
Description Logics

Foundations of Propositional Logic

Enrico Franconi

franconi@cs.man.ac.uk

http://www.cs.man.ac.uk/˜franconi

Department of Computer Science, University of Manchester

(1/27)



Knowledge bases

Inference engine ←− domain-independent algorithms

Knowledge base ←− domain-specific content

• Knowledge base = set of sentences in a formal language = logical theory

• Declarative approach to building an agent (or other system):

TELL it what it needs to know

• Then it can ASK itself what to do—answers should follow from the KB

• Agents can be viewed at the knowledge level

i.e., what they know, regardless of how implemented

• Or at the implementation level

i.e., data structures in KB and algorithms that manipulate them

(2/27)



Logic in general

• Logics are formal languages for representing information such that

conclusions can be drawn

• Syntax defines the sentences in the language

• Semantics define the “meaning” of sentences; i.e., define truth of a sentence

in a world

• E.g., the language of arithmetic

x+ 2 ≥ y is a sentence; x2 + y > is not a sentence

x+ 2 ≥ y is true iff the number x+ 2 is no less than the number y

x+ 2 ≥ y is true in a world where x = 7, y = 1

x+ 2 ≥ y is false in a world where x = 0, y = 6

x+ 2 ≥ x+ 1 is true in every world

(3/27)



The one and only Logic?

• Logics of higher order

• Modal logics

◦ epistemic

◦ temporal and spatial

◦ . . .

• Description logic

• Non-monotonic logic

• Intuitionistic logic

• . . .

But: There are “standard approaches”

; propositional and predicate logic
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Types of logic

• Logics are characterized by what they commit to as “primitives”

• Ontological commitment: what exists—facts? objects? time? beliefs?

• Epistemological commitment: what states of knowledge?

Language Ontological Commitment Epistemological Commitment
(What exists in the world) (What an agent believes about facts)

Propositional logic facts true/false/unknown
First-order logic facts, objects, relations true/false/unknown
Temporal logic facts, objects, relations, times true/false/unknown
Probability theory facts degree of belief 0…1
Fuzzy logic degree of truth degree of belief 0…1

Classical logics are based on the notion of TRUTH
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Entailment – Logical Implication

KB |= α

• Knowledge base KB entails sentence α

if and only if

α is true in all worlds where KB is true

• E.g., the KB containing “Manchester United won” and “Manchester City won”

entails “Either Manchester United won or Manchester City won”
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Models

• Logicians typically think in terms of models, which are formally

structured worlds with respect to which truth can be evaluated

• We say m is a model of a sentence α if α is true in m

• M(α) is the set of all models of α

• Then KB |= α if and only if M(KB) ⊆M(α)

• E.g. KB = United won and City won

α = City won

or

α = Manchester won

or

α = either City or Manchester won
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Inference – Deduction – Reasoning

KB `i α

• KB `i α = sentence α can be derived from KB by procedure i

• Soundness: i is sound if

whenever KB `i α, it is also true that KB |= α

• Completeness: i is complete if

whenever KB |= α, it is also true that KB `i α

• We will define a logic (first-order logic) which is expressive enough to say

almost anything of interest, and for which there exists a sound and complete

inference procedure.
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Propositional Logics: Basic Ideas

Statements:

The elementary building blocks of propositional logic are atomic statements that

cannot be decomposed any further: propositions. E.g.,

• “The block is red”

• “The proof of the pudding is in the eating”

• “It is raining”

and logical connectives “and”, “or”, “not”, by which we can build

propositional formulas.
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Propositional Logics: Reasoning

We are interested in the questions:

• when is a statement logically implied by a set of statements,

in symbols: Θ |= φ

• can we define deduction in such a way that deduction and entailment

coincide?
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Syntax of Propositional Logic

Countable alphabet Σ of atomic propositions: a, b, c, . . ..

Propositional formulas:

φ, ψ −→ a atomic formula

| ⊥ false

| > true

| ¬φ negation

| φ ∧ ψ conjunction

| φ ∨ ψ disjunction

| φ→ ψ implication

| φ↔ ψ equivalence

• Atom: atomic formula

• Literal: (negated) atomic formula

• Clause: disjunction of literals
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Semantics: Intuition

• Atomic statements can be true T or false F.

• The truth value of formulas is determined by the truth values of the atoms

(truth value assignment or interpretation).

Example: (a ∨ b) ∧ c

• If a and b are wrong and c is true, then the formula is not true.

• Then logical entailment could be defined as follows:

• φ is implied by Θ, if φ is true in all “states of the world”, in which Θ is true.
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Semantics: Formally

A truth value assignment (or interpretation) of the atoms in Σ is a function I :

I: Σ→ {T, F}.

Instead of I(a) we also write aI .

A formula φ is satisfied by an interpretation I (I |= φ) or is true under I :

I |= >

I 6|= ⊥

I |= a iff aI = T

I |= ¬φ iff I 6|= φ

I |= φ ∧ ψ iff I |= φ and I |= ψ

I |= φ ∨ ψ iff I |= φ or I |= ψ

I |= φ→ ψ iff if I |= φ, then I |= ψ

I |= φ↔ ψ iff I |= φ, if and only if I |= ψ
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Example

I:







a 7→ T

b 7→ F

c 7→ F

d 7→ T

...

((a ∨ b)↔ (c ∨ d)) ∧ (¬(a ∧ b) ∨ (c ∧ ¬d)).
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Exercise

• Find an interpretation and a formula such that the formula is true in that

interpretation (or: the interpretation satisfies the formula).

• Find an interpretation and a formula such that the formula is not true in that

interpretation (or: the interpretation does not satisfy the formula).

• Find a formula which can’t be true in any interpretation (or: no interpretation

can satisfy the formula).
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Satisfiability and Validity

An interpretation I is a model of φ:

I |= φ

A formula φ is

• satisfiable, if there is some I that satisfies φ,

• unsatisfiable, if φ is not satisfiable,

• falsifiable, if there is some I that does not satisfy φ,

• valid (i.e., a tautology), if every I is a model of φ.

Two formulas are logically equivalent (φ ≡ ψ), if for all I :

I |= φ iff I |= ψ
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Exercise

Satisfiable, tautology?

(((a ∧ b)↔ a)→ b)

((¬φ→ ¬ψ)→ (ψ → φ))

(a ∨ b ∨ ¬c) ∧ (¬a ∨ ¬b ∨ d) ∧ (¬a ∨ b ∨ ¬d)

Equivalent?

(φ ∨ (ψ ∧ χ)) ≡ ((φ ∨ ψ) ∧ (ψ ∧ χ))

¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ

Try to use truth tables to support your conclusions.
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Consequences

Proposition:

• φ is a tautology iff ¬φ is unsatisfiable

• φ is unsatisfiable iff ¬φ is a tautology.

Proposition: φ ≡ ψ iff φ↔ ψ is a tautology.

Theorem: If φ and ψ are equivalent, and χ′ results from replacing φ in χ by ψ,

then χ and χ′ are equivalent.
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Entailment

Extension of the entailment relationship to sets of formulas Θ:

I |= Θ iff I |= φ for all φ ∈ Θ

Remember: we want the formula φ to be implied by a set Θ, if φ is true in all

models of Θ (symbolically, Θ |= φ):

Θ |= φ iff I |= φ for all models I of Θ
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Propositional inference: Enumeration method

Let α = A ∨B and KB = (A ∨ C) ∧ (B ∨ ¬C)

Is it the case that KB |= α?

Check all possible models – α must be true wherever KB is true

A B C A ∨ C B ∨ ¬C KB α

False False False

False False True

False True False

False True True

True False False

True False True

True True False

True True True
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Properties of Entailment

• Θ ∪ {φ} |= ψ iff Θ |= φ→ ψ

(Deduction Theorem)

• Θ ∪ {φ} |= ¬ψ iff Θ ∪ {ψ} |= ¬φ

(Contraposition Theorem)

• Θ ∪ {φ} is unsatisfiable iff Θ |= ¬φ

(Contradiction Theorem)
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Equivalences (I)

Commutativity φ ∨ ψ ≡ ψ ∨ φ

φ ∧ ψ ≡ ψ ∧ φ

φ↔ ψ ≡ ψ ↔ φ

Associativity (φ ∨ ψ) ∨ χ ≡ φ ∨ (ψ ∨ χ)

(φ ∧ ψ) ∧ χ ≡ φ ∧ (ψ ∧ χ)

Idempotence φ ∨ φ ≡ φ

φ ∧ φ ≡ φ

Absorption φ ∨ (φ ∧ ψ) ≡ φ

φ ∧ (φ ∨ ψ) ≡ φ

Distributivity φ ∧ (ψ ∨ χ) ≡ (φ ∧ ψ) ∨ (φ ∧ χ)

φ ∨ (ψ ∧ χ) ≡ (φ ∨ ψ) ∧ (φ ∨ χ)
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Equivalences (II)

Tautology φ ∨ > ≡ >

Unsatisfiability φ ∧ ⊥ ≡ ⊥

Negation φ ∨ ¬φ ≡ >

φ ∧ ¬φ ≡ ⊥

Neutrality φ ∧ > ≡ φ

φ ∨ ⊥ ≡ φ

Double Negation ¬¬φ ≡ φ

De Morgan ¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ

¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ

Implication φ→ ψ ≡ ¬φ ∨ ψ
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Normal Forms

Other approaches to inference use syntactic operations on sentences, often

expressed in standardized forms

Conjunctive Normal Form (CNF)

conjunction of disjunctions of literals
︸ ︷︷ ︸

:
∧n

i=1
(
∨m

j=1
li,j)

clauses

E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

Disjunctive Normal Form (DNF)

disjunction of conjunctions of literals
︸ ︷︷ ︸

:
∨n

i=1
(
∧m

j=1
li,j)

terms

E.g., (A ∧B) ∨ (A ∧ ¬C) ∨ (A ∧ ¬D) ∨ (¬B ∧ ¬C) ∨ (¬B ∧ ¬D)
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Normal Forms, cont.

Horn Form (restricted)

conjunction of Horn clauses (clauses with≤ 1 positive literal)

E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

Often written as set of implications:

B ⇒ A and (C ∧D)⇒ B

Theorem For every formula, there exists an equivalent formula in CNF and one in

DNF.

(25/27)



Why Normal Forms?

• We can transform propositional formulas, in particular, we can construct their

CNF and DNF.

• DNF tells us something as to whether a formula is satisfiable. If all disjuncts

contain⊥ or complementary literals, then no model exists. Otherwise, the

formula is satisfiable.

• CNF tells us something as to whether a formula is a tautology. If all clauses (=

conjuncts) contain> or complementary literals, then the formula is a

tautology. Otherwise, the formula is falsifiable.

But:

• the transformation into DNF or CNF is expensive (in time/space)

• it is only possible for finite sets of formulas
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Summary: important notions

• Syntax: formula, atomic formula, literal, clause

• Semantics: truth value, assignment, interpretation

• Formula satisfied by an interpretation

• Logical implication, entailment

• Satisfiability, validity, tautology, logical equivalence

• Deduction theorem, Contraposition Theorem

• Conjunctive normal form, Disjunctive Normal form, Horn form
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