
Description Logics

Logics and Ontologies

Enrico Franconi

franconi@cs.man.ac.uk

http://www.cs.man.ac.uk/˜franconi

Department of Computer Science, University of Manchester

(1/38)

Summary

• What is an ontology

• Ontology languages

• Formalising ontologies with set theory

• Reasoning in ontologies

• Formalising ontologies with first order logic

• Integrity constraints

• The i•com ontology design tool

(2/38)

What is an Ontology

• An ontology is a formal conceptualisation of the world.

• An ontology specifies a set of constraints, which declare what should

necessarily hold in any possible world.

• Any possible world should conform to the constraints expressed by the

ontology.

• Given an ontology, a legal world description is a possible world satisfying the

constraints.

(3/38)

What is an Ontology

• An ontology is a formal conceptualisation of the world.

• An ontology specifies a set of constraints, which declare what should

necessarily hold in any possible world.

• Any possible world should conform to the constraints expressed by the

ontology.

• Given an ontology, a legal world description is a possible world satisfying the

constraints.

(3/38)

What is an Ontology

• An ontology is a formal conceptualisation of the world.

• An ontology specifies a set of constraints, which declare what should

necessarily hold in any possible world.

• Any possible world should conform to the constraints expressed by the

ontology.

• Given an ontology, a legal world description is a possible world satisfying the

constraints.

(3/38)

What is an Ontology

• An ontology is a formal conceptualisation of the world.

• An ontology specifies a set of constraints, which declare what should

necessarily hold in any possible world.

• Any possible world should conform to the constraints expressed by the

ontology.

• Given an ontology, a legal world description is a possible world satisfying the

constraints.

(3/38)

Ontology languages

• An ontology language usually introduces concepts (aka classes, entities),

properties of concepts (aka slots, attributes, roles), relationships between

concepts (aka associations), and additional constraints.

• Ontology languages may be simple (e.g., having only concepts), frame-based

(having only concepts and properties), or logic-based (e.g. Ontolingua and

DAML+OIL).

• Ontology languages are typically expressed by means of diagrams.

• The Entity-Relationship conceptual data model and UML Class Diagrams can

be considered as ontology languages.

(4/38)

Ontology languages

• An ontology language usually introduces concepts (aka classes, entities),

properties of concepts (aka slots, attributes, roles), relationships between

concepts (aka associations), and additional constraints.

• Ontology languages may be simple (e.g., having only concepts), frame-based

(having only concepts and properties), or logic-based (e.g. Ontolingua and

DAML+OIL).

• Ontology languages are typically expressed by means of diagrams.

• The Entity-Relationship conceptual data model and UML Class Diagrams can

be considered as ontology languages.

(4/38)

Ontology languages

• An ontology language usually introduces concepts (aka classes, entities),

properties of concepts (aka slots, attributes, roles), relationships between

concepts (aka associations), and additional constraints.

• Ontology languages may be simple (e.g., having only concepts), frame-based

(having only concepts and properties), or logic-based (e.g. Ontolingua and

DAML+OIL).

• Ontology languages are typically expressed by means of diagrams.

• The Entity-Relationship conceptual data model and UML Class Diagrams can

be considered as ontology languages.

(4/38)

Ontology languages

• An ontology language usually introduces concepts (aka classes, entities),

properties of concepts (aka slots, attributes, roles), relationships between

concepts (aka associations), and additional constraints.

• Ontology languages may be simple (e.g., having only concepts), frame-based

(having only concepts and properties), or logic-based (e.g. Ontolingua and

DAML+OIL).

• Ontology languages are typically expressed by means of diagrams.

• The Entity-Relationship conceptual data model and UML Class Diagrams can

be considered as ontology languages.

(4/38)

Entity-Relationship Schema

Employee

PaySlipNumber(Integer)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager

×

Works-for

Manages

(1,n)

(1,1)
(1,1)

(5/38)

UML Class Diagram

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

(6/38)

Meaning of basic constructs

• An entity/class is a set of instances;

• an association (n-ary relationship) is a set of pairs (n-tuples) of instances;

• an attribute is a set of pairs of an instance and a domain element.

E1

E2

E3

E4

E5

P1

P2

P3

“P12a”

“P02b”

“P2a/1”

“P9”

Employee Project String
Works-for ProjectCode

(7/38)

A world is described by sets of instances

E1

E2

E3

E4

E5

P1

P2

P3

〈E1,P1〉
〈E2,P1〉

〈E2,P2〉
〈E2,P3〉

〈E3,P1〉
〈E4,P2〉

〈E4,P3〉
〈E5,P3〉

Employee Project Works-for

(8/38)

The relational representation

Employee

employeeId

E1

E2

E3

E4

E5

Project
projectId

P1

P2

P3

String

anystring

“P12a”

“P02b”

“P2a/1”

“P9”

· · ·

Works-for
employeeId projectId

E1 P1

E2 P1

E2 P2

E2 P3

E3 P1

E4 P2

E4 P3

E5 P3

ProjectCode
projectId pcode

P1 “P12a”

P2 “P02b”

P3 “P2a/1”

(9/38)

Meaning of Attributes

Project

ProjectCode(String)

Project ⊆ {p |](ProjectCode ∩ ({p} × String)) ≥ 1}

(10/38)

Meaning of Attributes

Project

ProjectCode(String)

Project ⊆ {p |](ProjectCode ∩ ({p} × String)) ≥ 1}

(10/38)

Meaning of ISA

Employee

Manager

Manager ⊆ Employee

(11/38)

Meaning of ISA

Employee

Manager

Manager ⊆ Employee

(11/38)

Meaning of disjoint and total constraints

Manager

TopManager AreaManager

×

• ISA: AreaManager ⊆ Manager

• ISA: TopManager ⊆ Manager

• disjoint: AreaManager ∩ TopManager = ∅

• total Manager ⊆ AreaManager ∪ TopManager

(12/38)

Meaning of disjoint and total constraints

Manager

TopManager AreaManager

×

• ISA: AreaManager ⊆ Manager

• ISA: TopManager ⊆ Manager

• disjoint: AreaManager ∩ TopManager = ∅

• total Manager ⊆ AreaManager ∪ TopManager

(12/38)

Meaning of Associations and Relationships

Employee Project

A1

Works-for

A2

Works-for ⊆ Employee × Project

(13/38)

Meaning of Associations and Relationships

Employee Project

A1

Works-for

A2

Works-for ⊆ Employee × Project

(13/38)

Meaning of Associations and Relationships

Employee ProjectA1 Works-for A2

Works-for ⊆ Employee × Project

(13/38)

Meaning of Cardinality Constraints

TopManager Project

A1

Manages

A2

(min,max)

TopManager ⊆ {m | max ≥](Manages ∩ ({m} × Ω)) ≥ min}

(where Ω is the set of all instances)

(14/38)

Meaning of Cardinality Constraints

TopManager Project

A1

Manages

A2

(min,max)

TopManager ⊆ {m | max ≥](Manages ∩ ({m} × Ω)) ≥ min}

(where Ω is the set of all instances)

(14/38)

Meaning of Cardinality Constraints

TopManager ProjectA1 Manages A2
(min,max)

TopManager ⊆ {m | max ≥](Manages ∩ ({m} × Ω)) ≥ min}

(where Ω is the set of all instances)

(14/38)

Meaning of the initial diagram

Works-for ⊆ Employee × Project

Manages ⊆ TopManager × Project

Employee ⊆ {e |](PaySlipNumber ∩ ({e} × Integer)) ≥ 1}

Employee ⊆ {e |](Salary ∩ ({e} × Integer)) ≥ 1}

Project ⊆ {p |](ProjectCode ∩ ({p} × String)) ≥ 1}

TopManager ⊆ {m | 1 ≥](Manages ∩ ({m} × Ω)) ≥ 1}

Project ⊆ {p | 1 ≥](Manages ∩ (Ω × {p})) ≥ 1}

Project ⊆ {p |](Works-for ∩ (Ω × {p})) ≥ 1}

Manager ⊆ Employee

AreaManager ⊆ Manager

TopManager ⊆ Manager

AreaManager ∩ TopManager = ∅

Manager ⊆ AreaManager ∪ TopManager
(15/38)

Reasoning

Given an ontology – seen as a collection of constraints – it is possible that

additional constraints can be inferred.

• An entity is inconsistent if it denotes always the empty set.

• An entity is a sub-entity of another entity if the former denotes a subset of the

set denoted by the latter.

• Two entities are equivalent if they denote the same set.

• . . .

(16/38)

Reasoning

Person

Italian English

Lazy LatinLover Gentleman Hooligan

×

×

implies

LatinLover = ∅

Italian ⊆ Lazy

Italian ≡ Lazy

(17/38)

Reasoning

Person

Italian English

Lazy LatinLover Gentleman Hooligan

×

×

implies

LatinLover = ∅

Italian ⊆ Lazy

Italian ≡ Lazy

(17/38)

Reasoning by cases

Italian

Lazy Mafioso LatinLover ItalianProf

×

{disjoint}

implies

ItalianProf ⊆ LatinLover

(18/38)

Reasoning by cases

Italian

Lazy Mafioso LatinLover ItalianProf

×

{disjoint}

implies

ItalianProf ⊆ LatinLover

(18/38)

ISA and Inheritance

Employee

Manager

Salary(Integer)

implies

Manager ⊆ {m |](Salary ∩ ({m} × Integer)) ≥ 1}

(19/38)

ISA and Inheritance

Employee

Manager

Salary(Integer)

Salary(Integer)

implies

Manager ⊆ {m |](Salary ∩ ({m} × Integer)) ≥ 1}

(19/38)

Infinite worlds

Root

Node

link

(2,2)

(0,1)

implies

“the classes Root and Node contain an infinite number of instances”.

(20/38)

Infinite worlds

Root

Node

link

(2,2)

(0,1)

implies

“the classes Root and Node contain an infinite number of instances”.

(20/38)

Ontologies in First Order Logic

• We have introduced ontology languages that specify a set of constraints that

should be satisfied by the world of interest.

• The interpretation of an ontology is therefore defined as the collection of all

the legal world descriptions – i.e., all the (finite) relational structures which

conform to the constraints imposed by the ontology.

• In order to formally define the interpretation, an ontology is mapped into a set

of First Order Logic (FOL) formulas.

• The legal world descriptions (i.e., the interpretation) of an ontology are all the

models of the translated FOL theory.

(21/38)

FOL alphabet

The Alphabet of the FOL language will have the following set of Predicate

symbols:

• 1-ary predicate symbols: E1, E2, . . . , En for each Entity-set;

D1, D2, . . . , Dm for each Basic Domain.

• binary predicate symbols: A1, A2, . . . , Ak for each Attribute.

• n-ary predicate symbols: R1, R2, . . . , Rp for each Relationship-set.

(22/38)

FOL Notation

• Vector variables indicated as x stand for an n-tuple of variables:

x = x1, . . . , xn

• Counting existential quantifier indicated as ∃≤n or ∃≥n.

∃≤nx. R(x, y) ≡

∀x1, . . . , xn, xn+1. R(x1, y)∧. . .∧R(xn, y)∧R(xn+1, y) →

(x1 = x2) ∨ . . . ∨ (x1 = xn) ∨ (x1 = xn+1) ∨

(x2 = x3) ∨ . . . ∨ (x2 = xn) ∨ (x2 = xn+1) ∨

. ∨ (xn = xn+1)

∃≥nx. R(x, y) ≡

∃x1, . . . , xn. R(x1, y) ∧ . . . ∧ R(xn, y) ∧ R(xn+1, y) ∧

¬(x1 = x2) ∧ . . . ∧ ¬(x1 = xn) ∧

¬(x2 = x3) ∧ . . . ∧ ¬(x2 = xn) ∧

. ∧ (xn−1 = xn)
(23/38)

The Interpretation function

Interpretation: I = 〈D, ·I〉, where D is an arbitrary non-empty set such that:

• D = Ω ∪ B, where:

• B = ∪m
i=1BDi. BDi is the set of values associated with each basic

domain (i.e., integer, string, etc.); and BDi ∩ BDj = ∅, ∀i, j. i 6= j

• Ω is the abstract entity domain such that B ∩ Ω = ∅.

(24/38)

The Formal Semantics for the Atoms

I is the interpretation function that maps:

• Basic Domain Predicates to elements of the relative basic domain:

Di
I = BDi (e.g., StringI = BString).

• Entity-set Predicates to elements of the entity domain:

Ei
I ⊆ Ω.

• Attribute Predicates to binary relations such that:

Ai
I ⊆ Ω × B.

• Relationship-set Predicates to n-ary relations over the entity domain:

Ri
I ⊆ Ω × Ω . . . × Ω = Ωn.

(25/38)

The Attribute Construct

E
A

D

• The meaning of this constraint is:

EI ⊆ {e ∈ Ω |](AI ∩ ({e} × BD)) ≥ 1}

• The FOL translation is the formula:

∀x. E(x) → ∃y.A(x, y) ∧ D(y)

(26/38)

The Attribute Construct

E
A

D

• The meaning of this constraint is:

EI ⊆ {e ∈ Ω |](AI ∩ ({e} × BD)) ≥ 1}

• The FOL translation is the formula:

∀x. E(x) → ∃y.A(x, y) ∧ D(y)

(26/38)

The Relationship Construct

E1

. . .

EnR

• The meaning of this constraint is:

RI ⊆ E1
I × . . . × En

I

• The FOL translation is the formula:

∀x1, . . . , xn. R(x1, . . . , xn) → E1(x1) ∧ . . . ∧ En(xn)

(27/38)

The Relationship Construct

E1

. . .

EnR

• The meaning of this constraint is:

RI ⊆ E1
I × . . . × En

I

• The FOL translation is the formula:

∀x1, . . . , xn. R(x1, . . . , xn) → E1(x1) ∧ . . . ∧ En(xn)

(27/38)

The Cardinality Construct

E1

Ei

EnR

(p,q)

• The meaning of this constraint is:

Ei
I ⊆ {ei ∈ Ω | p ≤](RI ∩ (Ω × {ei} × Ω)) ≤ q}

• The FOL translation is the formula:

∀xi. E(xi) → ∃≥px1, . . . , xi−1, xi+1, . . . xn. R(x1, . . . , xn) ∧

∃≤qx1, . . . , xi−1, xi+1, . . . xn. R(x1, . . . , xn)

(28/38)

The Cardinality Construct

E1

Ei

EnR

(p,q)

• The meaning of this constraint is:

Ei
I ⊆ {ei ∈ Ω | p ≤](RI ∩ (Ω × {ei} × Ω)) ≤ q}

• The FOL translation is the formula:

∀xi. E(xi) → ∃≥px1, . . . , xi−1, xi+1, . . . xn. R(x1, . . . , xn) ∧

∃≤qx1, . . . , xi−1, xi+1, . . . xn. R(x1, . . . , xn)

(28/38)

The Cardinality Construct: An Example

Professor StudentSupervises
(2,3) (1,1)

A valid world description is:

Professor

professorId

Alex

Bob

Student

studentId

John

Mary

Nick

Paul

Laura

Supervises

professorId studentId

Alex John

Bob Laura

Alex Mary

Bob Nick

Alex Paul

(29/38)

The Cardinality Construct: An Example

Professor StudentSupervises
(2,3) (1,1)

An invalid world description is:

Professor

professorId

Alex

Bob

Student

studentId

John

Mary

Nick

Paul

Laura

Supervises

professorId studentId

Alex John

Bob Laura

Alex Mary

Bob Nick

Alex Paul

Alex Laura

(30/38)

The Cardinality Construct: An Example

Professor StudentSupervises
(2,3) (1,1)

• The FOL translation is:

∀x, y. Supervises(x, y) → Professor(x) ∧ Student(y)

∀x. Professor(x) → ∃≥2y. Supervises(x, y) ∧

∃≤3y. Supervises(x, y)
∀y. Student(y) → ∃=1x. Supervises(x, y)

(31/38)

ISA Relations

The ISA relation is a constraint that specifies sub-entity sets.

Sub-entity-set = contains entities with more properties – both more attributes and

different participation in relationships – not pertinent to the Super-entity-set.

A Sub-entity-set inherits all the properties of its Sub-entity-sets.

We distinguish between the following different ISA relations:

• Overlapping Partial;

• Overlapping Total;

• Disjoint Partial;

• Disjoint Total.

(32/38)

The Overlapping Partial Construct

E

E1
. . . En

• The meaning of this constraint is:

Ei
I ⊆ EI , for all i = 1, . . . , n.

• The FOL translation is the formula:

∀x. Ei(x) → E(x), for all i = 1, . . . , n.

(33/38)

The Overlapping Partial Construct

E

E1
. . . En

• The meaning of this constraint is:

Ei
I ⊆ EI , for all i = 1, . . . , n.

• The FOL translation is the formula:

∀x. Ei(x) → E(x), for all i = 1, . . . , n.

(33/38)

The Overlapping Total Construct

E

E1
. . . En

• The meaning of this constraint is:
Ei

I ⊆ EI , for all i = 1, . . . , n

EI ⊆ E1
I ∪ . . . ∪ En

I

• The FOL translation is the set of formulas:

∀x. Ei(x) → E(x), for all i = 1, . . . , n

∀x. E(x) → E1(x) ∨ . . . ∨ En

(34/38)

The Overlapping Total Construct

E

E1
. . . En

• The meaning of this constraint is:
Ei

I ⊆ EI , for all i = 1, . . . , n

EI ⊆ E1
I ∪ . . . ∪ En

I

• The FOL translation is the set of formulas:

∀x. Ei(x) → E(x), for all i = 1, . . . , n

∀x. E(x) → E1(x) ∨ . . . ∨ En

(34/38)

The Disjoint Partial Construct
E

E1
. . . En

×

• The meaning of this constraint is:
Ei

I ⊆ EI for all i = 1, . . . , n

Ei
I ∩ Ej

I = ∅ for all i 6= j

• The FOL translation is the set of formulas:

∀x. E1(x) → E(x) ∧ ¬E2(x) ∧ . . . ∧ ¬En(x)

∀x. E2(x) → E(x) ∧ ¬E3(x) ∧ . . . ∧ ¬En(x)

∀x. En−1(x) → E(x) ∧ ¬En(x)

∀x. En(x) → E(x)

(35/38)

The Disjoint Partial Construct
E

E1
. . . En

×

• The meaning of this constraint is:
Ei

I ⊆ EI for all i = 1, . . . , n

Ei
I ∩ Ej

I = ∅ for all i 6= j

• The FOL translation is the set of formulas:

∀x. E1(x) → E(x) ∧ ¬E2(x) ∧ . . . ∧ ¬En(x)

∀x. E2(x) → E(x) ∧ ¬E3(x) ∧ . . . ∧ ¬En(x)

∀x. En−1(x) → E(x) ∧ ¬En(x)

∀x. En(x) → E(x)

(35/38)

The Disjoint Total Construct
E

E1
. . . En

×

• The meaning of this constraint is:
Ei

I ⊆ EI for all i = 1, . . . , n

Ei
I ∩ Ej

I = ∅ for all i 6= j

EI ⊆ E1
I ∪ . . . ∪ En

I

• The FOL translation is the set of formulas:
∀x. E(x) → E1(x) ∨ . . . ∨ En

∀x. E1(x) → E(x) ∧ ¬E2(x) ∧ . . . ∧ ¬En(x)

∀x. E2(x) → E(x) ∧ ¬E3(x) ∧ . . . ∧ ¬En(x)

∀x. En−1(x) → E(x) ∧ ¬En(x)

∀x. En(x) → E(x)

(36/38)

The Disjoint Total Construct
E

E1
. . . En

×

• The meaning of this constraint is:
Ei

I ⊆ EI for all i = 1, . . . , n

Ei
I ∩ Ej

I = ∅ for all i 6= j

EI ⊆ E1
I ∪ . . . ∪ En

I

• The FOL translation is the set of formulas:
∀x. E(x) → E1(x) ∨ . . . ∨ En

∀x. E1(x) → E(x) ∧ ¬E2(x) ∧ . . . ∧ ¬En(x)

∀x. E2(x) → E(x) ∧ ¬E3(x) ∧ . . . ∧ ¬En(x)

∀x. En−1(x) → E(x) ∧ ¬En(x)

∀x. En(x) → E(x)

(36/38)

FOL Translation: An Example

Employee

Project
Manager

TopManagerAreaManager

×

Works-for

Manages

(1,n)

(1,1)
(1,1)

∀x, y. Works-for(x, y) → Employee(x) ∧ Project(y)

∀x, y. Manages(x, y) → Top-Manager(x) ∧ Project(y)

∀y. Project(y) → ∃x. Works-for(x, y)

∀y. Project(y) → ∃=1x. Manages(x, y)

∀x. Top-Manager(x) → ∃=1y. Manages(x, y)

∀x. Manager(x) → Employee(x)

∀x. Manager(x) → Area-Manager(x) ∨ Top-Manager(x)

∀x. Area-Manager(x) → Manager(x) ∧ ¬Top-Manager(x)

∀x. Top-Manager(x) → Manager(x)
(37/38)

Additional (integrity) constraints

Employee

Project
Manager

TopManagerAreaManager Department InterestGroup

OrganisationalUnit

×
×

Works-for

Manages

Resp-for

(1,n)

(1,1)

(1,1)

(1,n)

• Managers do not work for a project (she/he just manages it).

∀x. Manager(x) → ∀y.¬WORKS-FOR(x, y)

• If the minimum cardinality for the participation of employees to the works-for

relationship is increased, then . . .

• If an ISA link is added stating that Interest Groups are Departments, then . . .

(38/38)

Additional (integrity) constraints

Employee

Project
Manager

TopManagerAreaManager Department InterestGroup

OrganisationalUnit

×
×

Works-for

Manages

Resp-for

(1,n)

(1,1)

(1,1)

(1,n)

• Managers do not work for a project (she/he just manages it).

∀x. Manager(x) → ∀y.¬WORKS-FOR(x, y)

• If the minimum cardinality for the participation of employees to the works-for

relationship is increased, then . . .

• If an ISA link is added stating that Interest Groups are Departments, then . . .

(38/38)

Additional (integrity) constraints

Employee

Project
Manager

TopManagerAreaManager Department InterestGroup

OrganisationalUnit

×
×

Works-for

Manages

Resp-for

(1,n)

(1,1)

(1,1)

(1,n)

• Managers do not work for a project (she/he just manages it).

∀x. Manager(x) → ∀y.¬WORKS-FOR(x, y)

• If the minimum cardinality for the participation of employees to the works-for

relationship is increased, then . . .

• If an ISA link is added stating that Interest Groups are Departments, then . . .
(38/38)

	@semtitle
	Summary
	What is an Ontology
	Ontology languages
	Entity-Relationship Schema
	UML Class Diagram
	Meaning of basic constructs
	A world is described by sets of instances
	The relational representation
	Meaning of Attributes
	Meaning of ISA
	Meaning of emph {disjoint} and emph {total} constraints
	Meaning of Associations and Relationships
	Meaning of Cardinality Constraints
	Meaning of the initial diagram
	Reasoning
	Reasoning
	Reasoning by cases
	ISA and Inheritance
	Infinite worlds
	Ontologies in First Order Logic
	FOL alphabet
	FOL Notation
	The Interpretation function
	The Formal Semantics for the Atoms
	The Attribute Construct
	The Relationship Construct
	The Cardinality Construct
	The Cardinality Construct: An Example
	The Cardinality Construct: An Example
	The Cardinality Construct: An Example
	ISA Relations
	The Overlapping Partial Construct
	The Overlapping Total Construct
	The Disjoint Partial Construct
	The Disjoint Total Construct
	FOL Translation: An Example
	Additional (integrity)
constraints

