Description Logics

Description Logics and Logics

Enrico Franconi

franconi@cs.man.ac.uk
http://www.cs.man.ac.uk/~franconi

Department of Computer Science, University of Manchester

Tense Logic: (point ontology)

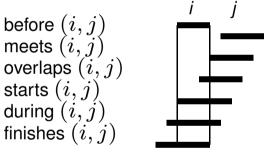
• Tense logic is a propositional modal logic, interpreted over temporal structure $\mathcal{T} = (\mathcal{P}, <)$, where \mathcal{P} is a set of time points and < is a strict partial order on \mathcal{P} .

```
\begin{array}{l} \texttt{Mortal} \sqsubseteq \texttt{LivingBeing} \sqcap \forall \texttt{LIVES-IN.Place} \sqcap \\ (\texttt{LivingBeing} \, \mathcal{U} \, (\Box^+ \neg \texttt{LivingBeing})) \end{array}
```

- Satisfiability in $\mathcal{ALC}_{\mathcal{US}}$ the combination of tense logic with K_m over a linear, unbounded, and discrete temporal structure has the same complexity as its base (PSPACE-complete).
- Satisfiability in $\mathcal{ALCQI}_{\mathcal{US}}$ with ABox the combination of tense logic with \mathcal{ALCQI} with ABox over a linear, unbounded, and discrete temporal structure has the same complexity as its base (EXPTIME-complete).

\mathcal{HS} : Interval Temporal Propositional Modal Logic

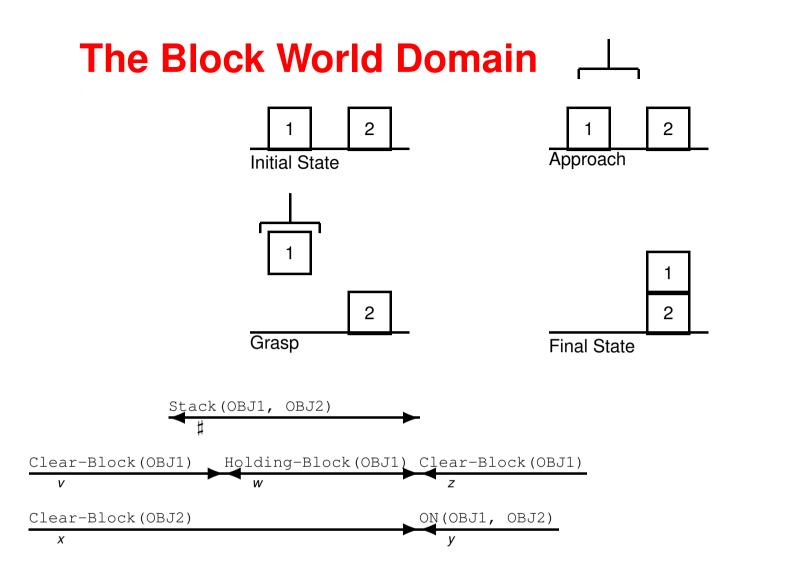
- \mathcal{HS} is a propositional modal logic interpreted over an interval set $\mathcal{T}_{<}^{*}$, defined as the the set of all closed intervals $[u, v] \doteq \{x \in \mathcal{P} \mid u \leq x \leq v, u \neq v\}$ in some temporal structure \mathcal{T} .
- \mathcal{HS} extends propositional logic with modal formulæ $\langle R \rangle \phi$ and $[R]\phi$ where R is a basic Allen's algebra temporal relation:



- Mortal \doteq LivingBeing $\land \langle after \rangle$. \neg LivingBeing
- Satisfiability \mathcal{HS} is undecidable for the most interesting classes of temporal structures.
- Therefore, $\mathcal{HS} \cup \mathcal{ALC}$ is undecidable.

Decidable Interval Temporal Description Logics

- \mathcal{HS}^* :
 - No universal quantification, or restricted to homogeneous properties: $\Box(=, \text{starts}, \text{during}, \text{finishes})$. ψ
 - Allows for temporal variables: $\diamond \vec{x} \operatorname{TN}(\vec{x}) \cdot \psi$ $\psi@x$
- Global roles denoting temporal independent properties.
- Logical implication in the combined language $\mathcal{HS}^* \cup \mathcal{ALC}$ is decidable (PSPACE-hard); satisfiability is PSPACE-complete.
- Logical implication in $\mathcal{HS}^* \cup \mathcal{F}$ is NP-complete.
- Useful for event representation and plan recognition.



Stack $\doteq \diamond (x \ y \ z \ v \ w) \ (\# \text{finishes } x)(\# \text{ meets } y)(\# \text{ meets } z)(v \text{ overlaps } \#)(w \text{ finishes } \#)(v \text{ meets } w).$ $((\star \text{OBJECT2} : \text{Clear-Block})@x \sqcap$ $(\star \text{OBJECT1} \circ \text{ON} = \star \text{OBJECT2})@y \sqcap$ $(\star \text{OBJECT1} : \text{Clear-Block})@v \sqcap$ $(\star \text{OBJECT1} : \text{Holding-Block})@w \sqcap$ $(\star \text{OBJECT1} : \text{Clear-Block})@z)$

$\ddot{\mathcal{L}}^n$ FOL fragments

- $\ddot{\mathcal{L}}^n$ is the set of function-free FOL formulas with equality and constants, with only unary and binary predicates, and which can be expressed using at most n variable symbols.
- Satisfiability of $\ddot{\mathcal{L}}^3$ formulas is undecidable.
- Satisfiability of $\ddot{\mathcal{L}}^2$ formulas is NEXPTIME-complete.

The $\mathcal{D\!L}$ description logic

- \mathcal{ALCI} + propositional calculus on roles,
 - + the concept $(R \subseteq S)$.
 - The ${\cal D\!L}$ description logic and $\ddot{\cal L}^3$ are equally expressive.
 - The \mathcal{DL}^- description logic (i.e., \mathcal{DL} without the composition operator) and $\ddot{\mathcal{L}}^2$ are equally expressive.
 - Open problem: relation between \mathcal{DL} including cardinalities and $\ddot{\mathcal{C}}^n$ adding counting quantifiers to $\ddot{\mathcal{L}}^n$.

Guarded Fragments of FOL

The *guarded fragment* GF of FOL is defined as:

- 1. Every relational atomic formula is in GF
- 2. GF is propositionally closed
- 3. If \mathbf{x} , \mathbf{y} are tuples of variables, $\alpha(\mathbf{x}, \mathbf{y})$ is atomic, and $\psi(\mathbf{x}, \mathbf{y})$ is a formula in GF, such that free $(\psi) \subseteq$ free $(\alpha) = \{\mathbf{x}, \mathbf{y}\}$, then the following formulae are in GF:

$$\exists \mathbf{y.} \ \alpha(\mathbf{x}, \mathbf{y}) \land \psi(\mathbf{x}, \mathbf{y}) \\ \forall \mathbf{y.} \ \alpha(\mathbf{x}, \mathbf{y}) \rightarrow \psi(\mathbf{x}, \mathbf{y}) \end{cases}$$

The guarded fragment contains the modal fragment of FOL (and Description Logics); a weaker definition (LGF) is needed to include temporal logics.

Properties of GF

- GF has the finite model property
- GF and LGF have the tree model property
- Many important model theoretic properties which hold for FOL and the modal fragment, do hold also for GF and LGF
- Satisfiability is decidable for GF and LGF (deterministic double exponential time complete)
- Bounded-variable or bounded-arity fragments of GF and LGF (which include Description Logics) are in EXPTIME.
- GF with fix-points is decidable.