
An ontology based visual tool
for query formulation support

Tiziana Catarci1 and Paolo Dongilli2 and Tania Di Mascio3

and Enrico Franconi2 and Giuseppe Santucci1 and Sergio Tessaris2

Abstract. In this paper we describe the principles of
the design and development of an intelligent query in-
terface, done in the context of the SEWASIE (SEman-
tic Webs and AgentS in Integrated Economies) Euro-
pean IST project. The SEWASIE project aims at en-
abling a uniform access to heterogeneous data sources
through an integrated ontology. The query interface
is meant to support a user in formulating a precise
query – which best captures her/his information needs
– even in the case of complete ignorance of the vocabu-
lary of the underlying information system holding the
data. The intelligence of the interface is driven by an
ontology describing the domain of the data in the in-
formation system. The final purpose of the tool is to
generate a conjunctive query ready to be executed by
some evaluation engine associated to the information
system.4

1 Introduction

In this paper we describe the principles of the de-
sign and development of an intelligent query interface,
done in the context of the SEWASIE (SEmantic Webs
and AgentS in Integrated Economies) European IST
project. The SEWASIE project aims at enabling a uni-
form access to heterogeneous data sources through an
integrated ontology. The query interface is meant to
support a user in formulating a precise query – which
best captures her/his information needs – even in the
case of complete ignorance of the vocabulary of the
underlying information system holding the data. The
final purpose of the tool is to generate a conjunctive
query (or a non nested Select-Project-Join SQL query)
ready to be executed by some evaluation engine asso-
ciated to the information system.

The intelligence of the interface is driven by an on-
tology describing the domain of the data in the in-
formation system. The ontology defines a vocabulary
which is richer than the logical schema of the under-
lying data, and it is meant to be closer to the user’s
rich vocabulary. The user can exploit the ontology’s vo-
cabulary to formulate the query, and she/he is guided
by such a richer vocabulary in order to understand
how to express her/his information needs more pre-
cisely, given the knowledge of the system. This latter
task – called intensional navigation – is the most in-
novative functional aspect of our proposal. Intensional
navigation can help a less skilled user during the initial
step of query formulation, thus overcoming problems

1 University of Roma “La Sapienza”, Italy
<lastname> @dis.uniroma1.it

2 Free University of Bozen-Bolzano, Italy
<lastname> @inf.unibz.it

3 University of L’Aquila, Italy tania@ing.univaq.it
4 This paper is an unabridged version of an abstract ap-

peared in [9]. This work has been partially supported by
the EU projects Sewasie, KnowledgeWeb, and Interop.

related with the lack of schema comprehension and
so enabling her/him to easily formulate meaningful
queries. Queries can be specified through an iterative
refinement process supported by the ontology through
intensional navigation. The user may specify her/his
request using generic terms, refine some terms of the
query or introduce new terms, and iterate the process.
Moreover, users may explore and discover general in-
formation about the domain without querying the in-
formation system, giving instead an explicit meaning
to a query and to its subparts through classification.

In the literature there are several approaches at pro-
viding intelligent visual query systems for relational
or object oriented databases (see [10] for an extensive
survey). However, to our knowledge, the work pre-
sented in this paper is among the first well-founded
intelligent systems for query formulation support in
the context of ontology-based query processing. The
strength of our approach derives from the fact that
the graphical and natural language representation of
the queries is underpinned by a formal semantics pro-
vided by an ontology language. The use of an appro-
priate ontology language enables the system engineers
to precisely describe the data sources, and their im-
plicit data constraints, by means of a system global
ontology (see [8]). The same ontology is leveraged by
the query interface to support the user in the com-
position of the query, rather than relying on a less
expressive logical schema. The underlying technology
used by the query interface is based on the recent
work on query containment under constraints (see [6;
13]).

The paper is organised as follows. Firstly we present
the system w.r.t. user viewpoint, with the functional-
ities of the interface, then we describe the semantics
and the reasoning services supporting the query inter-
face. These include the query language expressiveness,
the ontology support to the query formulation, and
the natural language verbalisation issues. Finally, we
discuss related work and we draw some conclusions.

2 Query interface: the user
perspective

Initially the user is presented with a choice of different
query scenarios which provide a meaningful starting
point for the query construction. The interface guides
the user in the construction of a query by means of a
diagrammatic interface, which enables the generation
of precise and unambiguous query expressions.

Query expressions are compositional, and their log-
ical structure is not flat but tree shaped; i.e. a node
with an arbitrary number of branches connecting to
other nodes. This structure corresponds to the natural
linguistic concepts of noun phrases with one or more
propositional phrases. The latter can contain nested
noun phrases themselves.



A query is composed by a list of terms coming from
the ontology (classes); e.g. “Supplier” and “Multina-
tional”. Branches are constituted by a property (at-
tributes or associations) with its value restriction,
which is a query expression itself; e.g. “selling on Ital-
ian market”, where “selling on” is an association, and
“Italian market” is an ontology term.

The focus paradigm is central to the interface user
experience: manipulation of the query is always re-
stricted to a well defined, and visually delimited, sub-
part of the whole query (the focus). The compositional
nature of the query language induces a natural naviga-
tion mechanism for moving the focus across the query
expression (nodes of the corresponding tree). A con-
stant feedback of the focus is provided on the inter-
face by means of the kind of operations which are al-
lowed. The system suggests only the operations which
are “compatible” with the current query expression;
in the sense that do not cause the query to be un-
satisfiable. This is verified against the formal model
describing the data sources.

One of the main requirements for the interface is
that it must be accessed by any HTML browser, even
in presence of restrictive firewalls. This constraints the
its design, which overall appearance is shown in Fig-
ure 1. The interface is composed by three functional
elements. The first one (top part) shows a natural lan-
guage representation of the query being composed, and
the current focus. The second one is the query ma-
nipulation pane (bottom part) containing a diagram
representing the focus and its terminological context,
together with tools to specialise the query. Finally, a
query result pane containing a table representing the
result structure. The first two components are used
to compose the query, while the third one is used to
specify the data which should to be retrieved from the
data sources. Because of lack of space, in this paper we
concentrate on the query building part. Therefore we
wont discuss the query result pane, which allows the
user to define the columns of a table which is going to
organise the data from the query result.

Figure 1. Query building interface.

Query textual representation The first compo-
nent consists of a text box representing the query ex-

pression in a natural language fashion. The user selects
subparts of the query for further refinement. The se-
lection defines the current focus, which will be repre-
sented in the diagrams described in the following sec-
tions. The selected subexpression can be modified (re-
fined or extended) by means of the query manipulation
pane.

Although the query verbalisation does not provide
accounts of the query structure, the system is aware of
the nesting (and so is the user). The system provides
the feedback on the nesting by means of navigation
in the query expression when the user is interested in
selecting a subpart of the query. When a node is se-
lected, then the system automatically selects the whole
subtree rooted at the node selected by the user.

It is important to stress that, although natural lan-
guage is used as feedback to represent the query, this
is used in generation mode only. Since the user does
not write queries directly, there is no need to parse
any natural language sentence or to resolve linguistic
ambiguities.

Query manipulation pane The elements in the
pane represent the current selection, and the opera-
tions allowed in its context. It is organised as a dia-
gram showing the taxonomical context of the selection
(the central part), and tools enabling the user to build
the query expression.

The central part of the interface is occupied by the
diagram allowing what we call substitution by navi-
gation; i.e. the possibility of substituting the selected
portion of the query with a more specific or more gen-
eral terms.

The central part in the diagram shows the main term
of the focus. While the surrounding terms are either
more specific or more general w.r.t. the query expres-
sion from the focus viewpoint. For example, w.r.t. the
query showed in Figure 1 with the focus on the first
term (“Supplier”), the terms “Merchant” and “Agent”
are more general term in the ontology, while “Retailer”
and “Wholesaler” are more specific. By selecting one
of these terms, the user can substitute the whole focus
with the selected term. The purpose of the substitu-
tion group is twofold: it enables the replacement of the
focus and it shows the position of the selection w.r.t.
the terms in the ontology.

It can be the case that in the ontology there are
terms which are equivalent to the selected part. In this
case the user is offered to replace the selection with
the equivalent term by the activation of the Replace

Equivalent button.
A different refinement enabled by the interface is

by compatible terms. These are terms in the ontology
whose overlap with the focus can be non-empty. These
ontology terms can be added to the head of the selec-
tion by using the Add Concept pop-up menu. For ex-
ample, “Student” is among the compatible terms for
the focus “Employee”, but “Textile” is not. The com-
patible terms are automatically suggested to the user
by means of appropriate reasoning task on the ontol-
ogy describing the data sources.

Analogously, the user can add properties to the fo-
cus: associations (e.g. “Industry with sector”), and/or
attributes (e.g. “Employee whose name is”). This can
be performed by means of a Add Property pop-up



menu, which presents the possible alternatives. Name
and value restrictions for each property are verbalised
using meta information associated to the terms in the
ontology. For example, the association “with sector”
with the restriction “Textile” is shown as “belonging
to the textile sector”.

Note that the terms and the properties proposed
by the system depend on the overall query expression,
not only on the focus. This means that subparts of the
query expression, taken in isolation, would generate
different suggestions w.r.t. those in their actual context
in the query.

Sub-queries can be associated to new names by
means of a Define button. This process corresponds
to the definition of a new named view. These newly
introduced names can be used to shorten the query
expression, or as a simple mechanism to extend the
ontology to build a customised user’s viewpoint.

3 Query interface: inside the box

In this section we describe the underpinning technolo-
gies and techniques enabling the user interface de-
scribed in the previous sections. We will start by de-
scribing our assumptions on the query language, fol-
lowed by system perspective over the described query
building process. The whole system is supported by
formally defined reasoning services, described below
in this Section. Finally, we introduce the verbalisa-
tion mechanism which enables the system to show the
queries in a natural language fashion.

Conjunctive queries Since the interface is build
around the concept of classes and their proper-
ties, we consider conjunctive queries composed by
unary (classes) and binary (attribute and associations)
terms.

The body of a query can be considered as a graph
in which variables (and constants) are nodes, and bi-
nary terms are edges. A query is connected (or acyclic)
when for the corresponding graph the same property
holds. Given the form of query expressions composed
by the interface above introduced, we restrict ourselves
to acyclic connect queries. This restriction is dictated
by the requirement that the casual user must be com-
fortable with the language itself.5 Note that the query
language restrictions do not affect the ontology lan-
guage, where the terms are defined by a different (in
our case more expressive) language. The complexity of
the ontology language is left completely hidden to the
user, who doesn’t need to know anything about it.

To transform any query expression in a conjunctive
query we proceed in a recursive fashion starting from
the top level, and transforming each branch. A new
variable is associated to each node: the list of ontol-
ogy terms corresponds to the list of unary terms. For
each branch, it is then added the binary query term
corresponding to the property, and its restriction is re-
cursively expanded in the same way.

Let us consider for example the query “Supplier and
Multinational corporation selling on Italian market lo-
cated in Europe”, with the meaning that the supplier

5 Our technique can deal with disjunction of conjunctive
queries, even with a limited form of negation applied to
single terms. See [6; 13] for the technical details.

is located in Europe. Firstly, a new variable (x1) is as-
sociated to the top level “Supplier and Multinational
corporation”. Assuming that the top level variable is
by default part of the distinguished variables, the con-
junctive query becomes

{x1 | Suppl(x1), Mult corp(x1), . . .},

where the dots mean that there is still part of the query
to be expanded. Then we consider the property “selling
on”, with its value restriction “Italian market”: this
introduces a new variable x1,1. The second branch is
expanded in the same way generating the conjunctive
query

{x1 | Suppl(x1), Mult corp(x1), sell on(x1, x1,1),

It market(x1,1), loc in(x1, x1,2), Eur(x1,2)}.
This transformation is bidirectional, so that a con-

nected acyclic conjunctive query can be represented as
a query expression by dropping the variable names. As
a matter of fact, the system is using this inverse trans-
formation since the internal representation of queries
is conjunctive queries.

Query building Since a query is a tree, the fo-
cus corresponds to a selected sub-tree. It is easy to
realise that each sub-tree is univocally identified by
the variable corresponding to a node. Therefore, the
focus is always on variable, and moving the focus cor-
responds to selecting a different variable. Modifying a
query sub-part means operating on the corresponding
sub-tree modifying the corresponding query tree.

Substitution by navigation corresponds to substitute
the whole sub-tree with the chosen ontology term. The
result would be a tree composed by a single node, with-
out any branch, whose unary term is the given ontol-
ogy term. In the refinement by compatible terms, the
selected terms are simply added to the root node as
unary query terms. For the property extension, adding
an attribute or associations corresponds to the cre-
ation of a new branch. This operation introduces a new
variable (i.e. node) with the corresponding restriction.
When an attribute is selected, and a constant (or an
expression) is specified, then this is added as restric-
tion for the value of the variable.

Reasoning services and query interface Rea-
soning services w.r.t. the ontology are used by the sys-
tem to drive the query interface. In particular, they
are used to discover the terms and properties (with
their restrictions) which are proposed to the user to
manipulate the query.

Our aim is to be as less restrictive as possible on
the requirements for the ontology language. In this
way, the same technology can be adopted for differ-
ent frameworks, while the user is never exposed to the
complexity (and peculiarities) of a particular ontology
language.

In our context, an ontology is composed by a set of
predicates (unary, binary), together with a set of con-
straints restricting the set of valid interpretations (i.e.
databases) for the predicates. The kind of constraints
which can be expressed defines the expressiveness of
the ontology language. Note that these assumptions
are general enough to take account of widely used mod-
elling formalisms, like UML for example.



We do not impose general restrictions on the expres-
siveness of the ontology language; however, we require
the availability of two decidable reasoning services: sat-
isfiability of a conjunctive query, and containment test
of two conjunctive queries, both w.r.t. the constraints.
If the query language includes the empty query (i.e.
a query whose extension is always empty), then query
containment is enough (a query is satisfiable iff it is not
contained in the empty query). As above described,
the query building interface represents the available
operations on the query w.r.t. the current focus; i.e.
the variable which is currently selected. Therefore, we
need a way of describing a conjunctive query from the
point of view of a single variable. The expression de-
scribing such a viewpoint is still a conjunctive query;
which we call focused. This new query is equal to the
original one, with the exception of the distinguished
(i.e. free) variables: the only distinguished variable of
the focused query is the variable representing the fo-
cus. In the following we represent as qx the query q

focused on the variable x. For example, the query

q ≡ {x1, x1,2 |Mult corp(x1), sell on(x1, x1,1),

It market(x1,1), loc in(x1, x1,2), Eur(x1,2)},
focused in the variable x1,1 would simply be

q
x1,1 ≡ {x1,1 |Mult corp(x1), sell on(x1, x1,1),

It market(x1,1), loc in(x1, x1,2), Eur(x1,2)}.
The operations described in this section require two

different types of information: hierarchical (e.g. sub-
stitution by navigation), and on compatibility (e.g. re-
finement and new properties).

Let us consider the substitution by navigation with
the more specific terms (the cases with more general
and equivalent terms are analogous). Given the focused
query qx, we are interested to the unary atomic terms
T s.t. the query {y |T (y)} is contained in qx and it is
most general (i.e. there is no other query of that form
contained in qx, and containing {y |T (y)}).

Refinement by compatible terms and the addition of
a new property to the query require the list of terms
“compatible” with the given query. In terms of con-
junctive queries, this corresponds to add a new term
to the query. The term to be added should “join” with
the query by means of the focused variable, and must
be compatible in the sense that the resulting query
should be satisfiable. This leads to the use of satisfia-
bility reasoning service to check which predicates in the
ontology are compatible with the current focus. With
unary terms this check corresponds simply to the ad-
dition of the term T (x) to the focused query qx, and
verify that the resulting query is satisfiable.

The addition of a property requires the discovery
of both a binary term and its restriction: the terms
to be added are of the form {R(x, y), T (y)} if the fo-
cused variable is x. As for the refinement by compat-
ible terms, the system should check all the different
binary predicates from the ontology for their compat-
ibility. This is practically performed by verifying the
satisfiability of the query qx ./ {R(x, y)}, for all atomic
binary predicates R in the signature and where y is a
variable not appearing in q.6 Once a binary predicate
R is found to be compatible with the focused query,
the restriction is selected as the most general unary
predicate T such that the query qx ./ {R(x, y), T (y)}

6 Here ./ represents a natural join.

is satisfiable.

Query verbalisation The system always presents
the user with a natural language transliteration of the
conjunctive query. This is performed in an automatic
way by using meta information associated with the
ontology terms, both classes and properties. The ver-
balisation of the ontology terms must be provided in
advance by the ontology engineers. For the verbalisa-
tion we use an approach similar to the one adopted by
the Object Role Modelling framework (ORM, see [12;
15]).

Each class name in the ontology has associated a
short noun phrase (usually one or two words), which
represents the term in a natural language fashion. For
example, to the class PStudent is associated “Post-
graduate student” The user will see only the associated
sentence, while PStudent is just used in the internal
ontology representation.

For (binary) associations the ontology engineer has
to provide two different verbalisations for the two di-
rections. For example, let assume that the ontology
states that the association occ room links the two
classes PStudent and Room. Then the engineer asso-
ciates to the association the verbalisation “occupies”
for the direction from PStudent to Room, and the ver-
balisation “is occupied by” for the other direction.

Attributes need one direction only, since they are
never used from the point of view of the basic data
type. In this case, the engineer is only required to pro-
vide the attribute verbalisation from the point of view
of the class.

4 Related work

The work proposed in this paper deals with a relatively
new problem, namely providing the user with a visual
interface to query heterogeneous data sources through
an integrated ontology (that is, a set of constraints),
and a specific literature does not exist yet. By looking
at the extensive survey on Visual Query System (VQS)
presented in [10] it easy to see that only little work
has been done in the specific context we are dealing
with. Some preliminary work was done by one research
group [4; 11; 5; 3]. Similar work from the point of view
of the visual interface paradigm, but without the well
founded support of a logic-based semantics was carried
out in the context of the Tambis project [14; 1]. Also [2]
contains some interesting approach from the point of
view of the visual interface, but again the system has
a different background semantics.

In fact, only recently research has started to have
a serious interest in query processing and informa-
tion access supported by ontologies. Recent work has
come up with proper semantics and with advanced rea-
soning techniques for query evaluation and rewriting
using views under the constraints given by the on-
tology – also called view-based query processing [16;
7]. This means that the notion of accessing informa-
tion through the navigation of an ontology modelling
the information domain has its formal foundations.

Several strategies exist for each activity (see [10] for
a complete classification) and some VQSs allow more
than one of them for each activity. This is also the
case for the SEWASIE system. Indeed, as for the un-



derstanding the reality of interest, several mechanisms
are available, or will be available, to filter the infor-
mation considered significant by the user. The general
idea is to follow a so-called top-down approach, pro-
viding the user with a strategy where general aspects
of the reality are first perceived, and then specific de-
tails may be viewed. Similarly, there is the idea of ex-
ploiting selective zoom. In the case of selective zoom,
the schema is unique, and the concepts are layered in
terms of distance from the focus; the schema can be
examined at several levels, so that only objects above
a specified distance level are visible. Another well es-
tablished technique for learning about the information
content of a schema is browsing. In this case, brows-
ing is essentially a viewing technique aimed at gaining
knowledge about the data. The main hypothesis is that
the user has only a minor knowledge about the data set
and the interaction techniques. Within this hypothesis,
the user starts the interaction by examining a concept
and its neighbourhood (adjacent concepts can be con-
sidered as a first level of explanation of the examined
concept). Next, a new element is selected by the user
from neighbouring concepts to be the current one, and
its neighbourhood is also shown: this process proceeds
iteratively.

An alternative approach to refinement and browsing
is schema simplification. The idea here is to ”bring the
schema close to the query”. This is done by building
a user view resulting from aggregations and transfor-
mations of concepts of the original schema, and it is
achieved in SEWASIE through the renaming mecha-
nism.

Query formulation is the fundamental activity in the
process of data retrieval. The SEWASIE query strategy
by navigation has the characteristic of concentrating
on a concept (or a group of concepts) and moving from
it in order to reach other concepts of interest, on which
further conditions may be specified. A second strategy
for query formulation is by sub-queries. In this case the
query is formulated by composing partial results.

5 Conclusions

This paper has presented the first well-founded intel-
ligent user interface for query formulation support in
the context of ontology-based query processing. This
paper hopefully proved that our work has been done
in a rigorous way both at the level of interface design
and at the level of ontology-based support with lat-
est generation logic-based ontology languages such as
description logics, DAML+OIL and OWL. However,
there are open problems and refinements which have
still to be considered in our future work.

The system uses the verbalisations described in Sec-
tion 3 to transform the conjunctive query into a natural
language expression closer to the user understanding.
In the course of the SEWASIE project some effort will
be dedicated to explore semi-automatic techniques to
rephrase the expressions in more succinct ways with-
out loosing their semantic structure.

Another important aspect to be worked out is the
understanding of the effective methodologies for query
formulation in the framework of this tool, a task that
needs a strong cooperation of the users in its valida-
tion. This will go in parallel with the interface user

evaluation, which is just starting at the time of writ-
ing this paper.7

The other crucial aspect is the efficiency and the
scalability of the ontology reasoning for queries. We
are currently experimenting the tool with various on-
tologies in order to identify possible bottlenecks.

REFERENCES

[1] S. Bechhofer, R. Stevens, G. Ng, A. Jacoby, and
C. Goble, ‘Guiding the user: An ontology driven in-
terface’, in UIDIS 1999, pp. 158–161, (1999).

[2] F. Benzi, D. Maio, and S. Rizzi, ‘VISIONARY: a
viewpoint-based visual language for querying rela-
tional databases’, J. Vis. Lang. Comput., 10(2), 117–
145, (1999).

[3] P. Bresciani and P. Fontana, ‘A knowledge-based
query system for biological databases’, in Proceed-
ings of FQAS 2002, volume 2522 of LNCS, pp. 86–89.
Springer Verlag, (2002).

[4] P. Bresciani and E. Franconi, ‘Description logics for
information access’, in Proceedings of the AI*IA 1996
Workshop on Access, Extraction and Integration of
Knowledge, Napoli, (September 1996).

[5] P. Bresciani, M. Nori, and N. Pedot, ‘A knowledge
based paradigm for querying databases’, in Database
and Expert Systems Application, volume 1873 of
LNCS, pp. 794–804. Springer Verlag, (2000).

[6] D. Calvanese, G. De Giacomo, and M. Lenzerini,
‘On the decidability of query containment under con-
straints’, in Proc. of the 17th ACM SIGACT SIG-
MOD SIGART Symp. on Principles of Database Sys-
tems (PODS’98), pp. 149–158, (1998).

[7] D. Calvanese, G. De Giacomo, and M. Lenzerini, ‘An-
swering queries using views over description logics
knowledge bases’, in Proc. of the 16th Nat. Conf. on
Artificial Intelligence (AAAI 2000), (2000).

[8] Diego Calvanese, Giuseppe De Giacomo, Maurizio
Lenzerini, Daniele Nardi, and Riccardo Rosati, ‘Infor-
mation integration: Conceptual modeling and reason-
ing support’, in Proc. of the 6th Int. Conf. on Cooper-
ative Information Systems (CoopIS’98), pp. 280–291,
(1998).

[9] T. Catarci, T. Di Mascio, E. Franconi, G. Santucci,
and S. Tessaris, ‘An ontology based visual tool for
query formulation support’, in On The Move to Mean-
ingful Internet Systems 2003: OTM 2003 Workshops,
volume 2889 of LNCS, pp. 32–33, (2003).

[10] Tiziana Catarci, Maria Francesca Costabile, Stefano
Levialdi, and Carlo Batini, ‘Visual query systems for
databases: A survey’, Journal of Visual Languages
and Computing, 8(2), 215–260, (1997).

[11] E. Franconi, ‘Knowledge representation meets digital
libraries’, in Proc. of the 1st DELOS (Network of Ex-
cellence on Digital Libraries) workshop on “Informa-
tion Seeking, Searching and Querying in Digital Li-
braries”, (2000).

[12] T. A. Halpin, ‘Augmenting UML with fact orienta-
tion’, in HICSS, (2001).

[13] Ian Horrocks, Ulrike Sattler, Sergio Tessaris, and
Stephan Tobies, ‘How to decide query containment
under constraints using a description logic’, in Logic
for Programming and Automated Reasoning (LPAR
2000), volume 1955 of Lecture Notes in Computer Sci-
ence, pp. 326–343. Springer, (2000).

[14] N. Murray, C. Goble, and N. Paton, ‘A framework
for describing visual interfaces to databases’, J. Vis.
Lang. Comput., 9(4), 429–456, (1998).

[15] http://www.orm.net, 2003.
[16] J. D. Ullman, ‘Information integration using logical

views’, in Proc. of the 6th Int. Conf on Database The-
ory (ICDT’97), pp. 19–40, (1997).

7 An on-line prototypical version of the query building tool,
with a toy ontology without lexicalisation, is available at
the URL http://dev.eurac.edu:8090/sewasie/.


