
Description Logics

Deduction in Propositional Logic

Enrico Franconi

franconi@cs.man.ac.uk

http://www.cs.man.ac.uk/˜franconi

Department of Computer Science, University of Manchester

(1/20)

Decision Procedures in Logic: soundness

A decision procedure solves a problem with YES or NO answers:

KB `i α

• Sentence α can be derived from the set of sentences KB by procedure i.

• Soundness: procedure i is sound if

whenever procedure i proves that a sentence α can be derived from a set of

sentences KB (KB `i α), then it is also true that KB entails α (KB |= α).

• “no wrong inferences are drawn”

• A sound procedure may fail to find the solution in some cases, when there

is actually one.

(2/20)

Decision Procedures in Logic: completeness

A decision procedure solves a problem with YES or NO answers:

KB `i α

• Sentence α can be derived from the set of sentences KB by procedure i.

• Completeness: procedure i is complete if

whenever a set of sentences KB entails a sentence α (KB |= α), then

procedure i proves that α can be derived from KB (KB `i α).

• “all the correct inferences are drawn”

• A complete procedure may claim to have found a solution in some cases,

when there is actually no solution.

(3/20)

Sound and Incomplete Algorithms

• Sound and incomplete algorithms are very popular: they are considered good

approximations of problem solving procedures.

• Sound and incomplete algorithms may reduce the algorithm complexity.

• Sound and incomplete algorithms are often used due to the inability of

programmers to find sound and complete algorithms.

(4/20)

Good Decision procedures

• If an incomplete reasoning mechanism is provided, we can conclude either

that the semantics of the representation language does not really capture the

meaning of the “world” and of “what should follow”, or that the algorithms can

not infer all the things we would expect.

• Having sound and complete reasoning procedures is important!

• Sound and complete decision procedures are good candidates for

implementing reasoning modules within larger applications.

(5/20)

An extreme example

Let’s consider two decision procedures:

• F , which always returns the result NO independently from its input

• T , which always returns the result YES independently from its input

Let’s consider the problem of computing entailment between formulas;

• F is a sound algorithm for computing entailment.

• T is a complete algorithm for computing entailment.

(6/20)

Dual problems

Can we use a sound but incomplete decision procedure for a problem to solve the

dual problem by inverting the answers?

T is an unsound procedure for computing non-entailment between formulas.

W
orld

input sentences

conclusions

User

?

Incompleteness of the reasoning procedures of the reasoning agent leads to

unsound reasoning of the whole agent, if the main system relies on negative

conclusions of the reasoning agent module. (7/20)

Propositional Decision Procedures

• Truth tables provide a sound and complete decision procedure for testing

satisfiability, validity, and entailment in propositional logic.

• The proof is based on the observation that truth tables enumerate all

possible models.

• Satisfiability, validity, and entailment in propositional logic are thus decidable

problems.

• For problems involving a large number of atomic propositions the amount of

calculation required by using truth tables may be prohibitive (always 2n,

where n is the number of atomic proposition involved in the formulas).

(8/20)

Reduction to satisfiability

• A formula φ is satisfiable iff there is some interpretation I (i.e., a truth value

assignment) that satisfies φ (i.e., φ is true under I : I |= φ).

• Validity, equivalence, and entailment can be reduced to satisfiability:

• φ is a valid (i.e., a tautology) iff ¬φ is not satisfiable.

• φ entails ψ (φ |= ψ) iff φ→ ψ is valid (deduction theorem).

• φ |= ψ iff φ ∧ ¬ψ is not satisfiable .

• φ is equivalent to ψ (φ ≡ ψ) iff φ↔ ψ is valid.

• φ ≡ ψ iff φ |= ψ and ψ |= φ

• A sound and complete procedure deciding satisfiability is all we need, and the

tableaux method is a decision procedure which checks the existence of a

model.

(9/20)

Tableaux Calculus

• The Tableaux Calculus is a decision procedure solving the problem of

satisfiability.

• If a formula is satisfiable, the procedure will constructively exhibit a model of

the formula.

• The basic idea is to incrementally build the model by looking at the formula,

by decomposing it in a top/down fashion. The procedure exhaustively looks at

all the possibilities, so that it can eventually prove that no model could be

found for unsatisfiable formulas.

(10/20)

Simple examples (I)

KB = ManUn ∧ ManCity,¬ManUn

ManUn ∧ ManCity

¬ManUn

ManUn

ManCity

clash!

KB = Chelsea ∧ ManCity,¬ManUn

Chelsea ∧ ManCity

¬ManUn

Chelsea

ManCity

completed

(11/20)

Simple examples (I)

KB = ManUn ∧ ManCity,¬ManUn

ManUn ∧ ManCity

¬ManUn

ManUn

ManCity

clash!

KB = Chelsea ∧ ManCity,¬ManUn

Chelsea ∧ ManCity

¬ManUn

Chelsea

ManCity

completed

(11/20)

Simple examples (I)

KB = ManUn ∧ ManCity,¬ManUn

ManUn ∧ ManCity

¬ManUn♣

ManUn♣

ManCity♣

clash!

KB = Chelsea ∧ ManCity,¬ManUn

Chelsea ∧ ManCity

¬ManUn

Chelsea

ManCity

completed

(11/20)

Simple examples (I)

KB = ManUn ∧ ManCity,¬ManUn

ManUn ∧ ManCity

¬ManUn♣

ManUn♣

ManCity♣

clash!

KB = Chelsea ∧ ManCity,¬ManUn

Chelsea ∧ ManCity

¬ManUn

Chelsea

ManCity

completed

(11/20)

Simple examples (I)

KB = ManUn ∧ ManCity,¬ManUn

ManUn ∧ ManCity

¬ManUn♣

ManUn♣

ManCity♣

clash!

KB = Chelsea ∧ ManCity,¬ManUn

Chelsea ∧ ManCity

¬ManUn♠

Chelsea♠

ManCity♠

completed

(11/20)

Simple examples (II)

KB =

Chelsea ∨ ManUn,¬Chelsea,¬ManUn

Chelsea ∨ ManUn

♣ ¬Chelsea

♣ ¬ManUn

♣ Chelsea ManUn

clash! clash!

KB = Chelsea ∨ ManUn,¬ManUn

Chelsea ∨ ManUn

♠ ¬ManUn

♠ Chelsea ManUn

completed clash!

(12/20)

Simple examples (II)

KB =

Chelsea ∨ ManUn,¬Chelsea,¬ManUn

Chelsea ∨ ManUn

♣

¬Chelsea

♣

¬ManUn

♣

Chelsea ManUn

clash! clash!

KB = Chelsea ∨ ManUn,¬ManUn

Chelsea ∨ ManUn

♠ ¬ManUn

♠ Chelsea ManUn

completed clash!

(12/20)

Simple examples (II)

KB =

Chelsea ∨ ManUn,¬Chelsea,¬ManUn

Chelsea ∨ ManUn

♣ ¬Chelsea

♣ ¬ManUn ♣

♣ Chelsea ManUn ♣

clash! clash!

KB = Chelsea ∨ ManUn,¬ManUn

Chelsea ∨ ManUn

♠ ¬ManUn

♠ Chelsea ManUn

completed clash!

(12/20)

Simple examples (II)

KB =

Chelsea ∨ ManUn,¬Chelsea,¬ManUn

Chelsea ∨ ManUn

♣ ¬Chelsea

♣ ¬ManUn ♣

♣ Chelsea ManUn ♣

clash! clash!

KB = Chelsea ∨ ManUn,¬ManUn

Chelsea ∨ ManUn

♠

¬ManUn

♠

Chelsea ManUn

completed clash!

(12/20)

Simple examples (II)

KB =

Chelsea ∨ ManUn,¬Chelsea,¬ManUn

Chelsea ∨ ManUn

♣ ¬Chelsea

♣ ¬ManUn ♣

♣ Chelsea ManUn ♣

clash! clash!

KB = Chelsea ∨ ManUn,¬ManUn

Chelsea ∨ ManUn

♠ ¬ManUn ♣

♠ Chelsea ManUn ♣

completed clash!

(12/20)

Tableaux Calculus

Finds a model for a given collection of sentences KB in negation normal form.

1. Consider the knowledge base KB as the root node of a refutation tree. A

node in a refutation tree is called tableaux.

2. Starting from the root, add new formulas to the tableaux, applying the

completion rules.

3. Completion rules are either deterministic – they yield a uniquely determined

successor node – or nondeterministic – yielding several possible alternative

successor nodes (branches).

4. Apply the completion rules until either

(a) an explicit contradiction due to the presence of two opposite literals in a

node (a clash) is generated in each branch, or

(b) there is a completed branch where no more rule is applicable.

(13/20)

Models

• The completed branch of the refutation tree gives a model of KB: the KB is

satisfiable. Since all formulas have been reduced to literals (i.e., either

positive or negative atomic propositions), it is possible to find an assignment

of truth and falsity to atomic sentences which make all the sentences in the

branch true.

• If there is no completed branch (i.e., every branch has a clash), then it is not

possible to find an assignment making the original KB true: the KB is

unsatisfiable. In fact, the original formulas from which the tree is constructed

can not be true simultaneously.

(14/20)

The Calculus

φ ∧ ψ

φ

ψ

If a model satisfies a conjunction,

then it also satisfies each of the

conjuncts

φ ∨ ψ

φ ψ

If a model satisfies a disjunction,

then it also satisfies one of the

disjuncts. It is a non-deterministic

rule, and it generates two alterna-

tive branches of the tableaux.

(15/20)

Negation Normal Form

The given tableaux calculus works only if the formula has been translated into

Negation Normal Form, i.e., all the negations have been pushed down.

Example::

¬(A ∨ (B ∧ ¬C))

becomes

(¬A ∧ (¬B ∨ C))

(16/20)

Entailment and Refutation

φ |= ψ iff φ ∧ ¬ψ is not satisfiable. The tableaux may exhibit a counter-example

(why?).

Chelsea ∨ ManUn,¬ManUn |= Chelsea

(true)

Chelsea ∨ ManUn

¬Chelsea

¬ManUn

Chelsea ManUn

clash! clash!

Chelsea ∨ ManUn |= ManUn

(false)

(17/20)

Entailment and Refutation

φ |= ψ iff φ ∧ ¬ψ is not satisfiable. The tableaux may exhibit a counter-example

(why?).

Chelsea ∨ ManUn,¬ManUn |= Chelsea

(true)

Chelsea ∨ ManUn

¬Chelsea

¬ManUn

Chelsea ManUn

clash! clash!

Chelsea ∨ ManUn |= ManUn

(false)

Chelsea ∨ ManUn

¬ManUn

Chelsea ManUn

completed clash!

(17/20)

Efficiency: order of rule application

KB = p ∧ q,¬p, a ∧ b ∧ c

p ∧ q

¬p

a ∧ b ∧ c

a

b

c

p

q

clash!

p ∧ q

¬p

a ∧ b ∧ c

p

q

clash!

(18/20)

Efficiency: order of rule application

KB = p ∧ q,¬p, a ∧ b ∧ c

p ∧ q

¬p

a ∧ b ∧ c

a

b

c

p

q

clash!

p ∧ q

¬p

a ∧ b ∧ c

p

q

clash!

(18/20)

Efficiency: order of rule application

KB = p ∧ q,¬p, a ∧ b ∧ c

p ∧ q

¬p

a ∧ b ∧ c

a

b

c

p

q

clash!

p ∧ q

¬p

a ∧ b ∧ c

p

q

clash!

(18/20)

Efficiency: comparison with truth tables

• The complexity of truth tables depends on the number of atomic formulas

appearing in the KB,

• the complexity of tableaux depends on the syntactic structure of the formulas

in KB.

Try:

KB = ((p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ r) ∧ (¬p ∨ ¬r))

(19/20)

Tableaux as a Decision Procedure

Tableaux is a decision procedure for computing satisfiability, validity, and

entailment in propositional logics:

• it is a sound algorithm

• it is a complete algorithm

• it is a terminating algorithm

(20/20)

	@semtitle
	Decision Procedures in Logic: soundness
	Decision Procedures in Logic: completeness
	Sound and Incomplete Algorithms
	Good Decision procedures
	An extreme example
	Dual problems
	Propositional Decision Procedures
	Reduction to satisfiability
	Tableaux Calculus
	Simple examples (I)
	Simple examples (II)
	Tableaux Calculus
	Models
	The Calculus
	Negation Normal Form
	Entailment and Refutation
	Efficiency: order of rule application
	Efficiency: comparison with truth tables
	Tableaux as a Decision Procedure

