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Summary

• What is an ontology

• Ontology languages

• Formalising ontologies with set theory

• Reasoning in ontologies

• Formalising ontologies with first order logic

• Integrity constraints

• The i•com ontology design tool
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What is an Ontology

• An ontology is a formal conceptualisation of the world.

• An ontology specifies a set of constraints, which declare what should

necessarily hold in any possible world.

• Any possible world should conform to the constraints expressed by the

ontology.

• Given an ontology, a legal world description is a possible world satisfying the

constraints.
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Ontology languages

• An ontology language usually introduces concepts (aka classes, entities),

properties of concepts (aka slots, attributes, roles), relationships between

concepts (aka associations), and additional constraints.

• Ontology languages may be simple (e.g., having only concepts), frame-based

(having only concepts and properties), or logic-based (e.g. Ontolingua and

DAML+OIL).

• Ontology languages are typically expressed by means of diagrams.

• The Entity-Relationship conceptual data model and UML Class Diagrams can

be considered as ontology languages.
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Entity-Relationship Schema

Employee

PaySlipNumber(Integer)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager

×

Works-for

Manages

(1,n)

(1,1)
(1,1)
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UML Class Diagram

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages
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Meaning of basic constructs

• An entity/class is a set of instances;

• an association (n-ary relationship) is a set of pairs (n-tuples) of instances;

• an attribute is a set of pairs of an instance and a domain element.

E1

E2

E3

E4

E5

P1

P2

P3

“P12a”

“P02b”

“P2a/1”

“P9”

Employee Project String
Works-for ProjectCode
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A world is described by sets of instances

E1

E2

E3

E4

E5

P1

P2

P3

〈E1,P1〉
〈E2,P1〉

〈E2,P2〉
〈E2,P3〉

〈E3,P1〉
〈E4,P2〉

〈E4,P3〉
〈E5,P3〉

Employee Project Works-for
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The relational representation

Employee

employeeId

E1

E2

E3

E4

E5

Project
projectId

P1

P2

P3

String

anystring

“P12a”

“P02b”

“P2a/1”

“P9”

· · ·

Works-for
employeeId projectId

E1 P1

E2 P1

E2 P2

E2 P3

E3 P1

E4 P2

E4 P3

E5 P3

ProjectCode
projectId pcode

P1 “P12a”

P2 “P02b”

P3 “P2a/1”
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Meaning of Attributes

Project

ProjectCode(String)

Project ⊆ {p | ](ProjectCode ∩ ({p} × String)) ≥ 1}
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Meaning of ISA

Employee

Manager

Manager ⊆ Employee
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Meaning of ISA

Employee

Manager

Manager ⊆ Employee
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Meaning of disjoint and total constraints

Manager

TopManager AreaManager

×

• ISA: AreaManager ⊆ Manager

• ISA: TopManager ⊆ Manager

• disjoint: AreaManager ∩ TopManager = ∅

• total Manager ⊆ AreaManager ∪ TopManager
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Meaning of Associations and Relationships

Employee Project

A1

Works-for

A2

Works-for ⊆ Employee × Project
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Meaning of Associations and Relationships

Employee ProjectA1 Works-for A2

Works-for ⊆ Employee × Project
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Meaning of Cardinality Constraints

TopManager Project

A1

Manages

A2

(min,max)

TopManager ⊆ {m | max ≥ ](Manages ∩ ({m} × Ω)) ≥ min}

(where Ω is the set of all instances)
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Meaning of Cardinality Constraints

TopManager ProjectA1 Manages A2
(min,max)
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Meaning of the initial diagram

Works-for ⊆ Employee × Project

Manages ⊆ TopManager × Project

Employee ⊆ {e | ](PaySlipNumber ∩ ({e} × Integer)) ≥ 1}

Employee ⊆ {e | ](Salary ∩ ({e} × Integer)) ≥ 1}

Project ⊆ {p | ](ProjectCode ∩ ({p} × String)) ≥ 1}

TopManager ⊆ {m | 1 ≥ ](Manages ∩ ({m} × Ω)) ≥ 1}

Project ⊆ {p | 1 ≥ ](Manages ∩ (Ω × {p})) ≥ 1}

Project ⊆ {p | ](Works-for ∩ (Ω × {p})) ≥ 1}

Manager ⊆ Employee

AreaManager ⊆ Manager

TopManager ⊆ Manager

AreaManager ∩ TopManager = ∅

Manager ⊆ AreaManager ∪ TopManager
(15/38)



Reasoning

Given an ontology – seen as a collection of constraints – it is possible that

additional constraints can be inferred.

• An entity is inconsistent if it denotes always the empty set.

• An entity is a sub-entity of another entity if the former denotes a subset of the

set denoted by the latter.

• Two entities are equivalent if they denote the same set.

• . . .
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Reasoning

Person

Italian English

Lazy LatinLover Gentleman Hooligan

×

×

implies

LatinLover = ∅

Italian ⊆ Lazy

Italian ≡ Lazy
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Reasoning by cases

Italian

Lazy Mafioso LatinLover ItalianProf

×

{disjoint}

implies

ItalianProf ⊆ LatinLover
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Reasoning by cases

Italian

Lazy Mafioso LatinLover ItalianProf

×

{disjoint}

implies

ItalianProf ⊆ LatinLover

(18/38)



ISA and Inheritance

Employee

Manager

Salary(Integer)

implies

Manager ⊆ {m | ](Salary ∩ ({m} × Integer)) ≥ 1}
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ISA and Inheritance

Employee

Manager

Salary(Integer)

Salary(Integer)

implies

Manager ⊆ {m | ](Salary ∩ ({m} × Integer)) ≥ 1}
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Infinite worlds

Root

Node

link

(2,2)

(0,1)

implies

“the classes Root and Node contain an infinite number of instances”.
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Ontologies in First Order Logic

• We have introduced ontology languages that specify a set of constraints that

should be satisfied by the world of interest.

• The interpretation of an ontology is therefore defined as the collection of all

the legal world descriptions – i.e., all the (finite) relational structures which

conform to the constraints imposed by the ontology.

• In order to formally define the interpretation, an ontology is mapped into a set

of First Order Logic (FOL) formulas.

• The legal world descriptions (i.e., the interpretation) of an ontology are all the

models of the translated FOL theory.
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FOL alphabet

The Alphabet of the FOL language will have the following set of Predicate

symbols:

• 1-ary predicate symbols: E1, E2, . . . , En for each Entity-set;

D1, D2, . . . , Dm for each Basic Domain.

• binary predicate symbols: A1, A2, . . . , Ak for each Attribute.

• n-ary predicate symbols: R1, R2, . . . , Rp for each Relationship-set.

(22/38)



FOL Notation

• Vector variables indicated as x stand for an n-tuple of variables:

x = x1, . . . , xn

• Counting existential quantifier indicated as ∃≤n or ∃≥n.

∃≤nx. R(x, y) ≡

∀x1, . . . , xn, xn+1. R(x1, y)∧. . .∧R(xn, y)∧R(xn+1, y) →

(x1 = x2) ∨ . . . ∨ (x1 = xn) ∨ (x1 = xn+1) ∨

(x2 = x3) ∨ . . . ∨ (x2 = xn) ∨ (x2 = xn+1) ∨

. . . . . . ∨ (xn = xn+1)

∃≥nx. R(x, y) ≡

∃x1, . . . , xn. R(x1, y) ∧ . . . ∧ R(xn, y) ∧ R(xn+1, y) ∧

¬(x1 = x2) ∧ . . . ∧ ¬(x1 = xn) ∧

¬(x2 = x3) ∧ . . . ∧ ¬(x2 = xn) ∧

. . . . . . ∧ (xn−1 = xn)
(23/38)



The Interpretation function

Interpretation: I = 〈D, ·I〉, where D is an arbitrary non-empty set such that:

• D = Ω ∪ B, where:

• B = ∪m
i=1BDi. BDi is the set of values associated with each basic

domain (i.e., integer, string, etc.); and BDi ∩ BDj = ∅, ∀i, j. i 6= j

• Ω is the abstract entity domain such that B ∩ Ω = ∅.

(24/38)



The Formal Semantics for the Atoms

I is the interpretation function that maps:

• Basic Domain Predicates to elements of the relative basic domain:

Di
I = BDi (e.g., StringI = BString).

• Entity-set Predicates to elements of the entity domain:

Ei
I ⊆ Ω.

• Attribute Predicates to binary relations such that:

Ai
I ⊆ Ω × B.

• Relationship-set Predicates to n-ary relations over the entity domain:

Ri
I ⊆ Ω × Ω . . . × Ω = Ωn.

(25/38)



The Attribute Construct

E
A

D

• The meaning of this constraint is:

EI ⊆ {e ∈ Ω | ](AI ∩ ({e} × BD)) ≥ 1}

• The FOL translation is the formula:

∀x. E(x) → ∃y.A(x, y) ∧ D(y)

(26/38)
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The Relationship Construct

E1

. . .

EnR

• The meaning of this constraint is:

RI ⊆ E1
I × . . . × En

I

• The FOL translation is the formula:

∀x1, . . . , xn. R(x1, . . . , xn) → E1(x1) ∧ . . . ∧ En(xn)
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The Cardinality Construct

E1

Ei

EnR

(p,q)

• The meaning of this constraint is:

Ei
I ⊆ {ei ∈ Ω | p ≤ ](RI ∩ (Ω × {ei} × Ω)) ≤ q}

• The FOL translation is the formula:

∀xi. E(xi) → ∃≥px1, . . . , xi−1, xi+1, . . . xn. R(x1, . . . , xn) ∧

∃≤qx1, . . . , xi−1, xi+1, . . . xn. R(x1, . . . , xn)
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The Cardinality Construct: An Example

Professor StudentSupervises
(2,3) (1,1)

A valid world description is:

Professor

professorId

Alex

Bob

Student

studentId

John

Mary

Nick

Paul

Laura

Supervises

professorId studentId

Alex John

Bob Laura

Alex Mary

Bob Nick

Alex Paul
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The Cardinality Construct: An Example

Professor StudentSupervises
(2,3) (1,1)

An invalid world description is:

Professor

professorId

Alex

Bob

Student

studentId

John

Mary

Nick

Paul

Laura

Supervises

professorId studentId

Alex John

Bob Laura

Alex Mary

Bob Nick

Alex Paul

Alex Laura
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The Cardinality Construct: An Example

Professor StudentSupervises
(2,3) (1,1)

• The FOL translation is:

∀x, y. Supervises(x, y) → Professor(x) ∧ Student(y)

∀x. Professor(x) → ∃≥2y. Supervises(x, y) ∧

∃≤3y. Supervises(x, y)
∀y. Student(y) → ∃=1x. Supervises(x, y)

(31/38)



ISA Relations

The ISA relation is a constraint that specifies sub-entity sets.

Sub-entity-set = contains entities with more properties – both more attributes and

different participation in relationships – not pertinent to the Super-entity-set.

A Sub-entity-set inherits all the properties of its Sub-entity-sets.

We distinguish between the following different ISA relations:

• Overlapping Partial;

• Overlapping Total;

• Disjoint Partial;

• Disjoint Total.

(32/38)



The Overlapping Partial Construct

E

E1
. . . En

• The meaning of this constraint is:

Ei
I ⊆ EI , for all i = 1, . . . , n.

• The FOL translation is the formula:

∀x. Ei(x) → E(x), for all i = 1, . . . , n.

(33/38)
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The Overlapping Total Construct

E

E1
. . . En

• The meaning of this constraint is:
Ei

I ⊆ EI , for all i = 1, . . . , n

EI ⊆ E1
I ∪ . . . ∪ En

I

• The FOL translation is the set of formulas:

∀x. Ei(x) → E(x), for all i = 1, . . . , n

∀x. E(x) → E1(x) ∨ . . . ∨ En
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The Disjoint Partial Construct
E

E1
. . . En

×

• The meaning of this constraint is:
Ei

I ⊆ EI for all i = 1, . . . , n

Ei
I ∩ Ej

I = ∅ for all i 6= j

• The FOL translation is the set of formulas:

∀x. E1(x) → E(x) ∧ ¬E2(x) ∧ . . . ∧ ¬En(x)

∀x. E2(x) → E(x) ∧ ¬E3(x) ∧ . . . ∧ ¬En(x)

∀x. En−1(x) → E(x) ∧ ¬En(x)

∀x. En(x) → E(x)

(35/38)
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The Disjoint Total Construct
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FOL Translation: An Example

Employee

Project
Manager

TopManagerAreaManager

×

Works-for

Manages

(1,n)

(1,1)
(1,1)

∀x, y. Works-for(x, y) → Employee(x) ∧ Project(y)

∀x, y. Manages(x, y) → Top-Manager(x) ∧ Project(y)

∀y. Project(y) → ∃x. Works-for(x, y)

∀y. Project(y) → ∃=1x. Manages(x, y)

∀x. Top-Manager(x) → ∃=1y. Manages(x, y)

∀x. Manager(x) → Employee(x)

∀x. Manager(x) → Area-Manager(x) ∨ Top-Manager(x)

∀x. Area-Manager(x) → Manager(x) ∧ ¬Top-Manager(x)

∀x. Top-Manager(x) → Manager(x)
(37/38)



Additional (integrity) constraints

Employee

Project
Manager

TopManagerAreaManager Department InterestGroup

OrganisationalUnit

×
×

Works-for

Manages

Resp-for

(1,n)

(1,1)

(1,1)

(1,n)

• Managers do not work for a project (she/he just manages it).

∀x. Manager(x) → ∀y.¬WORKS-FOR(x, y)

• If the minimum cardinality for the participation of employees to the works-for

relationship is increased, then . . .

• If an ISA link is added stating that Interest Groups are Departments, then . . .

(38/38)
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