Description Logics

Logics and Ontologies

Enrico Franconi

franconi@cs.man.ac.uk
http://www.cs.man.ac.uk/~franconi

Department of Computer Science, University of Manchester

Summary

- What is an ontology
- Ontology languages
- Formalising ontologies with set theory
- Reasoning in ontologies
- Formalising ontologies with first order logic
- Integrity constraints
- The iecom ontology design tool

• An ontology is a formal conceptualisation of the world.

- An ontology is a formal conceptualisation of the world.
- An ontology specifies a set of **constraints**, which declare what should necessarily hold in any possible world.

- An ontology is a formal conceptualisation of the world.
- An ontology specifies a set of constraints, which declare what should necessarily hold in any possible world.
- Any possible world should conform to the constraints expressed by the ontology.

- An ontology is a formal conceptualisation of the world.
- An ontology specifies a set of constraints, which declare what should necessarily hold in any possible world.
- Any possible world should conform to the constraints expressed by the ontology.
- Given an ontology, a *legal world description* is a possible world satisfying the constraints.

 An ontology language usually introduces concepts (aka classes, entities), properties of concepts (aka slots, attributes, roles), relationships between concepts (aka associations), and additional constraints.

- An ontology language usually introduces concepts (aka classes, entities), properties of concepts (aka slots, attributes, roles), relationships between concepts (aka associations), and additional constraints.
- Ontology languages may be simple (e.g., having only concepts), frame-based (having only concepts and properties), or logic-based (e.g. Ontolingua and DAML+OIL).

- An ontology language usually introduces concepts (aka classes, entities), properties of concepts (aka slots, attributes, roles), relationships between concepts (aka associations), and additional constraints.
- Ontology languages may be simple (e.g., having only concepts), frame-based (having only concepts and properties), or logic-based (e.g. Ontolingua and DAML+OIL).
- Ontology languages are typically expressed by means of diagrams.

- An ontology language usually introduces concepts (aka classes, entities), properties of concepts (aka slots, attributes, roles), relationships between concepts (aka associations), and additional constraints.
- Ontology languages may be simple (e.g., having only concepts), frame-based (having only concepts and properties), or logic-based (e.g. Ontolingua and DAML+OIL).
- Ontology languages are typically expressed by means of diagrams.
- The Entity-Relationship conceptual data model and UML Class Diagrams can be considered as ontology languages.

Entity-Relationship Schema

UML Class Diagram

Meaning of basic constructs

- An entity/class is a set of instances;
- an association (n-ary relationship) is a *set of pairs (n-tuples) of instances*;
- an attribute is a set of pairs of an instance and a domain element.

A world is described by sets of instances

The relational representation

String		
	anystring	
	"P12a"	
	"P02b"	
	"P2a/1"	
	"P9"	
	• • •	

Works-for

employeeld	projectId
E_1	P ₁
E_2	P_1
E_2	P_2
E_2	P_3
E_3	P_1
E_4	P_2
E_4	P_3
E_5	P_3

ProjectCode

projectId	pcode
P ₁	"P12a"
P_2	"P02b"
P_3	"P2a/1"

Meaning of Attributes

ProjectCode(String)

Meaning of Attributes

ProjectCode(String)

$\mathsf{Project} \subseteq \{p \mid \sharp(\mathsf{ProjectCode} \cap (\{p\} \times \mathtt{String})) \geq 1\}$

Meaning of ISA

Meaning of ISA

Manager \subseteq Employee

Meaning of *disjoint* and *total* constraints

Meaning of disjoint and total constraints

- *ISA:* AreaManager \subseteq Manager
- *ISA:* TopManager \subseteq Manager
- *disjoint:* AreaManager \cap TopManager $= \emptyset$
- *total* Manager \subseteq AreaManager \cup TopManager

Meaning of Associations and Relationships

Meaning of Associations and Relationships

Works-for \subseteq Employee \times Project

Meaning of Associations and Relationships

Meaning of Cardinality Constraints

Meaning of Cardinality Constraints

TopManager $\subseteq \{m \mid \max \ge \sharp(\operatorname{Manages} \cap (\{m\} \times \Omega)) \ge \min\}$

(where Ω is the set of all instances)

Meaning of Cardinality Constraints

(where Ω is the set of all instances)

Meaning of the initial diagram

Works-for \subseteq Employee \times Project

 $\mathsf{Manages} \subseteq \mathsf{TopManager} \times \mathsf{Project}$

$$\begin{split} & \mathsf{Employee} \subseteq \{e \mid \sharp(\mathsf{PaySlipNumber} \cap (\{e\} \times \mathtt{Integer})) \geq 1\} \\ & \mathsf{Employee} \subseteq \{e \mid \sharp(\mathtt{Salary} \cap (\{e\} \times \mathtt{Integer})) \geq 1\} \\ & \mathsf{Project} \subseteq \{p \mid \sharp(\mathtt{ProjectCode} \cap (\{p\} \times \mathtt{String})) \geq 1\} \end{split}$$

TopManager $\subseteq \{m \mid 1 \ge \sharp(\text{Manages} \cap (\{m\} \times \Omega)) \ge 1\}$ Project $\subseteq \{p \mid 1 \ge \sharp(\text{Manages} \cap (\Omega \times \{p\})) \ge 1\}$ Project $\subseteq \{p \mid \sharp(\text{Works-for} \cap (\Omega \times \{p\})) \ge 1\}$

Manager \subseteq Employee

 $AreaManager \subseteq Manager$

TopManager \subseteq Manager

AreaManager \cap TopManager $= \emptyset$

 $\mathsf{Manager} \subseteq \mathsf{AreaManager} \cup \mathsf{TopManager}$

Reasoning

Given an ontology – seen as a collection of constraints – it is possible that additional constraints can be inferred.

- An entity is inconsistent if it denotes always the empty set.
- An entity is a sub-entity of another entity if the former denotes a subset of the set denoted by the latter.
- Two entities are equivalent if they denote the same set.

Reasoning

Reasoning

implies

 $\mathsf{LatinLover} = \emptyset$

Italian \subseteq Lazy

Italian \equiv Lazy

Reasoning by cases

Reasoning by cases

implies

ItalianProf \subseteq LatinLover

ISA and Inheritance

ISA and Inheritance

implies

```
\mathsf{Manager} \subseteq \{m \mid \sharp(\mathsf{Salary} \cap (\{m\} \times \mathtt{Integer})) \ge 1\}
```

Infinite worlds

Infinite worlds

implies

"the classes Root and Node contain an infinite number of instances".

Ontologies in First Order Logic

- We have introduced ontology languages that specify a set of constraints that should be satisfied by the world of interest.
- The *interpretation* of an ontology is therefore defined as the collection of all the *legal world descriptions* – i.e., all the (finite) relational structures which conform to the constraints imposed by the ontology.
- In order to formally define the interpretation, an ontology is mapped into a set of *First Order Logic* (FOL) formulas.
- The legal world descriptions (i.e., the interpretation) of an ontology are all the models of the translated FOL theory.

FOL alphabet

The Alphabet of the FOL language will have the following set of *Predicate* symbols:

- 1-ary predicate symbols: E_1, E_2, \ldots, E_n for each Entity-set; D_1, D_2, \ldots, D_m for each Basic Domain.
- binary predicate symbols: A_1, A_2, \ldots, A_k for each Attribute.
- n-ary predicate symbols: R_1, R_2, \ldots, R_p for each Relationship-set.

FOL Notation

- Vector variables indicated as \overline{x} stand for an n-tuple of variables: $\overline{x} = x_1, \dots, x_n$
- Counting existential quantifier indicated as $\exists^{\leq n}$ or $\exists^{\geq n}$. $\exists^{\leq n} x. R(x, y) \equiv$ $\forall x_1, \dots, x_n, x_{n+1}. R(x_1, y) \land \dots \land R(x_n, y) \land R(x_{n+1}, y) \rightarrow$ $(x_1 = x_2) \lor \dots \lor (x_1 = x_n) \lor (x_1 = x_{n+1}) \lor$ $(x_2 = x_3) \lor \dots \lor (x_2 = x_n) \lor (x_2 = x_{n+1}) \lor$ $\dots \lor (x_n = x_{n+1})$

$$\exists^{\geq n} x. R(x, y) \equiv \exists x_1, \dots, x_n. R(x_1, y) \land \dots \land R(x_n, y) \land R(x_{n+1}, y) \land \neg (x_1 = x_2) \land \dots \land \neg (x_1 = x_n) \land \neg (x_2 = x_3) \land \dots \land \neg (x_2 = x_n) \land \dots \land (x_{n-1} = x_n)$$

The Interpretation function

Interpretation: $\mathcal{I} = \langle \mathbf{D}, \cdot^{\mathcal{I}} \rangle$, where \mathbf{D} is an arbitrary non-empty set such that:

- $\mathbf{D} = \Omega \cup \mathcal{B}$, where:
 - $\mathcal{B} = \bigcup_{i=1}^{m} \mathcal{B}_{Di}$. \mathcal{B}_{Di} is the set of values associated with each basic domain (i.e., integer, string, etc.); and $\mathcal{B}_{Di} \cap \mathcal{B}_{Dj} = \emptyset$, $\forall i, j, i \neq j$
 - Ω is the abstract entity domain such that $\mathcal{B} \cap \Omega = \emptyset$.

The Formal Semantics for the Atoms

 ${\mathcal I}$ is the interpretation function that maps:

- Basic Domain Predicates to elements of the relative basic domain: $D_i^{\mathcal{I}} = \mathcal{B}_{Di}$ (e.g., String $^{\mathcal{I}} = \mathcal{B}_{String}$).
- *Entity-set Predicates* to elements of the entity domain: $E_i^{\mathcal{I}} \subseteq \Omega$.
- Attribute Predicates to binary relations such that: $A_i^{\mathcal{I}} \subseteq \Omega \times \mathcal{B}.$
- Relationship-set Predicates to n-ary relations over the entity domain: $R_i^{\mathcal{I}} \subseteq \Omega \times \Omega \ldots \times \Omega = \Omega^n$.

The Attribute Construct

$$E^{\mathcal{I}} \subseteq \{ e \in \Omega \mid \sharp(A^{\mathcal{I}} \cap (\{e\} \times \mathcal{B}_D)) \ge 1 \}$$

The Attribute Construct

$$E^{\mathcal{I}} \subseteq \{ e \in \Omega \mid \sharp(A^{\mathcal{I}} \cap (\{e\} \times \mathcal{B}_D)) \ge 1 \}$$

$$\forall x \, E(x) \to \exists y \, A(x, y) \land D(y)$$

The Relationship Construct

$$R^{\mathcal{I}} \subseteq E_1^{\mathcal{I}} \times \ldots \times E_n^{\mathcal{I}}$$

The Relationship Construct

• The meaning of this constraint is:

$$R^{\mathcal{I}} \subseteq E_1^{\mathcal{I}} \times \ldots \times E_n^{\mathcal{I}}$$

• The FOL translation is the formula:

$$\forall x_1, \ldots, x_n \colon R(x_1, \ldots, x_n) \to E_1(x_1) \land \ldots \land E_n(x_n)$$

The Cardinality Construct

$$E_i^{\mathcal{I}} \subseteq \{e_i \in \Omega \mid p \leq \sharp (R^{\mathcal{I}} \cap (\Omega \times \{e_i\} \times \Omega)) \leq q\}$$

The Cardinality Construct

• The meaning of this constraint is:

$$E_i^{\mathcal{I}} \subseteq \{e_i \in \Omega \mid p \leq \sharp (R^{\mathcal{I}} \cap (\Omega \times \{e_i\} \times \Omega)) \leq q\}$$

• The FOL translation is the formula:

$$\forall x_i \colon E(x_i) \to \exists^{\geq p} x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n \colon R(x_1, \dots, x_n) \land \\ \exists^{\leq q} x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n \colon R(x_1, \dots, x_n)$$

The Cardinality Construct: An Example

A valid world description is:

The Cardinality Construct: An Example

An invalid world description is:

The Cardinality Construct: An Example

• The FOL translation is:

 $\begin{array}{l} \forall x, y. \texttt{Supervises}(x, y) \to \texttt{Professor}(x) \land \texttt{Student}(y) \\ \forall x. \texttt{Professor}(x) \to \exists^{\geq 2} y. \texttt{Supervises}(x, y) \land \\ \exists^{\leq 3} y. \texttt{Supervises}(x, y) \\ \forall y. \texttt{Student}(y) \to \exists^{=1} x. \texttt{Supervises}(x, y) \end{array}$

ISA Relations

The **ISA** relation is a constraint that specifies *sub-entity sets*.

Sub-entity-set = contains entities with more properties – both more attributes and different participation in relationships – not pertinent to the Super-entity-set.

A Sub-entity-set *inherits* all the properties of its Sub-entity-sets.

We distinguish between the following different ISA relations:

- Overlapping Partial;
- Overlapping Total;
- Disjoint Partial;
- Disjoint Total.

The Overlapping Partial Construct

$$E_i^{\mathcal{I}} \subseteq E^{\mathcal{I}}$$
, for all $i = 1, \ldots, n$.

The Overlapping Partial Construct

• The meaning of this constraint is:

$$E_i^{\mathcal{I}} \subseteq E^{\mathcal{I}}$$
, for all $i = 1, \ldots, n$.

• The FOL translation is the formula:

$$\forall x \, E_i(x) \to E(x), \text{ for all } i = 1, \dots, n.$$

The Overlapping Total Construct

• The meaning of this constraint is:

 $E_i^{\mathcal{I}} \subseteq E^{\mathcal{I}}, \text{ for all } i = 1, \dots, n$ $E^{\mathcal{I}} \subseteq E_1^{\mathcal{I}} \cup \dots \cup E_n^{\mathcal{I}}$

The Overlapping Total Construct

• The meaning of this constraint is: $\begin{array}{ccc} E_i^{\mathcal{I}} & \subseteq & E^{\mathcal{I}}, \text{ for all } i = 1, \dots, n \\ E^{\mathcal{I}} & \subseteq & E_1^{\mathcal{I}} \cup \ldots \cup E_n^{\mathcal{I}} \end{array}$

• The FOL translation is the set of formulas:

$$\forall x \cdot E_i(x) \rightarrow E(x), \text{ for all } i = 1, \dots, n$$

 $\forall x \cdot E(x) \rightarrow E_1(x) \lor \dots \lor E_n$

The Disjoint Partial Construct

• The meaning of this constraint is: $\begin{array}{ll} E_i{}^\mathcal{I} \subseteq E^\mathcal{I} & \quad \text{for all } i=1,\ldots,n\\ E_i{}^\mathcal{I} \cap E_j{}^\mathcal{I}=\emptyset & \quad \text{for all } i\neq j \end{array}$

The Disjoint Partial Construct

• The meaning of this constraint is: $\begin{array}{ll} E_i{}^\mathcal{I} \subseteq E^\mathcal{I} & \quad \text{for all } i=1,\ldots,n\\ E_i{}^\mathcal{I} \cap E_j{}^\mathcal{I}=\emptyset & \quad \text{for all } i\neq j \end{array}$

• The FOL translation is the set of formulas: $\forall x. E_1(x) \rightarrow E(x) \land \neg E_2(x) \land \ldots \land \neg E_n(x)$ $\forall x. E_2(x) \rightarrow E(x) \land \neg E_3(x) \land \ldots \land \neg E_n(x)$ $\forall x. E_{n-1}(x) \rightarrow E(x) \land \neg E_n(x)$ $\forall x. E_n(x) \rightarrow E(x)$

The Disjoint Total Construct

$$\begin{split} E_i{}^{\mathcal{I}} &\subseteq E^{\mathcal{I}} & \text{for all } i = 1, \dots, n \\ E_i{}^{\mathcal{I}} &\cap E_j{}^{\mathcal{I}} = \emptyset & \text{for all } i \neq j \\ E^{\mathcal{I}} &\subseteq E_1{}^{\mathcal{I}} \cup \ldots \cup E_n{}^{\mathcal{I}} \end{split}$$

The Disjoint Total Construct

• The meaning of this constraint is:

$$\begin{split} E_i{}^{\mathcal{I}} &\subseteq E^{\mathcal{I}} & \text{for all } i = 1, \dots, n \\ E_i{}^{\mathcal{I}} &\cap E_j{}^{\mathcal{I}} = \emptyset & \text{for all } i \neq j \\ E^{\mathcal{I}} &\subseteq E_1{}^{\mathcal{I}} \cup \ldots \cup E_n{}^{\mathcal{I}} \end{split}$$

• The FOL translation is the set of formulas:

$$\forall x. E(x) \rightarrow E_1(x) \lor \ldots \lor E_n \forall x. E_1(x) \rightarrow E(x) \land \neg E_2(x) \land \ldots \land \neg E_n(x) \forall x. E_2(x) \rightarrow E(x) \land \neg E_3(x) \land \ldots \land \neg E_n(x) \forall x. E_{n-1}(x) \rightarrow E(x) \land \neg E_n(x) \forall x. E_n(x) \rightarrow E(x)$$

FOL Translation: An Example

 $\forall y. \texttt{Project}(y) \longrightarrow \exists x. \texttt{Works-for}(x, y)$ $\forall y. \texttt{Project}(y) \rightarrow \exists^{=1}x. \texttt{Manages}(x, y)$ $\forall x. \texttt{Manager}(x)$ $\forall x. \texttt{Top-Manager}(x) \rightarrow \texttt{Manager}(x)$

- $\forall x, y. Works for(x, y) \rightarrow Employee(x) \land Project(y)$
- $\forall x, y. \texttt{Manages}(x, y) \longrightarrow \texttt{Top-Manager}(x) \land \texttt{Project}(y)$
- $\forall x. \text{Top-Manager}(x) \rightarrow \exists^{=1}y. \text{Manages}(x, y)$
 - \rightarrow Employee(x)
- $\forall x. \texttt{Manager}(x) \longrightarrow \texttt{Area-Manager}(x) \lor \texttt{Top-Manager}(x)$
- $\forall x. \texttt{Area-Manager}(x) \rightarrow \texttt{Manager}(x) \land \neg \texttt{Top-Manager}(x)$

Additional (integrity) constraints

Managers do not work for a project (she/he just manages it).

 $\forall x. \texttt{Manager}(x) \rightarrow \forall y. \neg \texttt{WORKS-FOR}(x, y)$

Additional (integrity) constraints

Managers do not work for a project (she/he just manages it).

$$\forall x. \texttt{Manager}(x) \rightarrow \forall y. \neg \texttt{WORKS-FOR}(x, y)$$

• If the minimum cardinality for the participation of employees to the *works-for* relationship is increased, then . . .

Additional (integrity) constraints

Managers do not work for a project (she/he just manages it).

$$\forall x. \texttt{Manager}(x) \rightarrow \forall y. \neg \texttt{WORKS-FOR}(x, y)$$

- If the minimum cardinality for the participation of employees to the *works-for* relationship is increased, then . . .
- If an ISA link is added stating that Interest Groups are Departments, then . . .