
Description Logics

Propositional Description Logics

Enrico Franconi

franconi@cs.man.ac.uk

http://www.cs.man.ac.uk/˜franconi

Department of Computer Science, University of Manchester

(1/59)

Summary: where we stand

• Description Logics as a formalization of O-O languages

• Description Logics as a predicate level language

• Concepts

• Roles

• Reasoning in Description Logics

• Subsumption

• FL−: the simplest structural description logic

(2/59)

Why Description Logics?

If predicate logic is directly used without some kind of restriction, then

• the structure of the knowledge/information is lost (no variables, concepts as

classes, and roles as properties),

• the expressive power is too high for having good computational properties

and efficient procedures.

(3/59)

Axioms, Disjunctions and Negations

Teaching-Assistant v ¬Undergrad t Professor

∀x. Teaching-Assistant(x) → ¬Undergrad(x) ∨ Professor(x)

A necessary condition in order to be a teaching assistant is to be either not undergraduated or a

professor. Clearly, a graduated student being a teaching assistant is not necessarily a professor;

moreover, it may be the case that some professor is not graduated.

Teaching-Assistant
.
= ¬Undergrad t Professor

∀x. Teaching-Assistant(x) ↔ ¬Undergrad(x) ∨ Professor(x)

When the left-han side is an atomic concept, the “v” symbol introduces a primitive definition –

giving only necessary conditions – while the “
.
=” symbol introduces a real definition – with

necessary and sufficient conditions.

In general, it is possible to have complex concept expressions at the left-hand side as well.

(4/59)

ALC: the simplest propositional DL

A AI ⊆ ∆I
primitive concept

R RI ⊆ ∆I × ∆I
primitive role

> ∆I
top

⊥ ∅ bottom

¬C ∆I \ CI
complement

C u D CI ∩ DI
conjunction

C t D CI ∪ DI
disjunction

∀R.C {x | ∀y. RI(x, y) → CI(y)} universal quant.

∃R.C {x | ∃y. RI (x, y) ∧ CI(y)} existential quant.

(5/59)

Closed Propositional Language

• Conjunction is interpreted as intersection of sets of individuals.

• Disjunction is interpreted as union of sets of individuals.

• Negation is interpreted as complement of sets of individuals.

• ∃R.> ⇐⇒ ∃R.

• ¬(C u D) ⇐⇒ ¬C t ¬D

• ¬(C t D) ⇐⇒ ¬C u ¬D

• ¬(∀R.C) ⇐⇒ ∃R.¬C

• ¬(∃R.C) ⇐⇒ ∀R.¬C

(6/59)

Negating Universal formulæ

• ¬(∀R.C) =⇒ ∃R.¬C

• ¬(∃R.C) =⇒ ∀R.¬C

∆

(Compare with FL− expressivity)
(7/59)

Formal Semantics

An interpretation I = (∆I , ·I) consists of:

• a nonempty set ∆I (the domain)

• a function ·I (the interpretation function)

that maps

• every concept to a subset of ∆I

• every role to a subset of ∆I × ∆I

• every individual to an element of ∆I

An interpretation function ·I is an extension function if and only if it satisfies the

semantic definitions of the language.

(8/59)

Knowledge Bases

Σ = 〈TBox, Abox〉

• Terminological Axioms: C v D , C
.
= D

• Student
.
= Person u ∃NAME.String u

∃ADDRESS.String u

∃ENROLLED.Course
• Student v ∃ENROLLED.Course

• ∃TEACHES.Course v ¬Undergrad t Professor

• Membership statements: C(a), R(a, b)

• Student(john)

• ENROLLED(john, cs415)

• (Student t Professor)(paul)

(9/59)

TBox: descriptive semantics

Different semantics have been proposed for the TBox, depending on the fact

whether cyclic statements are allowed or not.

We consider now the descriptive semantics, based on classical logics.

• An interpretation I satisfies the statement C v̇ D if CI ⊆ DI .

• An interpretation I satisfies the statement C
.
= D if CI = DI .

An interpretation I is a model for a TBox T if I satisfies all the statements in T .

(10/59)

ABox

If I = (∆I , ·I) is an interpretation,

• C(a) is satisfied by I if aI ∈ CI .

• R(a, b) is satisfied by I if (aI , bI) ∈ RI .

A set A of assertions is called an ABox.

An interpretation I is said to be a model of the ABox A if every assertion of A is

satisfied by I . The ABox A is said to be satisfiable if it admits a model.

An interpretation I = (∆I , ·I) is said to be a model of a knowledge base Σ if

every axiom of Σ is satisfied by I .

A knowledge base Σ is said to be satisfiable if it admits a model.

(11/59)

Logical Implication

Σ |= ϕ if every model of Σ is a model of ϕ

Example:

TBox:

∃TEACHES.Course v

¬Undergrad t Professor

ABox:

TEACHES(john, cs415), Course(cs415),

Undergrad(john)

Σ |= Professor(john)
(12/59)

Logical Implication

What if:

TBox:

∃TEACHES.Course v

Undergrad t Professor

ABox:

TEACHES(john, cs415), Course(cs415),

Undergrad(john)

Σ
?

|= Professor(john)

Σ
?

|= ¬Professor(john)

(13/59)

Reasoning Services

•Concept Satisfiability

Σ 6|= C ≡ ⊥ Student u ¬Person

the problem of checking whether C is satisfiable w.r.t. Σ, i.e. whether there exists a model I of Σ such that CI 6= ∅

•Subsumption

Σ |= C v D Student v Person

the problem of checking whether C is subsumed byD w.r.t. Σ, i.e. whether CI ⊆ DI in every model I of Σ

•Satisfiability

Σ 6|= Student
.
= ¬Person

the problem of checking whether Σ is satisfiable, i.e. whether it has a model

• Instance Checking

Σ |= C(a) Professor(john)

the problem of checking whether the assertion C(a) is satisfied in every model of Σ
(14/59)

Reasoning Services (cont.)

•Retrieval

{a | Σ |= C(a)} Professor ⇒ john

•Realization

{C | Σ |= C(a)} john ⇒ Professor

(15/59)

Reduction to satisfiability

• Concept Satisfiability

Σ 6|= C ≡ ⊥ ↔

exists x s.t. Σ ∪ {C(x)} has a model

• Subsumption

Σ |= C v D ↔

Σ ∪ {(C u ¬D)(x)} has no models

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � �

� � � � �

� � � � �
C

D

¬D

• Instance Checking

Σ |= C(a) ↔

Σ ∪ {¬C(a)} has no models
(16/59)

The Taxonomy

N
.
= ANIMATE u (STUDENT t PROFESSOR)

COURSE

INANIMATE

TOP

ANIMATE

PERSON

STUDENT PROFESSOR

WORKING-STUDENT

��>

6

ZZ}

6

��� @@I

@@I ���

����:
6

@@I
N

• Subsumption is a partial ordering relation in the space of concepts.

• If we consider only named concepts, subsumption induces a taxonomy where

only direct subsumptions are explicitly drawn.

• A taxonomy is the minimal relation in the space of named concepts such that

its rlflexive-transitive closure is the subsumption relation.

(17/59)

The Taxonomy

N
.
= ANIMATE u (STUDENT t PROFESSOR)

COURSE

INANIMATE

TOP

ANIMATE

PERSON

STUDENT PROFESSOR

WORKING-STUDENT

��>

6

ZZ}

6

��� @@I

@@I ���

����:
6

@@I
N

• Subsumption is a partial ordering relation in the space of concepts.

• If we consider only named concepts, subsumption induces a taxonomy where

only direct subsumptions are explicitly drawn.

• A taxonomy is the minimal relation in the space of named concepts such that

its rlflexive-transitive closure is the subsumption relation.

(17/59)

Classification

• Given a concept C and a TBox T , for all concepts D of T determine

whether D subsumes C , or D is subsumed by C .

• Intuitively, this amounts to finding the “right place” for C in the taxonomy

implicitly present in T .

• Classification is the task of inserting new concepts in a taxonomy. It is sorting

in partial orders.

(18/59)

Reasoning procedures

• Terminating, efficient and complete algorithms for deciding satisfiability –

and all the other reasoning services – are available.

• Algorithms are based on tableaux-calculi techniques.

• Completeness is important for the usability of description logics in real

applications.

• Such algorithms are efficient for both average and real knowledge bases,

even if the problem in the corresponding logic is in PSPACE or EXPTIME.

(19/59)

Tableaux Calculus

The Tableaux Calculus is a decision procedure solving the problem of satisfiability.

If a formula is satisfiable, the procedure will constructively exhibit a model of the

formula.

The basic idea is to incrementally build the model by looking at the formula, by

decomposing it in a top/down fashion. The procedure exhaustively looks at all the

possibilities, so that it can eventually prove that no model could be found for

unsatisfiable formulas.

(20/59)

Tableaux Calculus

1. Syntactically transform a theory Σ in a Constraint System S – also called

tableaux.

Every formula of Σ is transformed into a constraint in S.

2. Add constraints to S, applying specific completion rules.

Completion rules are either deterministic – they yield a uniquely determined

constraint system – or nondeterministic – yielding several possible alternative

constraint systems (branches).

3. Apply the completion rules until either a contradiction (a clash) is generated in

every branch, or there is a completed branch where no more rule is

applicable.

4. The completed constraint system gives a model of Σ; it corresponds to a

particular branch of the tableaux.

(21/59)

The FOL example

φ ∧ ψ

φ

ψ

φ ∨ ψ

φ ψ

∀x. φ

φ{X/t}

∃x. φ

φ{X/Z}

∃y. (p(y) ∧ ¬q(y)) ∧ ∀z. (p(z) ∨ q(z))

∃y. (p(y) ∧ ¬q(y))

∀z. (p(z) ∨ q(z))

p(ȳ) ∧ ¬q(ȳ)

p(ȳ)

¬q(ȳ)

p(ȳ) ∨ q(ȳ)

p(ȳ) q(ȳ)

< COMPLETED > < CLASH >

The formula is satisfiable. The devised model is ∆I = {ȳ}, pI = {ȳ}, qI = ∅.

(22/59)

Negation Normal Form

Recall that the above completion rules for FOL work only if the formula has been

translated into Negation Normal Form, i.e., all the negations have been pushed

down.

In the same way, we can transform any ALC formula into an equivalent one in

Negation Normal Form, so that negation appears only in front of atomic concepts:

• ¬(C u D) ⇐⇒ ¬C t ¬D

• ¬(C t D) ⇐⇒ ¬C u ¬D

• ¬(∀R.C) ⇐⇒ ∃R.¬C

• ¬(∃R.C) ⇐⇒ ∀R.¬C

(23/59)

Completion Rules: the AND rule

The propagation rules come straightforwardly from the semantics of constructors.

If in a given interpretation I , whose domain contains the element a, we have that

a ∈ (C u D)I , then from the semantics we know that such element a should be

in the intersection of CI and DI , i.e. it should be in both CI and DI .

Since this must be true for any interpretation, we can abstract from interpretations

and their elements, and say that if in a generic interpretation we have a generic

element x that is in the interpretation of the concept C u D (denote this by

x : (C u D)) then the element x should belong both to the interpretation of C

and to the interpretation of D.

(24/59)

The AND rule

Suppose now we want to construct a generic interpretation S such that the set

corresponding to the concept C u D contains at least one element. We can state

this initial requirement as the constraint x : (C u D).

Following the semantics, we know that S must be such that the constraints x : C

and x : D must hold, hence we can add these new constraints to S, knowing that

if S will ever satisfy them then it will also satisfy the first constraint.

These considerations lead to the following propagation rule:

S →u {x : C, x : D} ∪ S

if 1. x : C u D is in S,

2. x : C and x : D are not both in S

(25/59)

The SOME rule

If in a given interpretation I , whose domain contains the element a, we have that

a ∈ (∃R.C)I , then from the semantics we know that there must be an element b

(not necessarily distinct from a) such that (a, b) ∈ RI , and b ∈ CI .

Since this must be true for any interpretation, we can abstract from interpretations

and their elements, and say that if in a generic interpretation we have a generic

element x that is in the interpretation of the concept ∃R.C (denote this by

x : ∃R.C) then there must be a generic element y such that x and y are in

relation through R (denote it xRy) and y belongs to the interpretation of C

(denoted as y : C).

(26/59)

The SOME rule (cont.)

These considerations lead to the following propagation rule:

S →∃ {xRy, y : C} ∪ S

if 1. x : ∃R.C is in S,

2. y is a new variable,

3. there is no z such that

both xRz and z : C are in S

(27/59)

Completion rules for ALC

S →u {x : C, x : D} ∪ S

if 1. x : C u D is in S,

2. x : C, x : D are not both in S

S →t {x : E} ∪ S

if 1. x : C t D is in S,

2. neither x : C nor x : D is in S,

3. E = C or E = D

S →∀ {y : C} ∪ S

if 1. x : ∀R.C is in S,

2. xRy is in S,

3. y : C is not in S

S →∃ {xRy, y : C} ∪ S

if 1. x : ∃R.C is in S,

2. y is a new variable,

3. there is no z such that

both xRz and z : C are in S

(28/59)

Clash

While building a constraint system, we can look for evident contradictions to see if

the constraint system is not satisfiable. We call these contradictions clashes.

A clash is a constraint system having the form:

{x : A, x : ¬A}, where A is a concept name.

A clash is evidently an unsatisfiable constraint system, hence any constraint

system containing a clash is obviously unsatisfiable.

(29/59)

An Example of tableaux

Satisfiability of the concept:

((∀CHILD.Male) u (∃CHILD.¬Male))

((∀CHILD.Male) u (∃CHILD.¬Male))(x)

(∀CHILD.Male)(x) u-rule

(∃CHILD.¬Male)(x) “

CHILD(x, y) ∃-rule

¬Male(y) “

Male(y) ∀-rule

〈CLASH〉

(30/59)

An Example of tableaux - constraint syntax -

((∀CHILD.Male) u (∃CHILD.¬Male))

x : ((∀CHILD.Male) u (∃CHILD.¬Male))

x : (∀CHILD.Male) u-rule

x : (∃CHILD.¬Male) “

x CHILD y ∃-rule

y : ¬Male “

y : Male ∀-rule

〈CLASH〉

(31/59)

Another example

((∀CHILD.Male) u (∃CHILD.Male))

x : ((∀CHILD.Male) u (∃CHILD.Male))

x : (∀CHILD.Male) u-rule

x : (∃CHILD.Male) “

x CHILD y ∃-rule

y : Male “

y : Male ∀-rule

〈COMPLETED〉

Exercise: find a model.

(32/59)

Tableaux with individuals

Check the satisfiability of the ABox:

(Parent u ∀CHILD.Male)(john)

¬Male(mary)

CHILD(john, mary)

john : Parent u ∀CHILD.Male

mary : ¬Male

john CHILD mary

john : Parent u-rule

john : ∀CHILD.Male “

mary : Male ∀-rule

〈CLASH〉

The knowledge base is inconsistent.
(33/59)

Soundness of the Tableaux for ALC

The calculus does not add unnecessary contradictions.

That is, deterministic rules always preserve the Satisfiability of a constraint

system, and nondeterministic rules have always a choice of application that

preserves Satisfiability.

(34/59)

Termination of the Tableaux for ALC

A constraint system is complete if no propagation rule applies to it. A complete

system derived from a system S is also called a completion of S. Completions

are reached when there is no infinite chain of applications of rules.

Intuitively, this can be proved by using the following argument: all rules but →∀

are never applied twice on the same constraint; this rule in turn is never applied to

a variable x more times than the number of the direct successors of x, which is

bounded by the length of a concept; finally, each rule application to a constraint

y : C adds constraints z : D such that D is a strict subexpression of C .

(35/59)

Completeness of the Tableaux for ALC

If S is a completion of {x : C} and S contains no clash, then it is always possible

to construct an interpretation for C on the basis of S, such that CI is nonempty.

The proof is a straightforward induction on the length of the concepts involved in

each constraint.

(36/59)

Interpretations as graphs

An interpetation can be viewed as a labeled directed graph.

• Each node is a generic element of the interpretation domain.

• Labels on nodes are concepts which include that specific element in the

interpretation.

• Each arc is labeled by a relationship (i.e., a role) among elements of the

interpretation domain that must hold.

(37/59)

Exponential models

∃R.C1 u ∃R.C2 u ∀R. (∃R.C1 u ∃R.C2 u ∀R. . . .)

x : ∃R.C1 u ∃R.C2 u ∀R.(∃R.C1 u ∃R.C2 u ∀R.(. . .))

xRx1, x1 : C1

x1 : ∃R.C1 u ∃R.C2 u ∀R.(. . .)

. . .

. . .
xRx2, x2 : C2

x2 : ∃R.C1 u ∃R.C2 u ∀R.(. . .)

. . .

. . .

2n generated variables!

Exercise: depict the model as a graph.
(38/59)

Complexity of reasoning

Expressivity |= C vD |= C(a)

C uD FL− P P

∀R.C

∃R

¬A AL P P

∃R.C ALE NP PSPACE

¬C ALC PSPACE ⇐= !!

{a1 . . .} ALCO PSPACE

SHIQ EXPTIME

KL-ONE undecidable

(39/59)

Traces

• In order to obtain a polynomial space algorithm for ALC, we should exploit

the property of independency between traces of a satisfiability proof.

• A completed constraint system can be partitioned into traces, where the

computation can be performed independently – i.e. an inconsistency can be

generated only by a clash belonging to a single trace.

• Since a completed constraints system denotes a model, it can be regarded as

a graph: traces correspond to paths from the starting node to a leaf.

• A clash at a leaf node can only be generated by the application of rules from

the trace it belongs to. It is impossible that a clash is generated by rules

applied at some other trace. This is because completed constraint systems

are trees.

• A trace has polynomial size!

(40/59)

Functional Algorithms

• Nodes in a constraint system are only generated by the completion rule for

the existential constraint “→∃”.

• In order to exploit traces (which are paths in the model), we force a depth-first

strategy in the generation of new nodes in the constraint system.

• Apply the “→∃” rule only if no other rule is applicable;

• If the “→∃” rule is applicable to more that one constraint, choose the

constraint with the most recently generated variable.

(41/59)

Example

((∃CHILD.Male) u (∃CHILD.¬Male))

x : ((∃CHILD.Male) u (∃CHILD.¬Male))
x : (∃CHILD.Male) u-rule

x : (∃CHILD.¬Male) “

x CHILD y ∃-rule

y : Male “

x CHILD z ∃-rule

z : ¬Male “

〈COMPLETED〉

�
�

�
�	

@
@

@
@R

x

y : Male z : ¬Male

CHILDCHILD

(42/59)

Example with traces

x : ((∃CHILD.Male) u (∃CHILD.¬Male))
x : (∃CHILD.Male) u-rule

x : (∃CHILD.¬Male) “

x CHILD y ∃-rule

y : Male “

x CHILD z ∃-rule

z : ¬Male “

〈COMPLETED〉

�
�

�
�	

@
@

@
@R

x

y : Male

z : ¬Male

CHILD

CHILD

(43/59)

Example with traces

x : ((∃CHILD.Male) u (∃CHILD.¬Male))
x : (∃CHILD.Male) u-rule

x : (∃CHILD.¬Male) “

x CHILD y ∃-rule

y : Male “

x CHILD z ∃-rule

z : ¬Male “

〈COMPLETED〉

�
�

�
�	

@
@

@
@R

x

y : Male z : ¬Male

CHILDCHILD

(43/59)

The Functional Algorithms for ALC

sat(S) = if S includes a clash

then false

elseif C u D ∈ S and C 6∈ S orD 6∈ S

then sat(S ∪ {C, D})

elseif C t D ∈ S and C 6∈ S andD 6∈ S

then sat(S ∪ {C}) or sat(S ∪ {D})

else forall ∃R.C ∈ S

sat({C} ∪ {D | ∀R.D ∈ S})

(44/59)

Sources of Complexity

Such a deterministic version of the tableaux calculus can be seen as a depth-first

exploring of an AND-OR tree:

• AND-branching corresponds to the (independent) check of all successors of a

node;

• OR-branching corresponds to the choices of application of the

non-deterministic rule.

The exponential-time behaviour of the calculus has two origins:

• AND-branching – leading to constraint systems of exponential size (with an

exponential number of possible clashes to be searched through);

• OR-branching – leading to an exponential number of possible constraint

systems (like in propositional calculus).

(45/59)

Sources of Complexity - II

Differently from databases and, in general, from static data structures, description

logics do not handle only ground and complete knowledge but perform also

reasoning on incomplete knowledge and case analysis:

• Existential quantification (ALE)

• Disjunction (ALC)

• Enumerated types (ALCO)

• Terminological axioms (SHIQ)

(46/59)

An example

Σ = FRIEND(john,susan) ∧

FRIEND(john,andrea) ∧

LOVES(susan,andrea) ∧

LOVES(andrea,bill) ∧

Female(susan) ∧

¬Female(bill)

bill: ¬Female

andrea susan: Female

john

?

�

�
�

��	

@
@

@@R

FRIEND FRIEND

LOVES

LOVES

(47/59)

Σ = bill: ¬Female

andrea susan: Female

john

?

�

�
�

��	

@
@

@@R

FRIEND FRIEND

LOVES

LOVES

Does John have a female friend loving a male (i.e. not female) person?

∃X, Y . FRIEND(john, X) ∧ Female(X) ∧ LOVES(X, Y) ∧ ¬Female(Y)

Σ
?
|= (∃FRIEND.(Female u (∃LOVES.¬Female)))(john)

=⇒ Answer: YES

(48/59)

Exercise

• Reduce the problem into a satisfiability problem

• Solve it using plain tableaux calculus

• Solve it using the functional algorithm (is there any difference?)

• Comment on the sources of complexity in finding the solution

(49/59)

Some extensions of ALC

Constructor Syntax Semantics

concept name A AI ⊆ ∆I

top > ∆I

bottom ⊥ ∅

conjunction C uD CI ∩DI

disjunction (U) C tD CI ∪DI

negation (C) ¬C ∆I \ CI

universal ∀R.C {x | ∀y : RI(x, y) → CI(y)}

existential (E) ∃R.C {x | ∃y : RI(x, y) ∧ CI(y)}

cardinality (N) >n R {x |]{y | RI(x, y)} ≥ n}

6n R {x |]{y | RI(x, y)} ≤ n}

qual. cardinality (Q) >nR.C {x |]{y | RI(x, y) ∧ CI(y)} ≥ n}

6nR.C {x |]{y | RI(x, y) ∧ CI(y)} ≤ n}

enumeration (O) {a1 . . . an} {aI1 , . . . , a
I
n}

selection (F) f : C {x ∈ Dom(fI) | CI(fI(x))}

(ALC has same expressivity as ALCUE)

(50/59)

Cardinality Restriction

Role quantification cannot express that a woman has at least 3 (or at most 5)

children.

Cardinality restrictions can express conditions on the number of fillers:

• Busy−Woman
.
= Woman u (>3 CHILD)

• Conscious−Woman
.
= Woman u (65 CHILD)

(>1 R) ⇐⇒ (∃R.)

(51/59)

Cardinality Restriction

• Busy−Woman
.
= Woman u (>3 CHILD)

• Conscious−Woman
.
= Woman u (65 CHILD)

Busy−Woman(mary)

busy-woman : Woman,

CHILD :
≥3

Person

mary : Woman,

CHILD : john,

CHILD : sue,

CHILD : karl

|= Conscious−Woman(mary) ?
(52/59)

Roles as Functions

• A role is functional is the filler functionally depends on the individual, i.e., the

role can be considered as a function: R(x, y) ⇔ f(x) = y.

• For example, the roles CHILD and PARENT are not functional, while the

roles MOTHER and AGE are functional.

• If a role is functional, we write:

∃f.C ≡ f : c (selection operator)

(53/59)

Individuals

In every interpretation different individuals are assumed to denote different

elements, i.e. for every pair of individuals a, b, and for every interpretation I , if

a 6= b then aI 6= bI .

This is called the Unique Name Assumption and is usually assumed in database

applications.

Example:

How many children does this family have?

Family(f), Father(f,john), Mother(f,sue),

Son(f,paul), Son(f,george), Son(f,alex)

|= (>3 Son)(f)

(54/59)

Enumeration Type (one-of)

• Weekday
.
= {mon, tue, wed, thu, fri, sat, sun}

• WeekdayI = {monI , tueI , wedI , thuI , friI , satI , sunI}

• Citizen
.
= (Person u ∀LIVES.Country)

• French
.
= (Citizen u ∀LIVES.{france})

(55/59)

Trace-based satisfiability algorithm for one-of

Expressive languages may not have the trace-independence property:

enumerated types introduce interactions between traces, even if the satisfiability

problem is still in PSPACE.

Example:

∃CHILD.(Male u {peter}) u

∃CHILD.(¬Male u {peter})

The two traces generated by the two existential quantifications on CHILD are

independently satisfiable, but are globally unsatisfiable, since both existential

variables should be co-referenced to the individual peter.

x

peter : Male,¬Male

CHILDCHILD

(56/59)

Adequacy

Student

Person

name: [String]

address: [String]

enrolled: [Course]

Student
.
= Person u

NAME : String u

∀ADDRESS.Stringu

>1 ADDRESS u

∃ENROLLED.Course

(57/59)

Some constructors for role expressions

Constructor Syntax Semantics

role name P P I ⊆ ∆I × ∆I

conjunction R u S RI ∩ SI

disjunction R t S RI ∪ SI

negation ¬R ∆I × ∆I \ RI

inverse R− {(x, y) ∈ ∆I × ∆I | (y, x) ∈ RI}

composition R ◦ S {(x, y) ∈ ∆I × ∆I | ∃z. (x, z) ∈ RI ∧ (z, y) ∈ SI}

range R |C {(x, y) ∈ ∆I × ∆I | (x, y) ∈ RI ∧ y ∈ CI}

product C × D {(x, y) ∈ CI × DI}

(58/59)

Extending Description Logics

• Defaults and Beliefs

• Probability- and similarity-based reasoning

• Epistemic statements

• Closed world assumption

• Plural entities: records, sets, collections, aggregations

• Concrete domains

• Ontological primitives

• time and action

• space

• parts and wholes

(59/59)

	@semtitle
	Summary: where we stand
	Why Description Logics?
	Axioms, Disjunctions and Negations
	ALC : the simplest propositional DL
	Closed Propositional Language
	Negating Universal formulae
	Formal Semantics
	Knowledge Bases
	TBox: descriptive semantics
	ABox
	Logical Implication
	Logical Implication
	Reasoning Services
	Reasoning Services {em (cont.)}
	Reduction to satisfiability
	The Taxonomy
	Classification
	Reasoning procedures
	Tableaux Calculus
	Tableaux Calculus
	The FOL example
	Negation Normal Form
	Completion Rules: the AND rule
	The AND rule
	The SOME rule
	The SOME rule {em (cont.)}
	Completion rules for ALC
	Clash
	An Example of tableaux
	An Example of tableaux - {em constraint} syntax -
	Another example
	Tableaux with individuals
	Soundness of the Tableaux for ALC
	Termination of the Tableaux for ALC
	Completeness of the Tableaux for ALC
	Interpretations as graphs
	Exponential models
	Complexity of reasoning
	Traces
	Functional Algorithms
	Example
	Example with traces
	The Functional Algorithms for ALC
	Sources of Complexity
	Sources of Complexity - II
	An example
	
	Exercise
	Some extensions of ALC
	Cardinality Restriction
	Cardinality Restriction
	Roles as Functions
	Individuals
	Enumeration Type (one-of)
	Trace-based satisfiability algorithm for one-of
	Adequacy
	Some constructors for role expressions
	Extending Description Logics

