Description Logics

Foundations of Propositional Logic

Enrico Franconi
franconi@cs.man.ac.uk
http://www.cs.man.ac.uk/~franconi

Department of Computer Science, University of Manchester

Knowledge bases

Inference engine
Knowledge base
domain-independent algorithms

- Knowledge base = set of sentences in a formal language = logical theory
- Declarative approach to building an agent (or other system):

TELL it what it needs to know

- Then it can AsK itself what to do—answers should follow from the KB
- Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented
- Or at the implementation level
i.e., data structures in KB and algorithms that manipulate them

Logic in general

- Logics are formal languages for representing information such that conclusions can be drawn
- Syntax defines the sentences in the language
- Semantics define the "meaning" of sentences; i.e., define truth of a sentence in a world
- E.g., the language of arithmetic $x+2 \geq y$ is a sentence; $x 2+y>$ is not a sentence
$x+2 \geq y$ is true iff the number $x+2$ is no less than the number y
$x+2 \geq y$ is true in a world where $x=7, y=1$
$x+2 \geq y$ is false in a world where $x=0, y=6$
$x+2 \geq x+1$ is true in every world

The one and only Logic?

- Logics of higher order
- Modal logics
- epistemic
- temporal and spatial

○ ...

- Description logic
- Non-monotonic logic
- Intuitionistic logic

But: There are "standard approaches"
\leadsto propositional and predicate logic

Types of logic

- Logics are characterized by what they commit to as "primitives"
- Ontological commitment: what exists—facts? objects? time? beliefs?
- Epistemological commitment: what states of knowledge?

Language	Ontological Commitment (What exists in the world)	Epistemological Commitment (What an agent believes about facts)
Propositional logic First-order logic	facts	facts, objects, relations
Temporal logic	facts, objects, relations, times	true/false/unknown true/false/unknown true/false/unknown Probability theory Fuzzy logic
facts		
degree of truth	degree of belief 0...1 degree of belief 0...1	

Classical logics are based on the notion of TRUTH

Entailment - Logical Implication

$$
K B \models \alpha
$$

- Knowledge base $K B$ entails sentence α
if and only if
α is true in all worlds where $K B$ is true
- E.g., the KB containing "Manchester United won" and "Manchester City won" entails "Either Manchester United won or Manchester City won"

Models

- Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated
- We say m is a model of a sentence α if α is true in m
- $M(\alpha)$ is the set of all models of α
- Then $K B \models \alpha$ if and only if $M(K B) \subseteq M(\alpha)$
- E.g. $K B=$ United won and City won
$\alpha=$ City won
or
$\alpha=$ Manchester won
or
$\alpha=$ either City or Manchester won

Inference - Deduction - Reasoning

$$
K B \vdash_{i} \alpha
$$

- $K B \vdash_{i} \alpha=$ sentence α can be derived from $K B$ by procedure i
- Soundness: i is sound if whenever $K B \vdash_{i} \alpha$, it is also true that $K B \models \alpha$
- Completeness: i is complete if whenever $K B \models \alpha$, it is also true that $K B \vdash_{i} \alpha$
- We will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

Propositional Logics: Basic Ideas

Statements:

The elementary building blocks of propositional logic are atomic statements that cannot be decomposed any further: propositions. E.g.,

- "The block is red"
- "The proof of the pudding is in the eating"
- "It is raining"
and logical connectives "and", "or", "not", by which we can build propositional formulas.

Propositional Logics: Reasoning

We are interested in the questions:

- when is a statement logically implied by a set of statements, in symbols: $\Theta \models \phi$
- can we define deduction in such a way that deduction and entailment coincide?

Syntax of Propositional Logic

Countable alphabet Σ of atomic propositions: a, b, c, \ldots.

| ϕ, ψ | \longrightarrow | a | atomic formula |
| :--- | :--- | :--- | :--- | :--- |
| | \mid | \perp | false |
| | \mid | \top | true |
| Propositional formulas: | \mid | $\neg \phi$ | negation |
| | \mid | $\phi \wedge \psi$ | conjunction |
| | \mid | $\phi \vee \psi$ | disjunction |
| | \mid | $\phi \rightarrow \psi$ | implication |
| | \mid | $\phi \leftrightarrow \psi$ | equivalence |

- Atom: atomic formula
- Clause: disjunction of literals
- Literal: (negated) atomic formula

Semantics: Intuition

- Atomic statements can be true T or false F .
- The truth value of formulas is determined by the truth values of the atoms (truth value assignment or interpretation).

Example: $(a \vee b) \wedge c$

- If a and b are wrong and c is true, then the formula is not true.
- Then logical entailment could be defined as follows:
- ϕ is implied by Θ, if ϕ is true in all "states of the world", in which Θ is true.

Semantics: Formally

A truth value assignment (or interpretation) of the atoms in Σ is a function \mathcal{I} :

$$
\mathcal{I}: \Sigma \rightarrow\{\mathrm{T}, \mathrm{~F}\} .
$$

Instead of $\mathcal{I}(a)$ we also write $a^{\mathcal{I}}$.
A formula ϕ is satisfied by an interpretation $\mathcal{I}(\mathcal{I} \models \phi)$ or is true under \mathcal{I} :

$$
\begin{array}{rlllll}
& \mathcal{I} \models \mathrm{T} & \mathcal{I} \models \phi \rightarrow \psi & \text { iff if } \mathcal{I} \models \phi, \text { then } \mathcal{I} \models \psi \\
\mathcal{I} \not \models \perp & & \mathcal{I} \models \phi \leftrightarrow \psi & \text { iff } & \mathcal{I} \models \phi, \text { if and only if } \mathcal{I} \models \psi \\
\mathcal{I} \models a & \text { iff } & a^{\mathcal{I}}=\mathrm{T} & & \\
\mathcal{I} \models \neg \phi & \text { iff } \quad & \mathcal{I} \not \models \phi \\
\mathcal{I} \models \phi \wedge \psi & \text { iff } & \mathcal{I} \models \phi \text { and } \mathcal{I} \models \psi \\
\mathcal{I} \models \phi \vee \psi & \text { iff } & \mathcal{I} \models \phi \text { or } \mathcal{I} \models \psi
\end{array}
$$

Example

$$
\begin{aligned}
\mathcal{I}:\left\{\begin{array}{rll}
a & \mapsto \mathrm{~T} \\
b & \mapsto & \mathrm{~F} \\
c & \mapsto \mathrm{~F} \\
d & \mapsto \mathrm{~T} \\
& \vdots
\end{array}\right. \\
((a \vee b) \leftrightarrow(c \vee d)) \wedge(\neg(a \wedge b) \vee(c \wedge \neg d)) .
\end{aligned}
$$

Exercise

- Find an interpretation and a formula such that the formula is true in that interpretation (or: the interpretation satisfies the formula).
- Find an interpretation and a formula such that the formula is not true in that interpretation (or: the interpretation does not satisfy the formula).
- Find a formula which can't be true in any interpretation (or: no interpretation can satisfy the formula).

Satisfiability and Validity

An interpretation \mathcal{I} is a model of ϕ :

$$
\mathcal{I} \models \phi
$$

A formula ϕ is

- satisfiable, if there is some \mathcal{I} that satisfies ϕ,
- unsatisfiable, if ϕ is not satisfiable,
- falsifiable, if there is some \mathcal{I} that does not satisfy ϕ,
- valid (i.e., a tautology), if every \mathcal{I} is a model of ϕ.

Two formulas are logically equivalent $(\phi \equiv \psi)$, if for all \mathcal{I} :

$$
\mathcal{I} \models \phi \text { iff } \mathcal{I} \models \psi
$$

Exercise

Satisfiable, tautology?

$$
\begin{gathered}
(((a \wedge b) \leftrightarrow a) \rightarrow b) \\
((\neg \phi \rightarrow \neg \psi) \rightarrow(\psi \rightarrow \phi)) \\
(a \vee b \vee \neg c) \wedge(\neg a \vee \neg b \vee d) \wedge(\neg a \vee b \vee \neg d)
\end{gathered}
$$

Equivalent?

$$
\begin{aligned}
(\phi \vee(\psi \wedge \chi)) & \equiv((\phi \vee \psi) \wedge(\psi \wedge \chi)) \\
\neg(\phi \vee \psi) & \equiv \neg \phi \wedge \neg \psi
\end{aligned}
$$

Consequences

Proposition:

- ϕ is a tautology iff $\neg \phi$ is unsatisfiable
- ϕ is unsatisfiable iff $\neg \phi$ is a tautology.

Proposition: $\phi \equiv \psi$ iff $\phi \leftrightarrow \psi$ is a tautology.

Theorem: If ϕ and ψ are equivalent, and χ^{\prime} results from replacing ϕ in χ by ψ, then χ and χ^{\prime} are equivalent.

Entailment

Extension of the entailment relationship to sets of formulas Θ :

$$
\mathcal{I} \models \Theta \quad \text { iff } \quad \mathcal{I} \models \phi \text { for all } \phi \in \Theta
$$

Remember: we want the formula ϕ to be implied by a set Θ, if ϕ is true in all models of Θ (symbolically, $\Theta \models \phi$):
$\Theta \models \phi \quad$ iff $\quad \mathcal{I} \models \phi$ for all models \mathcal{I} of Θ

Propositional inference: Enumeration method

Let $\alpha=A \vee B$ and $K B=(A \vee C) \wedge(B \vee \neg C)$
Is it the case that $K B \models \alpha$?
Check all possible models $-\alpha$ must be true wherever $K B$ is true

A	B	C	$A \vee C$	$B \vee \neg C$	$K B$	α
False	False	False				
False	False	True				
False	True	False				
False	True	True				
True	False	False				
True	False	True				
True	True	False				
True	True	True				

Propositional inference: Enumeration method

Let $\alpha=A \vee B$ and $K B=(A \vee C) \wedge(B \vee \neg C)$
Is it the case that $K B \models \alpha$?
Check all possible models $-\alpha$ must be true wherever $K B$ is true

A	B	C	$A \vee C$	$B \vee \neg C$	$K B$	α
False	False	False	False			
False	False	True	True			
False	True	False	False			
False	True	True	True			
True	False	False	True			
True	False	True	True			
True	True	False	True			
True	True	True	True			

Propositional inference: Enumeration method

Let $\alpha=A \vee B$ and $K B=(A \vee C) \wedge(B \vee \neg C)$
Is it the case that $K B \models \alpha$?
Check all possible models $-\alpha$ must be true wherever $K B$ is true

A	B	C	$A \vee C$	$B \vee \neg C$	$K B$	α
False	False	False	False	True		
False	False	True	True	False		
False	True	False	False	True		
False	True	True	True	True		
True	False	False	True	True		
True	False	True	True	False		
True	True	False	True	True		
True	True	True	True	True		

Propositional inference: Enumeration method

Let $\alpha=A \vee B$ and $K B=(A \vee C) \wedge(B \vee \neg C)$
Is it the case that $K B \models \alpha$?
Check all possible models $-\alpha$ must be true wherever $K B$ is true

A	B	C	$A \vee C$	$B \vee \neg C$	KB	α
False	False	False	False	True	False	
False	False	True	True	False	False	
False	True	False	False	True	False	
False	True	True	True	True	True	
True	False	False	True	True	True	
True	False	True	True	False	False	
True	True	False	True	True	True	
True	True	True	True	True	True	

Propositional inference: Enumeration method

Let $\alpha=A \vee B$ and $K B=(A \vee C) \wedge(B \vee \neg C)$
Is it the case that $K B \models \alpha$?
Check all possible models $-\alpha$ must be true wherever $K B$ is true

A	B	C	$A \vee C$	$B \vee \neg C$	KB	α
False	False	False	False	True	False	False
False	False	True	True	False	False	False
False	True	False	False	True	False	True
False	True	True	True	True	True	True
True	False	False	True	True	True	True
True	False	True	True	False	False	True
True	True	False	True	True	True	True
True						

Properties of Entailment

- $\Theta \cup\{\phi\} \models \psi$ iff $\Theta \models \phi \rightarrow \psi$
(Deduction Theorem)
- $\Theta \cup\{\phi\} \models \neg \psi$ iff $\Theta \cup\{\psi\} \models \neg \phi$
(Contraposition Theorem)
- $\Theta \cup\{\phi\}$ is unsatisfiable iff $\Theta \models \neg \phi$
(Contradiction Theorem)

Equivalences (I)

Commutativity

$$
\begin{aligned}
\phi \vee \psi & \equiv \psi \vee \phi \\
\phi \wedge \psi & \equiv \psi \wedge \phi \\
\phi \leftrightarrow \psi & \equiv \psi \leftrightarrow \phi
\end{aligned}
$$

Associativity

$$
\begin{aligned}
& (\phi \vee \psi) \vee \chi \equiv \phi \vee(\psi \vee \chi) \\
& (\phi \wedge \psi) \wedge \chi \equiv \phi \wedge(\psi \wedge \chi)
\end{aligned}
$$

Idempotence

$$
\begin{aligned}
\phi \vee \phi & \equiv \phi \\
\phi \wedge \phi & \equiv \phi
\end{aligned}
$$

Absorption

$$
\begin{aligned}
\phi \vee(\phi \wedge \psi) & \equiv \phi \\
\phi \wedge(\phi \vee \psi) & \equiv \phi
\end{aligned}
$$

Distributivity

$$
\begin{aligned}
\phi \wedge(\psi \vee \chi) & \equiv(\phi \wedge \psi) \vee(\phi \wedge \chi) \\
\phi \vee(\psi \wedge \chi) & \equiv(\phi \vee \psi) \wedge(\phi \vee \chi)
\end{aligned}
$$

Equivalences (II)

Tautology
Unsatisfiability
Negation

Neutrality

$$
\phi \vee \top \equiv \top
$$

$$
\phi \wedge \perp \equiv \perp
$$

$$
\phi \vee \neg \phi \equiv \top
$$

$$
\phi \wedge \neg \phi \equiv \perp
$$

$$
\phi \wedge \top \equiv \phi
$$

$$
\phi \vee \perp \equiv \phi
$$

Double Negation

$$
\neg \neg \phi \equiv \phi
$$

De Morgan

$$
\begin{aligned}
\neg(\phi \vee \psi) & \equiv \neg \phi \wedge \neg \psi \\
\neg(\phi \wedge \psi) & \equiv \neg \phi \vee \neg \psi
\end{aligned}
$$

Implication

$$
\phi \rightarrow \psi \equiv \neg \phi \vee \psi
$$

Normal Forms

Other approaches to inference use syntactic operations on sentences, often expressed in standardized forms

Conjunctive Normal Form (CNF)

$$
\bigwedge_{i=1}^{n}\left(\bigvee_{j=1}^{m} l_{i, j}\right)
$$

clauses
E.g., $(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)$

Disjunctive Normal Form (DNF)
disjunction of $\underbrace{\text { conjunctions of literals: }} \quad \bigvee_{i=1}^{n}\left(\bigwedge_{j=1}^{m} l_{i, j}\right)$
terms

Normal Forms, cont.

Horn Form (restricted)
conjunction of Horn clauses (clauses with ≤ 1 positive literal)
E.g., $(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)$

Often written as set of implications:

$$
B \Rightarrow A \text { and }(C \wedge D) \Rightarrow B
$$

Theorem For every formula, there exists an equivalent formula in CNF and one in DNF.

Why Normal Forms?

- We can transform propositional formulas, in particular, we can construct their CNF and DNF.
- DNF tells us something as to whether a formula is satisfiable. If all disjuncts contain \perp or complementary literals, then no model exists. Otherwise, the formula is satisfiable.
- CNF tells us something as to whether a formula is a tautology. If all clauses (= conjuncts) contain \top or complementary literals, then the formula is a tautology. Otherwise, the formula is falsifiable.

But:

- the transformation into DNF or CNF is expensive (in time/space)
- it is only possible for finite sets of formulas

Summary: important notions

- Syntax: formula, atomic formula, literal, clause
- Semantics: truth value, assignment, interpretation
- Formula satisfied by an interpretation
- Logical implication, entailment
- Satisfiability, validity, tautology, logical equivalence
- Deduction theorem, Contraposition Theorem
- Conjunctive normal form, Disjunctive Normal form, Horn form

