Description Logics

Foundations of First Order Logic

Enrico Franconi
franconi@cs.man.ac.uk
http://www.cs.man.ac.uk/~franconi

Department of Computer Science, University of Manchester

Motivation

- We can already do a lot with propositional logic.
- But it is unpleasant that we cannot access the structure of atomic sentences.
- Atomic formulas of propositional logic are too atomic - they are just statement which my be true or false but which have no internal structure.
- In First Order Logic (FOL) the atomic formulas are interpreted as statements about relationships between objects.

Predicates and Constants

Let's consider the statements:

- Mary is female

John is male
Mary and John are siblings
In propositional logic the above statements are atomic propositions:

- Mary-is-female

John-is-male
Mary-and-John-are-siblings
In FOL atomic statements use predicates, with constants as argument:

- Female (mary)

Male (john)
Siblings (mary, john)

Variables and Quantifiers

Let's consider the statements:

- Everybody is male or female
- A male is not a female

In FOL predicates may have variables as arguments, whose value is bounded by quantifiers:

- $\forall x . \operatorname{Male}(x) \vee$ Female (x)
- $\forall x . \operatorname{Male}(x) \rightarrow \neg$ Female (x)

Deduction (why?):

- Mary is not male
- \neg Male(mary)

Functions

Let's consider the statement:

- The father of a person is male

In FOL objects of the domain may be denoted by functions applied to (other) objects:

- $\forall x$. Male $(f a t h e r(x))$

Syntax of FOL: atomic sentences

Countably infinite supply of symbols (signature):

- variable symbols: x, y, z, \ldots
n-ary function symbols: f, g, h, \ldots
individual constants: a, b, c, \ldots
n-are predicate symbols: P, Q, R, \ldots
Terms:

t	$\rightarrow x$	variable
$\|$$\mid$ \mid $f\left(t_{1}, \ldots, t_{n}\right)$	constant	
	function application	

Ground terms: terms that do not contain variables
Formulas: $\phi \quad \rightarrow P\left(t_{1}, \ldots, t_{n}\right) \quad$ atomic formulas
E.g., Brother(kingJohn, richardTheLionheart)

$$
>(l e n g t h(l e f t L e g O f(\text { richard })), \text { length(leftLegOf(kingJohn })))
$$

Syntax of FOL: propositional sentences

Formulas: $\phi, \psi \rightarrow P\left(t_{1}, \ldots, t_{n}\right)$

\perp
T
$\neg \phi$
$\phi \wedge \psi$
$\phi \vee \psi$
$\phi \rightarrow \psi$
$\phi \leftrightarrow \psi$

atomic formulas
false
true
negation
conjunction
disjunction
implication
equivalence

- (Ground) atoms and (ground) literals.
E.g. \quad Sibling $($ kingJohn, richard $) \rightarrow$ Sibling $($ richard, kingJohn $)$

$$
\begin{aligned}
& >(1,2) \vee \leq(1,2) \\
& >(1,2) \wedge \neg>(1,2)
\end{aligned}
$$

Syntax of full FOL

Formulas: $\phi, \psi \rightarrow P\left(t_{1}, \ldots, t_{n}\right)$

$\phi \wedge \psi$
$\phi \vee \psi$
$\phi \rightarrow \psi$
$\phi \leftrightarrow \psi \quad$ equivalence
$\forall x . \phi \quad$ universal quantification
$\exists x . \phi \quad$ existential quantification
E.g. Everyone in England is smart: $\quad \forall x . \operatorname{In}(x$, england $) \rightarrow \operatorname{Smart}(x)$ Someone in France is smart: $\exists x . \operatorname{In}(x$, france $) \wedge \operatorname{Smart}(x)$

Summary of Syntax of FOL

- Terms
- variables
- constants
- functions
- Literals
- atomic formula
- relation (predicate)
- negation
- Well formed formulas
- truth-functional connectives
- existential and universal quantifiers

Semantics of FOL: intuition

- Just like in propositional logic, a (complex) FOL formula may be true (or false) with respect to a given interpretation.
- An interpretation specifies referents for constant symbols \rightarrow objects predicate symbols \rightarrow relations function symbols \rightarrow functional relations
- An atomic sentence $P\left(t_{1}, \ldots, t_{n}\right)$ is true in a given interpretation iff the objects referred to by t_{1}, \ldots, t_{n} are in the relation referred to by the predicate P.
- An interpretation in which a formula is true is called a model for the formula.

Models for FOL: Example

objects

relations: sets of tuples of objects

functional relations: all tuples of objects + "value" object

$$
\{\langle\langle,\rangle,\langle\langle\chi, \nu\rangle, \ldots\}
$$

Semantic of FOL: Interpretations

Interpretation: $\mathcal{I}=\left\langle\Delta,{ }^{\mathcal{I}}\right\rangle$ where Δ is an arbitrary non-empty set and \mathcal{I} is a function that maps

- n-ary function symbols to functions over Δ :

$$
f^{\mathcal{I}} \in\left[\Delta^{n} \rightarrow \Delta\right]
$$

- individual constants to elements of Δ :

$$
a^{\mathcal{I}} \in \Delta
$$

- n-ary predicate symbols to relation over Δ :

$$
P^{\mathcal{I}} \subseteq \Delta^{n}
$$

Semantic of FOL: Satisfaction

Interpretation of ground terms:

$$
\left(f\left(t_{1}, \ldots, t_{n}\right)\right)^{\mathcal{I}}=f^{\mathcal{I}}\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right)(\in \Delta)
$$

Satisfaction of ground atoms $P\left(t_{1}, \ldots, t_{n}\right)$:

$$
\mathcal{I} \models P\left(t_{1}, \ldots, t_{n}\right) \quad \text { iff } \quad\left\langle t_{1}{ }^{\mathcal{I}}, \ldots, t_{n}{ }^{\mathcal{I}}\right\rangle \in P^{\mathcal{I}}
$$

Examples

$$
\begin{aligned}
\Delta & =\left\{d_{1}, \ldots, d_{n}, n>1\right\} \\
\mathrm{a}^{\mathcal{I}} & =d_{1} \\
\mathrm{~b}^{\mathcal{I}} & =d_{2} \\
\text { Block }^{\mathcal{I}} & =\left\{d_{1}\right\} \\
\text { Red }^{\mathcal{I}} & =\Delta
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Even}^{\mathcal{I}} & =\{2,4,6, \ldots\} \\
\operatorname{succ}^{\mathcal{I}} & =\{(1 \mapsto 2),(2 \mapsto 3), \ldots\}
\end{aligned}
$$

Examples

$$
\begin{aligned}
\Delta & =\left\{d_{1}, \ldots, d_{n}, n>1\right\} & \Delta & =\{1,2,3, \ldots\} \\
\mathrm{a}^{\mathcal{I}} & =d_{1} & 1^{\mathcal{I}} & =1 \\
\mathrm{~b}^{\mathcal{I}} & =d_{2} & 2^{\mathcal{I}} & =2 \\
\text { Block }^{\mathcal{I}} & =\left\{d_{1}\right\} & & \vdots \\
\operatorname{Red}^{\mathcal{I}} & =\Delta & \text { Even }^{\mathcal{I}} & =\{2,4,6, \ldots\} \\
\mathcal{I} & \models \operatorname{Red}(\mathrm{b}) & \operatorname{succ}^{\mathcal{I}} & =\{(1 \mapsto 2),(2 \mapsto 3), \ldots\} \\
\mathcal{I} & \not \models \text { Block (b) } & &
\end{aligned}
$$

Examples

$$
\begin{aligned}
\Delta & =\left\{d_{1}, \ldots, d_{n}, n>1\right\} \\
\mathrm{a}^{\mathcal{I}} & =d_{1} \\
\mathrm{~b}^{I} & =d_{2} \\
\mathrm{Block}^{\mathcal{I}} & =\left\{d_{1}\right\} \\
\operatorname{Red}^{\mathcal{I}} & =\Delta \\
\mathcal{I} & =\operatorname{Red}(\mathrm{b}) \\
\mathcal{I} & \not \models \operatorname{Block}(\mathrm{b})
\end{aligned}
$$

$$
\begin{aligned}
\Delta & =\{1,2,3, \ldots\} \\
1^{\mathcal{I}} & =1 \\
2^{\mathcal{I}} & =2
\end{aligned}
$$

Even $^{\mathcal{I}}=\{2,4,6, \ldots\}$

$$
\operatorname{succ}^{\mathcal{I}}=\{(1 \mapsto 2),(2 \mapsto 3), \ldots\}
$$

$\mathcal{I} \neq \operatorname{Even}(3)$
$\mathcal{I} \equiv \operatorname{Even}(\operatorname{succ}(3))$

Semantics of FOL: Variable Assignments

V set of all variables. Function $\alpha: V \rightarrow \Delta$.
Notation: $\alpha[x / d]$ is identical to α except for the variable x.
Interpretation of terms under \mathcal{I}, α :

$$
\begin{aligned}
x^{\mathcal{I}, \alpha} & =\alpha(x) \\
a^{\mathcal{I}, \alpha} & =a^{\mathcal{I}} \\
\left(f\left(t_{1}, \ldots, t_{n}\right)\right)^{\mathcal{I}, \alpha} & =f^{\mathcal{I}}\left(t_{1}^{\mathcal{I}, \alpha}, \ldots, t_{n}^{\mathcal{I}, \alpha}\right)
\end{aligned}
$$

Satisfiability of atomic formulas:

$$
\mathcal{I}, \alpha \models P\left(t_{1}, \ldots, t_{n}\right) \quad \text { iff } \quad\left\langle t_{1}^{\mathcal{I}, \alpha}, \ldots, t_{n}^{\mathcal{I}, \alpha}\right\rangle \in P^{\mathcal{I}}
$$

Variable Assignment example

$$
\begin{aligned}
\alpha & =\left\{\left(\mathrm{x} \mapsto d_{1}\right),\left(\mathrm{y} \mapsto d_{2}\right)\right\} \\
\mathcal{I}, \alpha & \models \operatorname{Red}(\mathrm{x}) \\
\mathcal{I}, \alpha\left[\mathrm{y} / d_{1}\right] & \models \operatorname{Block}(\mathrm{y})
\end{aligned}
$$

Semantics of FOL: Satisfiability of formulas

A formula ϕ is satisfied by (is true in) an interpretation \mathcal{I} under a variable assignment α,
$\mathcal{I}, \alpha \models \phi:$

$$
\begin{array}{rll}
\mathcal{I}, \alpha \models P\left(t_{1}, \ldots, t_{n}\right) & \text { iff } & \left\langle t_{1} \mathcal{I}^{\prime}, \ldots, t_{n}{ }^{\mathcal{I}, \alpha}\right\rangle \in P^{\mathcal{I}} \\
\mathcal{I}, \alpha \models \neg \phi & \text { iff } & \mathcal{I}, \alpha \not \models \phi \\
\mathcal{I}, \alpha \models \phi \wedge \psi & \text { iff } & \mathcal{I}, \alpha \models \phi \text { and } \mathcal{I}, \alpha \models \psi \\
\mathcal{I}, \alpha \models \phi \vee \psi & \text { iff } & \mathcal{I}, \alpha \models \phi \text { or } \mathcal{I}, \alpha \models \psi \\
\mathcal{I}, \alpha \models \forall x . \phi & \text { iff } & \text { for all } d \in \Delta: \\
& & \mathcal{I}, \alpha[x / d] \models \phi
\end{array}
$$

$\mathcal{I}, \alpha \models \exists x . \phi \quad$ iff \quad there exists a $d \in \Delta:$

$$
\mathcal{I}, \alpha[x / d] \models \phi
$$

Examples

$$
\begin{aligned}
\Delta & =\left\{d_{1}, \ldots, d_{n},\right\} n>1 \\
\mathrm{a}^{\mathcal{I}} & =d_{1} \\
\mathrm{~b}^{\mathcal{I}} & =d_{1} \\
\mathrm{Block}^{\mathcal{I}} & =\left\{d_{1}\right\} \\
\operatorname{Red}^{\mathcal{I}} & =\Delta \\
\alpha & =\left\{\left(\mathrm{x} \mapsto d_{1}\right),\left(\mathrm{y} \mapsto d_{2}\right)\right\}
\end{aligned}
$$

1. $\mathcal{I}, \alpha \models \operatorname{Block}(c) \vee \neg \operatorname{Block}(c)$?
2. $\mathcal{I}, \alpha \models \operatorname{Block}(\mathrm{x}) \rightarrow \operatorname{Block}(\mathrm{x}) \vee \operatorname{Block}(\mathrm{y})$?
3. $\mathcal{I}, \alpha \models \forall$. $\mathrm{x} \operatorname{Block}(\mathrm{x}) \rightarrow \operatorname{Red}(\mathrm{x})$?
4. $\Theta=\left\{\begin{array}{l}\operatorname{Block}(\mathrm{a}), \operatorname{Block}(\mathrm{b}) \\ \forall \mathrm{x}(\operatorname{Block}(\mathrm{x}) \rightarrow \operatorname{Red}(\mathrm{x}))\end{array}\right\}$ $\mathcal{I}, \alpha \models \Theta$?

Example

Find a model of the formula:

$$
\exists y .[P(y) \wedge \neg Q(y)] \wedge \forall z \cdot[P(z) \vee Q(z)]
$$

Example

Find a model of the formula:

$$
\exists y .[P(y) \wedge \neg Q(y)] \wedge \forall z \cdot[P(z) \vee Q(z)]
$$

$\Delta=\{a, b\}$
$P^{\mathcal{I}}=\{a\}$
$Q^{\mathcal{I}}=\{b\}$

Satisfiability and Validity

An interpretation \mathcal{I} is a model of ϕ under α, if

$$
\mathcal{I}, \alpha \models \phi .
$$

Similarly as in propositional logic, a formula ϕ can be satisfiable, unsatisfiable, falsifiable or valid-the definition is in terms of the pair (\mathcal{I}, α).

A formula ϕ is

- satisfiable, if there is some (\mathcal{I}, α) that satisfies ϕ,
- unsatisfiable, if ϕ is not satisfiable,
- falsifiable, if there is some (\mathcal{I}, α) that does not satisfy ϕ,
- valid (i.e., a tautology), if every ($\mathcal{I}, \alpha)$ is a model of ϕ.

Equivalence

Analogously, two formulas are logically equivalent $(\phi \equiv \psi$), if for all \mathcal{I}, α we have:

$$
\mathcal{I}, \alpha \models \phi \quad \text { iff } \quad \mathcal{I}, \alpha \models \psi
$$

Note: $\mathrm{P}(\mathrm{x}) \not \equiv \mathrm{P}(\mathrm{y})$!

Free and Bound Variables

$$
\forall x . \quad(R(y, z) \wedge \exists y \cdot(\neg P(y, x) \vee R(y, z)))
$$

Variables in boxes are free; other variables are bound.
Free variables of a formula (inductively defined over the structure of expressions):

$$
\begin{aligned}
\operatorname{free}(x) & =\{x\} \\
\operatorname{free}(a) & =\emptyset \\
\operatorname{free}\left(f\left(t_{1}, \ldots, t_{n}\right)\right) & =\operatorname{free}\left(t_{1}\right) \cup \ldots \cup \operatorname{free}\left(t_{n}\right) \\
\operatorname{free}\left(P\left(t_{1}, \ldots, t_{n}\right)\right) & =\operatorname{free}\left(t_{1}\right) \cup \ldots \cup \operatorname{free}\left(t_{n}\right) \\
\operatorname{free}(\neg \phi) & =\operatorname{free}(\phi) \\
\operatorname{free}(\phi * \psi) & =\operatorname{free}(\phi) \cup \operatorname{free}(\psi), *=\vee, \wedge, \ldots \\
\operatorname{free}(\forall x . \phi) & =\operatorname{free}(\phi)-\{x\} \\
\operatorname{free}(\exists x . \phi) & =\operatorname{free}(\phi)-\{x\}
\end{aligned}
$$

Open and Closed Formulas

- A formula is closed or a sentence if no free variables occurs in it. When formulating theories, we only use closed formulas.
- Note: For closed formulas, the properties logical equivalence, satisfiability, entailment etc. do not depend on variable assignments. If the property holds for one variable assignment then it holds for all of them.
- For closed formulas, the symbol α on the left hand side of the " \models " sign is omitted.

$$
\mathcal{I} \models \phi
$$

Entailment

Entailment is defined similarly as in propositional logic.
The formula ϕ is logically implied by a formula ψ, if ϕ is true in all models of ψ (symbolically, $\psi \models \phi$):

$$
\psi \models \phi \quad \text { iff } \quad \mathcal{I} \models \phi \text { for all models } \mathcal{I} \text { of } \psi
$$

More Exercises

- $\models \forall x .(P(x) \vee \neg P(x))$
- $\exists x .[P(x) \wedge(P(x) \rightarrow Q(x))] \models \exists x . Q(x)$
- $\models \neg(\exists x$. $[\forall y .[P(x) \rightarrow Q(y)]])$
- $\exists y .[P(y) \wedge \neg Q(y)] \wedge \forall z .[P(z) \vee Q(z)]$ satisfiable

Equality

- Equality is a special predicate.
- $t_{1}=t_{2}$ is true under a given interpretation $\left(\mathcal{I}, \alpha \models t_{1}=t_{2}\right)$ if and only if t_{1} and t_{2} refer to the same object:

$$
t_{1}{ }_{1}^{\mathcal{I}, \alpha}=t_{2}{ }_{2}^{\mathcal{I}, \alpha}
$$

E.g., $\quad \forall x .(\times(\operatorname{sqrt}(x), \operatorname{sqrt}(x))=x)$ is satisfiable

$$
2=2 \text { is valid }
$$

E.g., definition of (full) Sibling in terms of Parent:
$\forall x, y$.
$\operatorname{Sibling}(x, y) \leftrightarrow$

$$
\begin{aligned}
& (\neg(x=y) \wedge \\
& \exists m, f . \neg(m=f) \wedge \operatorname{Parent}(m, x) \wedge \operatorname{Parent}(f, x) \wedge \\
& \quad \operatorname{Parent}(m, y) \wedge \operatorname{Parent}(f, y))
\end{aligned}
$$

Universal quantification

Everyone in England is smart: $\forall x$. In (x, england) $\rightarrow \operatorname{Smart}(x)$
$(\forall x . \phi)$ is equivalent to the conjunction of all possible instantiations in x of ϕ :

$$
\begin{aligned}
& \text { In }(\text { kingJohn, england }) \rightarrow \text { Smart }(\text { kingJohn }) \\
\wedge & \text { In }(\text { richard, england }) \rightarrow \operatorname{Smart}(\text { richard }) \\
\wedge & \text { In }(\text { england }, \text { england }) \rightarrow \operatorname{Smart}(\text { england }) \\
\wedge & \ldots
\end{aligned}
$$

Typically, \rightarrow is the main connective with \forall.
Common mistake: using \wedge as the main connective with \forall :

$$
\forall x . \operatorname{In}(x, \text { england }) \wedge \operatorname{Smart}(x)
$$

means "Everyone is in England and everyone is smart"

Existential quantification

Someone in France is smart: $\exists x$. In (x, france $) \wedge \operatorname{Smart}(x)$
$(\exists x . \phi)$ is equivalent to the disjunction of all possible instantiations in x of ϕ

$$
\begin{aligned}
& \text { In }(\text { kingJohn }, \text { france }) \wedge \operatorname{Smart}(\text { kingJohn }) \\
\vee & \text { In }(\text { richard }, \text { france }) \wedge \operatorname{Smart}(\text { richard }) \\
\vee & \text { In }(\text { france }, \text { france }) \wedge \operatorname{Smart}(\text { france }) \\
\vee & \ldots
\end{aligned}
$$

Typically, \wedge is the main connective with \exists.
Common mistake: using \rightarrow as the main connective with \exists :

$$
\exists x . \operatorname{In}(x, \text { france }) \rightarrow \operatorname{Smart}(x)
$$

is true if there is anyone who is not in France!

Properties of quantifiers

$(\forall x . \forall y . \phi)$ is the same as $(\forall y . \forall x . \phi)$ (Why?)
$(\exists x . \exists y . \phi)$ is the same as $(\exists y . \exists x . \phi)$ (Why?)
$(\exists x . \forall y . \phi)$ is not the same as $(\forall y . \exists x . \phi)$
$\exists x . \forall y . \operatorname{Loves}(x, y)$
"There is a person who loves everyone in the world"
$\forall y . \exists x . \operatorname{Loves}(x, y)$
"Everyone in the world is loved by at least one person" (not necessarily the same)
Quantifier duality: each can be expressed using the other:
$\forall x$.Likes (x,iceCream)

$$
\begin{aligned}
& \neg \exists x . \neg \operatorname{Likes}(x, i c e C r e a m) \\
& \neg \forall x . \neg \operatorname{Likes}(x, \text { broccoli })
\end{aligned}
$$

$\exists x$.Likes(x,broccoli)

Equivalences

$$
\begin{aligned}
&(\forall x \cdot \phi) \wedge \psi \equiv \forall x \cdot(\phi \wedge \psi) \text { if } x \text { not free in } \psi \\
&(\forall x \cdot \phi) \vee \psi \equiv \forall x \cdot(\phi \vee \psi) \text { if } x \text { not free in } \psi \\
&(\exists x \cdot \phi) \wedge \psi \equiv \exists x \cdot(\phi \wedge \psi) \text { if } x \text { not free in } \psi \\
&(\exists x \cdot \phi) \vee \psi \equiv \exists x \cdot(\phi \vee \psi) \text { if } x \text { not free in } \psi \\
& \forall x \cdot \phi \wedge \forall x \cdot \psi \equiv \forall x \cdot(\phi \wedge \psi) \\
& \exists x \cdot \phi \vee \exists x \cdot \psi \equiv \exists x \cdot(\phi \vee \psi) \\
& \neg \forall x . \phi \equiv \exists x \cdot \neg \phi \\
& \neg \exists x \cdot \phi \equiv \forall x \cdot \neg \phi \\
& \text { \& propositional equivalences }
\end{aligned}
$$

The Prenex Normal Form

Quantifier prefix + (quantifier free) matrix

$$
\forall x_{1} \forall x_{2} \exists x_{3} \ldots \forall x_{n} \phi
$$

1. Elimination of \rightarrow and \leftrightarrow
2. push \neg inwards
3. pull quantifiers outwards
E.g. $\quad \neg \forall \mathrm{x} .((\forall \mathrm{x} . \mathrm{p}(\mathrm{x})) \rightarrow \mathrm{q}(\mathrm{x}))$
$\neg \forall \mathrm{x}$. $(\neg(\forall \mathrm{x} . \mathrm{p}(\mathrm{x})) \vee \mathrm{q}(\mathrm{x}))$
$\exists \mathrm{x} .((\forall \mathrm{x} . \mathrm{p}(\mathrm{x})) \wedge \neg \mathrm{q}(\mathrm{x}))$
and now?
Notation: renaming of variables. Let $\phi[x / t]$ be the formula ϕ where all occurrences of x have been replaced by the term t.

The Prenex Normal Form: theorems

Lemma. Let y be a variable that does not occur in ϕ.
Then we have $\forall x \phi \equiv(\forall x \phi)[x / y]$ and $\exists x \phi \equiv(\exists x \phi)[x / y]$.
Theorem. There is an algorithm that computes for every formula its prenex normal form.

FOL at work: reasoning by cases

```
\Gamma= FRIEND(john,susan) ^
    FRIEND(john, andrea) ^
    LOVES(susan, andrea) ^
    LOVES (andrea,bill) ^
    Female(susan) ^
    \negFemale(bill)
```



```
        LOVES
    bill: \negFemale
```


Does John have a female friend loving a male (i.e. not female) person?

$$
\begin{aligned}
\Gamma \models \exists X, Y & . \operatorname{FRIEND}(\text { john }, X) \wedge \operatorname{Female}(X) \wedge \\
& \operatorname{LOVES}(X, Y) \wedge \neg \operatorname{Female}(Y)
\end{aligned}
$$

Does John have a female friend loving a male (i.e. not female) person?

YES!

$\Gamma \models \exists X, Y$. $\operatorname{FRIEND}($ john,$X) \wedge \operatorname{Female}(X) \wedge$ $\operatorname{LOVES}(X, Y) \wedge \neg$ Female (Y)


```
LOVES
bill: \negFemale
```

FRIEND (john, susan), Female(susan), LOVES (susan,andrea), ᄀ Female(andrea)

FRIEND (john,andrea), Female(andrea), LOVES (andrea,bill), ᄀ Female(bill)

Theories and Models

Does John have a female friend loving a male person?
$\Gamma_{1} \models \exists X, Y$. $\operatorname{FRIEND}($ john,$X) \wedge \operatorname{Female}(X) \wedge$ $\operatorname{LOVES}(X, Y) \wedge \operatorname{Male}(Y)$

```
\Gamma=FRIEND(john,susan) ^
    FRIEND(john,andrea) ^
    LOVES(susan,andrea) ^
    LOVES(andrea,bill) ^
    Female(susan) ^
    \negFemale(bill)
\Gamma
    FRIEND(john, andrea) ^
    LOVES(susan, andrea) ^
    LOVES(andrea,bill)^
    Female(susan)^
    Male(bill)^
    \forallX.Male}(X)\leftrightarrow\neg\mathrm{ Female (X)
```

```
\Gamma=FRIEND(john,susan) ^ \Delta = {john, susan, andrea,bill}
    FRIEND (john, andrea) ^ Female }\mp@subsup{}{}{\mathcal{I}}={\mathrm{ susan }
    LOVES (susan, andrea) ^
    LOVES(andrea,bill) ^
    Female(susan) ^
    \negFemale(bill)
\Gamma
    FRIEND(john, andrea) ^
    LOVES(susan, andrea) ^
    LOVES(andrea,bill)^
    Female(susan) ^
    Male(bill)^
    \forallX.Male}(X)\leftrightarrow\neg\mathrm{ Female (X)
```

$$
\begin{aligned}
& \Gamma=\operatorname{FRIEND}(j o h n, \text { susan }) ~ \wedge \quad \Delta=\{\text { john, susan, andrea, bill }\} \\
& \text { FRIEND (john, andrea) } \wedge \quad \operatorname{Female}^{\mathcal{I}}=\{\text { susan }\} \\
& \text { LOVES (susan, andrea) ^ } \\
& \text { LOVES (andrea, bill) ^ } \\
& \text { Female(susan) } \wedge \\
& \neg \text { Female(bill) } \\
& \Gamma_{1}=\operatorname{FRIEND}(\text { john }, \text { susan }) \wedge \\
& \text { FRIEND(john, andrea) } \wedge \\
& \text { LOVES(susan, andrea) } \wedge \\
& \text { LOVES(andrea, bill) } \wedge \\
& \text { Female(susan) } \wedge \\
& \text { Male(bill) } \wedge \\
& \forall X \text {. Male }(X) \leftrightarrow \neg \text { Female }(X) \\
& \text { Female }{ }^{\mathcal{I}}=\{\text { susan }\} \\
& \Delta^{\mathcal{I}_{1}}=\{\text { john, susan, andrea, bill }\} \\
& \text { Female }{ }^{\mathcal{I}_{1}}=\{\text { susan, andrea }\} \\
& \text { Male }{ }^{\mathcal{I}_{1}}=\{\text { bill, } \text { john }\} \\
& \Delta^{\mathcal{I}_{2}}=\{\text { john, susan, andrea, bill }\} \\
& \text { Female }{ }^{\mathcal{I}_{2}}=\{\text { susan }\} \\
& \text { Male }{ }^{\mathcal{I}_{2}}=\{\text { bill, andrea, john }\} \\
& \Delta^{\mathcal{I}_{1}}=\{\text { john, susan, andrea, bill }\} \\
& \text { Female }{ }^{\mathcal{I}_{1}}=\{\text { susan, andrea, john }\} \\
& \text { Male }{ }^{\mathcal{I}_{1}}=\{\text { bill }\} \\
& \Delta^{\mathcal{I}_{2}}=\{\text { john, susan, andrea, bill }\} \\
& \text { Female }{ }^{\mathcal{I}_{2}}=\{\text { susan, } \text { john }\} \\
& \text { Male }{ }^{\mathcal{I}_{2}}=\{\text { bill, andrea }\}
\end{aligned}
$$

$\Gamma \not \models$ Female(andrea)
$\Gamma \not \models \neg$ Female(andrea)
$\Gamma_{1} \not \models$ Female(andrea)
$\Gamma_{1} \not \models \neg$ Female(andrea)
$\Gamma_{1} \neq \operatorname{Male}($ andrea $)$
$\Gamma_{1} \not \models \neg$ Male(andrea)

Exercise

Is it true that the top block is on a white block touching a black block?

