2003) implemented by a DIG
API we provided. There are some other APIs we developed,
as e.g. the one for the communication with software agents
to whom the query-answering process is demanded. This
won’t be described here, to leave space for the description
of the query composition infrastructure.

The extensions required to add natural language flavor to
the QI, as described in the previous section, consist mainly
of two modules: a natural language generator and a con-
version tool that given a conjunctive query and optionally
a user profile, generates a sentence plan in SPL (Sentence
Plan Language), required as input by the NL generator. The
following two paragraphs will be devoted to the description
of these modules and the resources they need to operate.

Natural Language Generator As generation environ-
ment we are using KPML (Komet-Penman multil ingual),
a grammar development environment from the University of

Figure 4: Internals of the new system with NL support.

Bremen (Bateman 1997). KPML is a complex application,
well known for extensive multilingual systemic-functional
grammar (SFG) editing and NL generation. In particu-
lar we are testing its generation module coupled with the
latest version of the Nigel grammar for English and the
Penman Upper Model (UM), a general task- and domain-
independent linguistically motivated ontology used for me-
diating between domain knowledge and the natural language
generation (NLG) system. In terms of Systemic-Functional
Linguistics (SFL) (Halliday & Matthiessen 2004), the UM
reflects theideational metafunction; this is why it is often
called theideation base.

The Nigel grammar has been under development since the
early 1980s, when it was used within the Penman project for
English generation. It was mainly developed by Christian
Matthiessen on the foundation of work by Michael Halli-
day. Since then, many people have contributed to various
parts of its coverage. References to the underlying linguis-
tic grammatical description are described in (Halliday &
Matthiessen 2004; Matthiessen 1995; Martin, Matthiessen,
& Painter 1997).

The KPML generation engine, available in LISP only, is
being rewritten (code-name: JENERATE) by our group in co-
operation with the University of Bremen (Germany), using
J2EE technologies, for a higher level of portability and inte-
gration with other applications, where our Query Interfaceis
the first candidate. The resources loaded in JENERATE will
be the same as in KPML with the exception of the UM that
will be replaced by the Generalized Upper Model (GUM).
GUM (Bateman, Magnini, & Fabris 1995) is a multilingual
evolution of the Penman UM; its initial representation lan-
guage was Loom, but now it’s being ported to other knowl-
edge representation languages as OWL. It will also be ac-
cessible as DIG file, and loaded by JENERATE through the
DIG API.

Linguistic resources as the grammar and the basic lexicon
will be the same, modulo a translation from LISP to XML
according to the DTD/XSD proposed by the University of
Bremen. In figure 4 the reader can notice also adomain on-
tologyand adomain lexicon: these represent the only two re-
sources that need to be changed whenever we want to switch
from a knowledge domain and generate NL in another do-
main. A new lexicon of terms pertaining the chosen domain
can be added as separate file from the basic lexicon. On the
contrary, plugging in a new domain ontology needs some
more effort, since it has to to be merged with the GUM.

The fact that we generate in English, doesn’t mean that
it’s the only language available for generation. There are
linguistic resources available (or ‘almost’ available) for Bul-
garian, Chinese, Czech, Greek, Japanese, Russian, German,
and Spanish.

The dynamic input of JENERATE that drives NL gener-
ation is the logical specification SPL (Sentence Plan Lan-
guage), the interface between the application and the gen-
erator. SPL (Kasper 1989) incorporatesideational, inter-
personaland textualspecification, metafunctions specified
in Systemic-Functional Linguistics (Halliday & Matthiessen
2004). The ideational content is bound to the GUM, in the
sense that entities from the ideation base are mapped onto
ideational grammatical functions (as e.g.ACTOR or ACTEE
in the SPL excerpt below). On the other side interper-
sonal and textual items are specific responses to the inquiries
which are raised by the generator towards the grammar.

If we want to generate the sentence ‘The car must run on
diesel, and the make must be Land Rover.’, the conjunctive
query and the SPL expression would be:

{x1| car(x1),

run-on(x1, x1,1),

diesel(x1,1),

make(x1, x1,2),

x1,2 ∈ {LandRover}} (2)

((S1 S2)
(S1 / run-on

:MODALITY must
:ACTOR (C1 / car)
:ACTEE (C2 / diesel)
)

(S2 / PROPERTY-ASCRIPTION
:MODALITY must
:DOMAIN (C3 / make)
:RANGE
(C4 / QUALITY

:LEX Land-Rover)))

whereS1 and S2 represent two coordinate sentences,
car,diesel andmake are concepts,Land Rover is the
property restriction, andrun-on is a reified relation sub-
sumed byDISPOSITIVE-MATERIAL-ACTION (see be-
low). S2 represents instead aPROPERTY-ASCRIPTION.

A small excerpt of the domain ontology (LOOM) is
shown below:
(defconcept run-on

:is (:and Penman-kb::DISPOSITIVE-MATERIAL-ACTION
:primitive))

(penman::annotate-concept run-on :lex-items (run-on))

(defconcept vehicle
:is (:and Penman-kb::Object :primitive))

(defconcept car
:is (:and vehicle :primitive))

and a lexical entry of the domain lexicon:
(LEXICAL-ITEM

:NAME run-on
:SPELLING "run on"
:SAMPLE-SENTENCE "These cars run on unleaded gasoline."
:FEATURES (NOT-OBJECTNOTREQUIRED NOT-BAREINFINITIVECOMP

NOT-ADJECTIVECOMP NOT-COPULA NOT-MAKECOMP
NOT-TOCOMP NOT-QUESTIONCOMP NOT-SUBJECTCOMP
INDIRECTOBJECT DISPOSAL-VERB DO-VERB
EFFECTIVE-VERB PASSIVE OBJECTPERMITTED
NOT-PARTICIPLECOMP NOT-THATCOMP
NOT-CASEPREPOSITIONS LEXICAL EDPARTICIPLEFORM
PASTFORM S-IRR UNITARYSPELLING INFLECTABLE VERB)

:PROPERTIES ((INGPARTICIPLEFORM "running on")
(THIRDSINGULARFORM "runs on")
(PASTFORM "ran on")
(EDPARTICIPLEFORM "run on")))

The output of the Natural Language Generator is not sim-
ply plain text: noun phrases within each clause need to be
tagged with and mapped back to the concepts or value re-
strictions they refer to in the conjunctive query. This is nec-
essary to pilot the query interface which must show the user
which noun phrases can be clicked to change the focus, and
which ones represent the current focus.

Conjunctive Query to SPL mapper The remaining mod-
ule that composes the new system is devoted to the con-
version of a given conjunctive query (hereinafter called
CQ) into SPL. Considering that the highest-level rank
in the Nigel grammar of English is the clause-complex,
with a single SPL file it is possible to cover sen-
tences handling relationships between main and subordi-
nate clauses (I look for an off-roaderthat runs on diesel) or
between coordinate clauses (The make is Land Rover, and
the model is Defender).

The CQ needs to be partitioned into a certain number of
chunks, where each one is mapped into an SPL file and later
transformed into a sentence by the NL generator. We are
not able yet to estimate how many possible ways there are,
given a CQ, to partition it and create SPL files that once
rendered as NL sentences build an acceptably fluent English
representation of the query. Following a heuristic approach,
we’re starting to build a corpus of CQs associating each one
with one possible verbalization. The queries will be sorted
on the basis of a complexity model, similar to the one used
in (Catarciet al. 2005) to validate the metrics used in mea-
suring the system usability. In this context instead, the com-
plexity of a CQ will help in estimating the number of CQ
partitions and consequently SPL files that have to be created.

A possible mapping approach that works in most of the
cases is to do a first coarse split of the CQ into three main
parts: a first part where the root concept is introduced; the
second part where the root concept is further described along
with all the other concepts in the query; the third part where
the concepts without restriction are listed and presented as
information that the user is seeking. Referring to the graph-
ical query representation of figure 2 and the resulting ver-
balization of figure 3, the root concept isoff-roader, and the
concepts without restriction arename, city, andphone num-
ber (related to the conceptcar dealer); mileageandprice
(referred to the conceptoff-roader).

The first chunk is modelled in SPL language as a
DISPOSITIVE-MATERIAL-ACTION, where the system
describes what the user is looking for (off-roader) using the
first person singular (I look for an off-roader), verbalizing
optionally the relation with another concept (. . . that runs on
diesel.).

In the second part the root concept is further described: a
number of maximum three related concepts are described in
another SPL fragment using coordinate clauses, adding, if
present, further relations of the newly introduced concepts.
The creation of other SPL files goes on, visiting the remain-
ing concepts of the tree. Our experiments have shown that a
depth-first visit leads to a more fluent verbalization in most
of the cases rather than a breadth-first approach.

The third and last part of the sentence plan production
regards the concepts with no restrictions mentioned above,
which can be included in groups of coordinate sentences of
possibly three concepts each (e.g.I need the price, and the
mileage of the off-roader, the name, the city, and the phone
number of the car dealer.).

Conclusions
In this paper we presented the evolution of an intelligent
query tool developed at the KRDB centre of the Free Univer-
sity of Bozen-Bolzano, tool which is now subject to major
changes for the sake of a higher user friendliness. Conjunc-
tive queries are being represented in natural language (En-

glish) by means of a NL generation engine using J2EE tech-
nologies and derived from the KPML system from the Uni-
versity of Bremen. Reasoning services using the DIG proto-
col will be used both for driving the user interface and also
for accessing the domain model and the linguistic ontology
GUM (Generalized Upper Model) during the NL generation
phase. SPL (Sentence Plan Language) will be leveraged as
interface between conjunctive queries and the generator. A
critical task is represented by the module for the remapping
of a conjunctive query into SPL. For this task, results from
Rhetorical Structure Theory (RST) will be taken into con-
sideration, in particular the constructive version of RST used
for multisentence text generation (Hovy 1988).

References
Bateman, J. A.; Magnini, B.; and Fabris, G. 1995. The gen-
eralized upper model knowledge base: Organization and
use. In Mars, N. J. I., ed.,Towards very large knowledge
bases: knowledge building and knowle dge sharing, 60–72.
Amsterdam: IOS Press.
Bateman, J. A. 1997.KPML Development Environment:
multilingual linguistic resource development and sentence
generation. German National Center for Information Tech-
nology (GMD), Inst itute for integrated publication and in-
formation systems (IPSI), Darmstadt, Germany. (Rel. 1.1).
Bechhofer, S.; Stevens, R.; Ng, G.; Jacoby, A.; and Goble,
C. A. 1999. Guiding the user: An ontology driven inter-
face. InUIDIS 1999, 158–161.
Bechhofer, S.; Möller, R.; and Crowther, P. 2003. The
dig description logic interface. InProceedings of the 2003
International Workshop on Description Logics (DL2003),
volume 81 ofCEUR Workshop Proceedings.
Benzi, F.; Maio, D.; and Rizzi, S. 1999. VISIONARY:
a viewpoint-based visual language for querying relational
databases.J. Vis. Lang. Comput.10(2):117–145.
Bresciani, P., and Fontana, P. 2002. A knowledge-based
query system for biological databases. InProceedings of
FQAS 2002, volume 2522 ofLecture Notes in Computer
Science, 86–89. Springer Verlag.
Bresciani, P., and Franconi, E. 1996. Description logics for
information access. InProceedings of AI*IA Workshop on
Access, Extraction and Integration of Knowledge.
Bresciani, P.; Nori, M.; and Pedot, N. 2000. A knowledge
based paradigm for querying databases. InDatabase and
Expert Systems Application, volume 1873 ofLecture Notes
in Computer Science, 794–804. Springer Verlag.
Calvanese, D.; Giacomo, G. D.; and Lenzerini, M. 2000.
Answering queries using views over description logics
knowledge bases. InProc. of the 16th Nat. Conf. on Ar-
tificial Intelligence (AAAI 2000).
Catarci, T.; Costabile, M. F.; Levialdi, S.; and Batini, C.
1997. Visual Query Systems for Databases: A Survey.
Journal of Visual Languages and Computing8(2):215–
260.
Catarci, T.; Dongilli, P.; Mascio, T. D.; Franconi, E.; San-
tucci, G.; and Tessaris, S. 2004. An Ontology Based Visual
Tool for Query Formulation Support. InProceedings ECAI
2004: the 16th Biennial European Conference on Artificial
Intelligence.
Catarci, T.; Dongilli, P.; Mascio, T. D.; Franconi, E.; San-
tucci, G.; and Tessaris, S. 2005. Usability evaluation tests

in the SeWAsIE (SEmantic Webs and AgentS in Integrated
Economies) project. InProceedings of the 11th Interna-
tional Conference on Human-Computer Interaction (HCII
2005).
Dongilli, P.; Franconi, E.; and Tessaris, S. 2004. Seman-
tics Driven Support for Query Formulation. InProceedings
of the 2004 International Workshop on Description Logics
(DL 2004), volume 104.
FaCT. 2005. The FaCT System Website.http://www.
cs.man.ac.uk/∼horrocks/FaCT/.
Franconi, E. 2000. Knowledge representation meets digital
libraries. InProc. of the 1st DELOS (Network of Excellence
on Digital Libraries) workshop on “Information Seeking,
Searching and Querying in Digital Libraries”.
Haarslev, V., and Möller, R. 2001. Racer system descrip-
tion. In Automated Reasoning: First International Joint
Conference, IJCAR 2001, volume 2083 ofLecture Notes in
Computer Science. Springer-Verlag Heidelberg.
Halliday, M. A. K., and Matthiessen, C. M. 2004.An
Introduction to Functional Grammar. London: Edward
Arnold, 3rd edition.
Horrocks, I., and Patel-Schneider, P. F. 2003. Reduc-
ing OWL entailment to description logic satisfiability. In
Fensel, D.; Sycara, K.; and Mylopoulos, J., eds.,Proc. of
the 2003 International Semantic Web Conference (ISWC
2003), number 2870 in Lecture Notes in Computer Sci-
ence, 17–29. Springer.
Horrocks, I., and Sattler, U. 2002. Optimised reasoning
for SHIQ. In Proc. of the 15th Eur. Conf. on Artificial
Intelligence (ECAI 2002), 277–281.
Hovy, E. H. 1988. Planning coherent multisentential texts.
In The Proceedings of the 26th. Annual Meeting of the As-
sociation of Computational Linguistics, 163–169. Buffalo,
New York: Association for Computational Linguistics.
Kasper, R. T. 1989. A flexible interface for linking appli-
cations to PENMAN’s sentence generator. InProceedings
of the DARPA Workshop on Speech and Natural Language.
Available from USC/Information Sciences Institute, Ma-
rina del Rey, CA.
Martin, J. R.; Matthiessen, C. M. I. M.; and Painter,
C. 1997. Working with Functional Grammar. London:
Arnold.
Matthiessen, C. M. I. M. 1995.Lexicogrammatical car-
tography: English systems. Tokyo, Taipei and Dallas: In-
ternational Language Science Publishers.
Murray, N.; Goble, C. A.; and Paton, N. W. 1998. A frame-
work for describing visual interfaces to databases.Journal
of Visual Languages and Computing9(4):429–456.
Pellet. 2005. Pellet OWL Reasoner Website.
http://www.mindswap.org/2003/pellet/
index.shtml.
Proper, H. A. 1994. Interactive Query Formulation us-
ing Query By Navigation. Asymetrix Research Report 94-
4, Asymetrix Research Laboratory, University of Queens-
land, Brisbane, Australia.
Racer. 2005. Racer Systems Website.http://www.
racer-systems.com/index.phtml.
Ullman, J. D. 1997. Information integration using logical
views. InProc. of the 6th Int. Conf on Database Theory
(ICDT’97), 19–40.

