
Description Logics

Knowledge Bases in Description Logics

Enrico Franconi

franconi@cs.man.ac.uk

http://www.cs.man.ac.uk/˜franconi

Department of Computer Science, University of Manchester

(1/23)

Understanding Knowledge Bases

Σ = 〈TBox, Abox〉

• Terminological Axioms: C v D

• Assertional Axioms: C(a), R(a, b)

• An interpretation I = (∆I , ·I) satisfies the statement C v D if

CI ⊆ DI .

• I satisfies C(a) if aI ∈ CI .

• I satisfies R(a, b) if (aI , bI) ∈ RI .

An interpretation I = (∆I , ·I) is said to be a model of Σ if every axiom of Σ is

satisfied by I . Σ is said to be satisfiable if it admits a model.

(2/23)

TBox statements

(1) A v C Primitive concept definition

(2) A
.
= C Concept definition

(3) C v D Concept inclusion

(4) C
.
= D Concept equation

(3/23)

Acyclic simple TBox

Simple TBox:
(1) A v C Primitive concept definition

(2) A
.
= C Concept definition

Acyclic simple TBox: well-founded definitions.

A concept name A directly uses a concept name B in a TBox Σ iff the definition

of A mentions B. A concept name A uses a concept name Bn iff there is a chain

of concept names 〈A, B1, . . . , Bn〉 such that Bi directly uses Bi+1. A TBox is

acyclic iff no concept name uses itself.

(4/23)

Acyclic simple TBox

Subsumtpion in acyclic simple TBoxes (Σ |= C v D) can be reduced in sub-

sumtpion in an empty TBox (|= Ĉ v D̂).

In order to get Ĉ (and D̂):

1) Transform the TBox Σ into a new TBox Σ′, by replacing every primitive concept

definition in Σ of the form A v C with a concept definition A
.
= C u A∗ – where

A∗ is a freshly new generated concept name (called primitive component of A).

Now Σ′ contains only (acyclic) concept definitions.

2) Iteratively substitute every occurrence of any defined concept name in C (and

D) by the corresponding definition in Σ′. Since Σ′ is still acyclic, the process

terminates in a finite number of iterations. This process is called unfolding or

expansion.

(5/23)

Theorems

• For each interpretation of Σ there exists an interpretation of Σ′ (and

viceversa) such that CI = CI
′

for each concept name C in Σ.

A*

C A

A v C ; A
.
= C u A∗

A∗ denotes the unexpressed part of meaning implicitly contained in the

primitive concept definition.

• Σ |= C v D iff Σ′ |= C v D

• Σ′ |= C v D iff |= Ĉ v D̂

(6/23)

Necessary and Sufficient conditions

• A primitive concept definition A v C states a necessary but not sufficient

condition for membership in the class A. Having the property C is necessary

for an object in order to be in the class A; however, this condition alone is not

sufficient in order to conclude that the object is in the class A.

• A concept definition A
.
= C states necessary and sufficient condition for

membership in the class A. Having the property C is necessary for an object

in order to be in the class A; moreover, this condition alone is sufficient in

order to conclude that the object is in the class A.

(7/23)

Necessary and Sufficient conditions

When transforming primitive concept definitions into concept definitions we get

necessary and sufficient conditions for membership in the primitive class A.

However, the condition of being in the primitive component A∗ can never be

satisfied, since the concept name A∗ can never be referred to by any other

concept.

A concept is subsumed by a primitively defined concept if and only if it refers to its

name in its (unfolded) definition.

(8/23)

Inheritance

Unfolding realizes what is usually called inheritance in Object-Oriented

frameworks.

Person
.
= ∃NAME.String u ∃ADDRESS.String

Parent
.
= Person u ∃CHILD.Person

P̂arent
.
= ∃NAME.String u ∃ADDRESS.String u

∃CHILD.(∃NAME.String u ∃ADDRESS.String)

Female
.
= ¬Male

Man
.
= Person u ∀SEX.Male

Woman
.
= Person u ∀SEX.Female

Transexual
.
= Man u Woman

̂Transexual
.
= ∃NAME.String u ∃ADDRESS.String u ∀SEX.⊥

(9/23)

Inheritance in O-O

Problems in O-O frameworks: overriding strategies for multiple inheritance.

Sub
se

t Subset

Member Mem
be

r
Opus

Animate

Cartoon
Character Penguin

VocalizationVocalization

SquawksSpeech

(10/23)

Complexity of Unfolding

C1

.
= ∀R1.C0 u ∀R2.C0 u . . . u ∀Rm.C0

C2

.
= ∀R1.C1 u ∀R2.C1 u . . . u ∀Rm.C1

· · ·

Cn
.
= ∀R1.Cn−1 u ∀R2.Cn−1 u . . . u ∀Rm.Cn−1

• The size of the TBox is O(n × m).

• The size of the unfolded concept Ĉn is O(mn).

• The complexity of the subsumtpion problem in FL− with empty TBox

(|= C v D) is P.

• The complexity of the subsumtpion problem in FL− with an acyclic simple

TBox (Σ |= C v D) is co-NP-complete.

(11/23)

Efficiency of Subsumption in practice

The exponential worst case is unlikely to occurr in real knowledge bases.

• Let n be the depth of a TBox, i.e., the max number of iterations while

unfolding every concept definition.

• Let m be the size of the largest definition.

• Let s be the size of the TBox, i.e., m times the number of concept definitions.

The size of an unfolded concept is O(mn).

If n ≤ logms the size of an unfolded concept becomes polynomial O(s) with

respect to the size of the TBox.

This is a reasonable assumption, since the depth of concept definitions is usually

much smaller than the size of the knowledge base. This is why systems behave

well in practice.

(12/23)

Definitions

• Definitions are intended to provide an exact account for the concept name

being defined.

• Given an initial interpretation of the primitive concept names there exists a

unique way determine the interpretation of defined concept names; indeed,

that’s why they are called definitions.

• This justifies the correctness of unfolding: we can always replace a concept

name with its definition, since it doesn’t add anything to the theory.

• However, if the (simple) TBox is cyclic, this is no more true.

(13/23)

Example of recursive definition

Bird
.
= Animal u ∀SKIN.Feather

∆I = {tweety, goofy, fea1, fur1}

AnimalI = {tweety, goofy}

FeatherI = {fea1}

SKINI = {〈tweety, fea1〉, 〈goofy, fur1〉}

=⇒ BirdI = {tweety}

Quiet−Person
.
= Person u ∀FRIEND.Quiet−Person

∆I = {john, sue, andrea, bill}

PersonI = {john, sue, andrea, bill}

FRIENDI = {〈john, sue〉, 〈andrea, bill〉, 〈bill, bill〉}

=⇒ Quiet−PersonI = {john, sue}

=⇒ Quiet−PersonI = {john, sue, andrea, bill}
(14/23)

Descriptive semantics

(It is the one we have introduced before.)

• An interpretation I = (∆I , ·I) satisfies the concept definition A
.
= C iff

AI = CI .

• The definition is a constraint stating a restriction on the valid models of the

knowledge base, and in particular on the possible interpretations of A, where

A is no better specified.

• It allows both models of the previous cyclic definition.

(15/23)

Fixpoint Semantics

We associate to a cyclic concept definition an operator F : 2∆I

7→ 2∆I

, such

that the interpretation of A correspond to the fixpoints of the operator F .

Thus, we associate the equation

A = F (A)

to a cyclic concept definition of the type

A
.
= C

where C mentions A.

(16/23)

Least Fixpoint Semantics

The LFS interprets a recursive definition

A = F (A)

by assigning to A the smallest possible extension in each interpretation I – if it

exists – among those satisfying

AI = F (A)I

i.e., the least fixpoint of the corresponding operator.

If the operator is monotonic, then the equation above singles out a unique

interpretation (subset of ∆I), hence it defines the concept A.

(17/23)

Example

Quiet−Person
.
= Person u ∀FRIEND.Quiet−Person

F = λA. {x ∈ ∆I |

PersonI(x) ∧ ∀y. FRIENDI(x, y) → A(y)}

A = F (A)

∆I = {john, sue, andrea, bill}

PersonI = {john, sue, andrea, bill}

FRIENDI = {〈john, sue〉, 〈andrea, bill〉, 〈bill, bill〉}

=⇒ Quiet−PersonI = {john, sue}

(18/23)

Problems

Human
.
= Mammal u ∃PARENT u ∀PARENT.Human

Horse
.
= Mammal u ∃PARENT u ∀PARENT.Horse

Under the fixpoint semantics

Human ≡ Horse

i.e., in any interpretation I satisfying the above definitions

HumanI = HorseI

(19/23)

Inductive definitions

• An Empty-List is a List.

• A Node, that has exactly one SUCCESSOR that is a List, is a List.

• Nothing else is a LIST.

Node
.
= ¬Empty−List

List
.
= Empty−List t (Node u 61SUCCESSOR u ∃SUCCESSOR.List)

∆I = {a, b, nil}

NodeI = {a, b}

Empty−ListI = {nil}

SUCCESSORI = {〈a, nil〉, 〈b, b〉}

With descriptive semantics: ListI = {a, b, nil}

With least fixpoint semantics: ListI = {a, nil}

(20/23)

Inductive definitions

• Compare with Logic Programming, where inductive definitions come for free.

• Descriptive semantics is expressible in FOL.

• Least fixpoint semantics (and inductive definitions) go beyond First Order.

(21/23)

Free TBox

(3) C v D Concept inclusion

(4) C
.
= D Concept equation

(There is no syntactic constraint on the left hand side of the axiom).

Concept inclusions make sense only with descriptive semantics – we will ignore

here the extensions of Descritpion Logics where it is possible to specify explicitly

the semantics to be given to a knowledge base.

Theorem:

Descritpion logics with simple TBoxes (with general concept definitions A
.
= D)

and free TBoxes (with concept inclusions C v D) have the same expressive

power.

(22/23)

Simple TBoxes and Free TBoxes

Satisfiability in a knowledge base Σ with a free TBox can be reduced into

satisfiability in a knowledge base Σ′ with a simple TBox.

Ci
.
= Di ; Ai v Di, Ci v Ai

Cj v Dj ; A
.
= (¬C1 t D1) u · · · u (¬Cn t Dn) u

A∗ u ∀R1.A u · · · u ∀Rm.A

where A is a new concept name not appearing in Σ and Ri are all the role

names appearing in Σ.

The process of eliminating general axioms is called internalization. The above

simple TBox emulates the general axiom

(¬C1 t D1) u · · · u (¬Cn t Dn)
.
= >

(23/23)

	@semtitle
	Understanding Knowledge Bases
	TBox statements
	Acyclic simple TBox
	Acyclic simple TBox
	Theorems
	Necessary and Sufficient conditions
	Necessary and Sufficient conditions
	Inheritance
	Inheritance in O-O
	Complexity of Unfolding
	Efficiency of Subsumption in practice
	Definitions
	Example of recursive definition
	Descriptive semantics
	Fixpoint Semantics
	Least Fixpoint Semantics
	Example
	Problems
	Inductive definitions
	Inductive definitions
	Free TBox
	Simple TBoxes and Free TBoxes

