
14

Digital Libraries and Web-Based Information Systems
Ian Horrocks

Deborah L. McGuinness

Christopher A. Welty

Abstract

It has long been realised that the web could benefit from having its content un-
derstandable and available in a machine processable form, and it is widely agreed
that ontologies will play a key role in providing much enabling infrastructure to
support this goal. In this chapter we review briefly a selected history of description
logics in web-based information systems, and the more recent developments related
to OIL, DAML+OIL and the semantic web. OIL and DAML+OIL are ontology
languages specifically designed for use on the web; they exploit existing web stan-
dards (XML, RDF and RDFS), adding the formal rigor of a description logic and
the ontological primitives of object oriented and frame based systems.

14.1 Background and history

The research world as well as the general public are unified in their agreement that
the web would benefit from some structure and explicit semantics for at least some
of its content. Numerous companies exist today whose entire business model is
based on providing some semblance of structure and conceptual search (i.e., yellow
pages and search).

To paraphrase Milne [1928], “Providing structure is one of the things description
logics do best!”. In this chapter we review briefly the history of description logics in
web-based information systems, and the more recent developments related to OIL
(the Ontology Inference Layer), DAML (the DARPA Agent Markup Language),
DAML+OIL and the “semantic web.”

The web has been a compelling place for research activity in the last few years,
and as we can not cover all the many efforts we will choose a few exemplar efforts
that illustrate some of the key issues related to description logics on the web.

436

Digital Libraries and Web-Based Information Systems 437

14.1.1 Untangle

The relationship between hypertext and semantic networks has long been realized,
but one of the earliest description logic systems to realize this relationship was the
Untangle system [Welty and Jenkins, 2000], a description-logic system for repre-
senting bibliographic (card-catalog) information. The Untangle Project began as
a bit of exploratory research in using description logics for digital libraries [Welty,
1994], but out of sheer temporal coincidence with the rise of the web, a web interface
was added and the first web-based description logic system was born.

The original Untangle web interface was developed in 1994 [Welty, 1996a], and
combined Lisp-Classic and the CommonLisp Hypermedia Server (CL-HTTP)
[Mallery, 1994] to implement a hypertext view of the ABox and TBox semantic
networks, and used nested bullet lists to view the concept taxonomy, with in-page
cross references for concepts having multiple parents. The interface was interest-
ing in some respects as a tool to visualize description logic and semantic network
information, though this aspect was never fully developed.

The research in the Untangle project was to apply description logics to prob-
lems in digital libraries, specifically the classification and retrieval of card catalog
information. In the early days of description logic applications, researchers scoured
the world for taxonomies. One place with well-developed taxonomies are library
subject classifications schemes, such as the Dewey Decimal System. The Untan-
gle project sought to utilize description logics to formally represent the established
and well-documented processes by which books are classified by subject, with the
goal of providing a tool to improve accuracy and increase the throughput of classi-
fication. The promise of digital libraries clearly seemed to imply that the entirely
human-based system of subject classification would become backlogged and a hin-
drance to publication.

While the main contribution of the work was actually in the area of digital library
ontologies, it had several useful implications for description logics. For conceptual
modeling, the system made clear the very practical uses for primitive and defined
concepts as basic ontological notions. Primitive concepts can be used in a model
to represent classes of individuals that users are expected to be able to classify
naturally. Defined concepts can be used in a model to represent subclasses of the
primitive ones that the system will be able to classify if needed. For example,
in libraries we expect a librarian to be responsible for recognizing the difference
between a book and a journal. Such a distinction is trivial. On the other hand,
they are not responsible for classifying a biography (though they can, of course): a
biography is simply a book whose subject is a person.

As the World Wide Web (WWW) became the primary means of dissemination
of computer science research, the goals of the Untangle project shifted in 1995

438 I. Horrocks, D. L. McGuinness, C. Welty

to cataloging and classifying pages on the web [Welty, 1996b], which was viewed as
a massive and unstructured digital library [Welty, 1998]. A similar project began
at roughly that time at AT&T, whose goal was to utilize Classic to represent a
taxonomy of web bookmarks. While never published, this early work by Tom Kirk
was part of the information manifold project [Levy et al., 1995]. Kirk’s visualisation
tools were also used internally to provide additional visualisation support to the
Classic system.

This new work exposed some of the limitations of using description logics for mod-
eling [Welty, 1998]. One must trade-off utilizing automated support for subsumption
with the need to reify the concepts themselves. For example, the work started with
the motivation that library classification schemes were well-developed taxonomies
that would be appropriate for use in description logics. To utilize the power of
subsumption reasoning, the elements of the subject taxonomy must obviously be
concepts. Some subjects, however, are also useful to consider as individuals. For
example, Ernest Hemingway is a person, an author of several books, and therefore
best represented as an individual. Hemingway is also, however, the subject of his
(many) biographies, and therefore he must be represented as a concept in the sub-
ject taxonomy. This is a simple example of precisely the kind of representation that
is difficult for a description logic, without inventing some special purpose “hack”.
Similar notions have also been reported in the knowledge engineering community
[Wielinga et al., 2001].

14.1.2 FindUR

Another early project using description logics for the web was the FindUR system
at AT&T. FindUR [McGuinness, 1998; McGuinness et al., 1997] was an excellent
example of picking “low hanging fruit” for description logic applications. The basic
notion of FindUR was query expansion,1 that is, taking synonyms or hyponyms
(more specific terms) and including them in the input terms, thereby expanding the
query.

Information retrieval, especially as it is available on the web, rates itself by two
independent criteria, precision and recall. Precision refers to the ratio of desired to
undesired pages returned by a search, and recall refers to the ratio of desired pages
missed to the total number of desired pages. Alternate terms for these notions are
false-positives and false-negatives.

One of the main causes of false negatives in statistically-based keyword searches
1 Sometimes other correlated terms are also used in query expansion. In a later piece of work [Rousset,

1999b], similar because it considered a description logic-based approach for query expansion, more of the
formal issues are addressed in evaluating the soundness and completeness of a particular approach. There
have also been others who have considered description-logic approaches (or dl-inspired approaches) to
retrieval, for example [Meghini et al., 1997].

Digital Libraries and Web-Based Information Systems 439

is the use of synonymous or hyponymous search terms. For example, on the (then)
AT&T Bell Labs research site, short project descriptions existed about description
logics. These never referred to the phrase “artificial intelligence”. Thus, a search
for the general topic “artificial intelligence” would miss the description logic project
pages even though description logics is a sub-area of artificial intelligence. If the
page referred to “AI” instead of “artificial intelligence” precisely, a keyword search
would also miss this clear reference to the same thing. This is a well recognized
failure of shallow surface search techniques that significantly impacts recall.

The FindUR system represented a simple background knowledge base containing
mostly thesaurus information built in a description logic (Classic) using the most
basic notions of Wordnet (synsets and hyper/hyponyms) [Miller, 1995]. Concepts
corresponding to sets of synonyms (synsets) were arranged in a taxonomy. These
synsets also contained an informal list of related terms. Site specific search engines
(built on Verity—a commercial search engine) were hooked up to the knowledge
base. Any search term would first be checked in the knowledge base, and if contained
in any synset, a new query would be constructed consisting of the disjunction of all
the synonymous terms, as well as all the more specific terms (hyponyms).

The background knowledge was represented in Classic, however the description
logic was not itself part of the on-line system. Instead, the information used by
the search engine was statically generated on a regular basis and used to populate
the search engine. The true power of using a description logic as the underlying
substrate for the knowledge base was realized mainly in the maintenance task. The
DL allowed the maintainer of the knowledge base to maintain some amount of
consistency, such as discovering cycles in the taxonomy and disjoint synsets. These
simple constraints proved effective tools for maintaining the knowledge since the
knowledge itself was very simple.

The FindUR system was deployed on the web to support the AT&T research web
site and a number of other application areas. Although the initial deployments were
as very simple query expansion, some later deployments included more structure.
For example, the FindUR applications on newspaper sites and calendar applications
(such as the Summit calendar1) included searches that could specify a date range,
date ordered returns, and a few other search areas including region or topic area.
These searches included use of metatagging information on dates, location, topics,
sometimes author, etc. This functioned as a structured search similar in nature
to the later developed SHOE Search [Heflin and Hendler, 2001] for the semantic
web, and was also similar to what Forrester reported as being required for search
that would support eCommerce [Hagen et al., 1999]. The FindUR applications for
medical information retrieval [McGuinness, 1999] also included more sophisticated

1 http://www.quintillion.com/summit/calendar/

440 I. Horrocks, D. L. McGuinness, C. Welty

mechanisms that allowed users to search in order of quality of study method used
(such as randomized control trial study). Applications of FindUR ranged in the
end to include very simple query expansion, such as those deployed on WorldNet
and Quintillion (see Directory Westfield2), as well as more complicated markup
search such as those on the AT&T competitive intelligence site and the P-CHIP
primary care literature search.

14.1.3 From SGML to the Semantic Web

Independent of description logics, and dating back to the mid 1980s, researchers in
other areas of digital libraries were using SGML1 (Standard Generalized Markup
Language) as a tool to mark up a variety of elements of electronic texts, such
as identifying the characters in novels, cities, etc., in order to differentiate them
in search. For example, a reference to Washington the person in some text may
appear as <person>Washington</person> whereas a reference to the U.S. State
may be <state>Washington</state>. See, for example, the 1986 Text Encoding
Initiative [Mylonas and Renear, 1999]. Clearly, a search tool capable of recognizing
these tags would be more precise when searching for “Washington the person”. This
work may be viewed as establishing some of the ground work for the vision of the
semantic-web that Tim Berners-Lee and colleagues have more recently popularized.

As the SGML communities proceeded in their efforts to create large repositories
of “semantically” marked-up electronic documents, research in using these growing
resources sprang up the database and description logics communities, with some
early results making it clear that description logics were powerful tools for handling
semi-structured data [Calvanese et al., 1998c; 1999d].

In the mid 1990s, work in SGML gained some attention mainly because HTML2

(HyperText Markup Language) was an SGML technology, and it became clear that
the same sort of “semantic” markup (as opposed to “rendering” markup) could be
applied to web pages, with the same potential gains. The main syntax specification
properties of SGML were combined with the text rendering properties of HTML to
generate XML3 (Extensible Markup Language), and with it came the promise of a
new sort of web, a web in which “meta data” would become the primary consumer
of bandwidth. These connections made it reasonable to consider the existing work
on semi-structured data in description logics a web application.

In an attempt to prevent the web community from repeating the same mistakes
made in knowledge representation in the 1970s, in particular using informal “pic-
ture” systems with no understood semantics and without decidable reasoning, the
2 http://www.ataclick.com/westfield/
1 http://www.w3.org/MarkUp/SGML/
2 http://www.w3.org/MarkUp/
3 http://www.w3.org/XML/

Digital Libraries and Web-Based Information Systems 441

description logics community became very active in offering languages for the new
semantic web. The community was already well-positioned to influence the future
of semantic web standards, due in part to (a) the strong history that description
logics bring, with well researched and articulated languages providing clear seman-
tics (as well as complexity analyses), (b) the existing work on the web described
here, including web applications like Untangle and FindUR, and (c) description
logic languages designed for web use such as OIL.

14.2 Enabling the Semantic Web: DAML

The web, while wildly successful in growth, may be viewed as being limited by its
reliance on languages like HTML that are focused on presentation of information
(i.e., text formatting). Languages such as XML do add some support for captur-
ing the meaning of terms (instead of simply how to render a term in a browser),
however it is widely perceived that more is needed. The DARPA Agent Markup
Language (DAML) program1 was one of the programs initiated in order to pro-
vide the foundation for the next generation of the web which, it is anticipated, will
increasingly utilize agents and programs rather than relying so heavily on human
interpretation of web information [Hendler and McGuinness, 2000]. In order for
this evolution to occur, agents and programs must understand how to interact with
information and services available on the web. They must understand what the
information means that they are manipulating and also must understand what ser-
vices can be provided from applications. Thus, meaning of information and services
must be captured. Languages and environments existing today are making a start
at providing the required infrastructure. The DAML program exists in order to
provide funding for research on languages, tools, and techniques for making the web
machine understandable.

The groundwork for the DAML program was being laid in 1999 with the approval
for the broad area announcement in November and a web semantics language work-
shop in December 1999. A strawman language proposal effort was begun out of
that work and the major initial emphasis began with a web-centric view. A web-
oriented strawman proposal was worked on but not widely announced. One of the
early widely-distributed contributions of the DAML program was DAML-ONT 2—
a proposal for an ontology language for the web [Hendler and McGuinness, 2000;
McGuinness et al., 2002]. This language began with the requirement to build on
the best practice in web languages of the time and took the strawman proposal
as the motivating starting point. That meant beginning with XML, RDF 3 (Re-

1 http://www.daml.org/
2 http://www.daml.org/2000/10/daml-ont.html
3 http://www.w3.org/RDF/

442 I. Horrocks, D. L. McGuinness, C. Welty

source Description Framework), and RDFS 4 (RDF Schema). These languages
were not expressive enough to capture the meaning required to support machine
understandability, however, so one requirement was additional expressive power.
The goal in choosing the language elements was to include the commonly used
modeling primitives from object-oriented systems and frame-based systems. Fi-
nally, the community recognized the importance of a strong formal foundation for
the language. Description logics as a field has had a long history of providing a
formal foundation for a family of frame languages. Description logic languages add
constructors into a language only after researchers specify and analyze the mean-
ing of the terms and their computational effect on systems built to reason with
them. The DAML community wanted to include the strong formal foundations of
description logics in order to provide a web language that could be understood and
extended.

The initial DAML web ontology language (DAML-ONT) was released pub-
licly in October 2000. While the language design attempted to meet all of the
design goals, beginning with the web-centric vision and later incorporating some
description logic aspects, the decision was made that a timely release of the initial
language was more critical than a timely integration of a description logic lan-
guage with the web language. Thus the initial release focused more on the goals
of web language compatibility and mainstream object-oriented and frame system
constructor inclusion. Although some notions of description logic languages and sys-
tems were integrated, the major integration happened in the next language release
(DAML+OIL).

Another important effort began at about the same time (in 1999) and produced
a distributed language specification prior1 to DAML-ONT called OIL. The aims
of OIL’s developers were similar to those of the DAML group, i.e., to provide
a foundation for the next generation of the web. Their initial objective was to
create a web ontology language that combined the formal rigor of a description
logic with the ontological primitives of object oriented and frame based systems.
Like DAML-ONT, OIL had an RDFS based syntax (as well as an XML syntax).
However, the developers of OIL placed a stronger emphasis on formal foundations,
and the language was explicitly designed so that its semantics could be specified
via a mapping to the description logic SHIQ [Fensel et al., 2001; Horrocks et al.,
1999].

It became obvious to both groups that their objectives could best be served by
combining their efforts, the result being the merging of DAML-ONT and OIL to
produce DAML+OIL. The merged language has a formal (model theoretic) seman-

4 http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
1 Presentations of the language were made, for example, at the Dagstuhl Seminar on Semantics for the

Web—see http://www.semanticweb.org/events/dagstuhl2000/.

Digital Libraries and Web-Based Information Systems 443

tics that provides machine and human understandability, an axiomatization [Fikes
and McGuinness, 2001] that provides machine operationalization with a specifica-
tion of valid inference “rules” in the form of axioms, and a reconciliation of the
language constructors from the two languages.

14.3 OIL and DAML+OIL

14.3.1 OIL

The OIL language is designed to combine frame-like modelling primitives with the
increased (in some respects) expressive power, formal rigor and automated reasoning
services of an expressive description logic [Fensel et al., 2000]. OIL also comes “web
enabled” by having both XML and RDFS based serialisations (as well as a formally
specified “human readable” form, which we will use here). The frame structure of
OIL is based on XOL [Karp et al., 1999], an XML serialisation of the OKBC-lite
knowledge model [Chaudhri et al., 1998b]. In these languages classes (concepts)
are described by frames, whose main components consist of a list of super-classes
and a list of slot-filler pairs. A slot corresponds to a role in a DL, and a slot-
filler pair corresponds to either a value restriction (a concept of the form ∀R.C)
or an existential quantification (a concept of the form ∃R.C)—one of the criticisms
leveled at frame languages is that they are often unclear as to exactly which of these
is intended by a slot-filler pair.

OIL extends this basic frame syntax so that it can capture the full power of an
expressive description logic. These extensions include:

• Arbitrary Boolean combinations of classes (called class expressions) can be
formed, and used anywhere that a class name can be used. In particular, class
expressions can be used as slot fillers, whereas in typical frame languages slot
fillers are restricted to being class (or individual) names.

• A slot-filler pair (called a slot constraint) can itself be treated as a class: it can
be used anywhere that a class name can be used, and can be combined with other
classes in class expressions.

• Class definitions (frames) have an (optional) additional field that specifies whether
the class definition is primitive (a subsumption axiom) or non-primitive (an equiv-
alence axiom). If omitted, this defaults to primitive.

• Different types of slot constraint are provided, specifying value restriction, exis-
tential quantification and various kinds of cardinality constraint.1

• Global slot definitions are extended to allow the specification of superslots (sub-
suming slots) and of properties such as transitive and symmetrical.

1 Some frame languages also provide this feature, referring to such slot constraints as facets [Chaudhri et
al., 1998b; Grosso et al., 1999].

444 I. Horrocks, D. L. McGuinness, C. Welty

• Unlike many frame languages, there is no restriction on the ordering of class and
slot definitions, so classes and slots can be used before they are “defined”. This
means that OIL ontologies can contain cycles.

• In addition to standard class definitions (frames), which can be seen as DL axioms
of the form CN v C and CN ≡ C where CN is a concept name, OIL also provides
axioms for asserting disjointness, equivalence and coverings with respect to class
expressions. This is equivalent to providing general inclusion (or equivalence)
axioms, i.e., axioms of the form C v D (C ≡ D), where both C and D may be
non-atomic concepts.

Many of these points are standard for a DL (i.e., treating ∀R.C and ∃R.C as classes),
but are novel for a frame language.

OIL is also more restrictive than typical frame languages in some respects. In
particular, it does not support collection types other than sets (e.g., lists or bags),
and it does not support the specification of default fillers. These restrictions are
necessary in order to maintain the formal properties of the language (e.g., mono-
tonicity) and the correspondence with description logics (see Chapter 2).

In order to allow users to choose the expressive power appropriate to their ap-
plication, and to allow for future extensions, a layered family of OIL languages
has been described. The base layer, called “Core OIL” [Bechhofer et al., 2000],
is a cut down version of the language that closely corresponds with RDFS (i.e.,
it includes only class and slot inclusion axioms, and slot range and domain con-
straints1). The standard language, as described here, is called “Standard OIL”,
and when extended with ABox axioms (i.e., the ability to assert that individuals
and tuples are, respectively, instances of classes and slots), is called “Instance OIL”.
Finally, “Heavy OIL” is the name given to a further layer that will include as yet
unspecified language extensions.

We will only consider Standard OIL in this chapter: Core OIL is too weak to be
of much interest, Heavy OIL has yet to be specified, and Instance OIL adds nothing
but ABox axioms. Moreover, it is unclear if adding ABox axioms to OIL would
be particularly useful as RDF already provides the means to assert relationships
between (pairs of) web resources and the slots and classes defined in OIL ontologies.

Figure 14.1 illustrates an OIL ontology (using the human readable serialisation)
corresponding to an example terminology from Chapter 2. The structure of the
language will be described in detail in Section 14.3.1.1. A full specification of OIL,
including DTDs for the XML and RDFS serialisations, can be found in [Horrocks
et al., 2000a] and on the OIL web site.2

1 Constraining the range (respectively domain) of a slot SN to class C is equivalent to a DL axiom of the
form > v ∀SN .C (respectively ∃SN .> v C).

2 http://www.ontoknowledge.org/oil/

Digital Libraries and Web-Based Information Systems 445

name “Family”
documentation “Example ontology describing family relationships”
definitions
slot-def hasChild
inverse isChildOf

class-def defined Woman
subclass-of Person Female

class-def defined Man
subclass-of Person not Woman

class-def defined Mother
subclass-of Woman
slot-constraint hasChild
has-value Person

class-def defined Father
subclass-of Man
slot-constraint hasChild
has-value Person

class-def defined Parent
subclass-of or Father Mother

class-def defined Grandmother
subclass-of Mother
slot-constraint hasChild
has-value Parent

class-def defined MotherWithManyChildren
subclass-of Mother
slot-constraint hasChild
min-cardinality 3

class-def defined MotherWithoutDaughter
subclass-of Mother
slot-constraint hasChild
value-type not Woman

Fig. 14.1. OIL “family” ontology.

14.3.1.1 OIL syntax and semantics

OIL can be seen as a syntactic variant of the description logic SHIQ [Horrocks et
al., 1999] extended with simple concrete datatypes [Baader and Hanschke, 1991a;
Horrocks and Sattler, 2001]; we will call this DL SHIQ(D). Rather than providing
the usual model theoretic semantics, OIL defines a translation σ(·) that maps an
OIL ontology into an equivalent SHIQ(D) terminology. From this mapping, OIL
derives both a clear semantics and a means to exploit the reasoning services of DL
systems such as Fact [Horrocks, 1998b] and Racer [Haarslev and Möller, 2001e]
that implement (most of) SHIQ(D).

The translation is quite straightforward and follows directly from the syntax and

446 I. Horrocks, D. L. McGuinness, C. Welty

informal specification of OIL. The single exception is in the treatment of OIL’s
one-of constructor. This is not treated like the DL one-of constructor described
in Chapter 2, but is mapped to a disjunction of specially introduced disjoint prim-
itive concepts corresponding to the individual names in the one-of construct, i.e.,
individuals are treated as primitive concepts, and there is an implicit unique name
assumption. This was a pragmatic decision based on the fact that reasoning with
individuals in concept descriptions is known to be of very high complexity (for a DL
as expressive as OIL), and is beyond the scope of any implemented DL system—
in fact a practical algorithm for such a DL has yet to be described [Horrocks and
Sattler, 2001]. This treatment of the one-of constructor is not without precedent
in DL systems: a similar approach was taken in the Classic system [Borgida and
Patel-Schneider, 1994].

An OIL ontology consists of a container followed by a list of definitions. The
container consists of Dublin Core compliant documentation fields specifying, e.g.,
the title and subject of the ontology. It is ignored by the translation, and wont be
considered here. Definitions can be either class definitions, axioms, slot definitions
or import statements, the latter simply specifying (by URI) other ontologies whose
definitions should be teated as being lexically included in the current one. We will,
therefore, treat an OIL ontology as a list A1, . . . , An, where each Ai is either a class
definition, an axiom or a slot definition. This list of definitions/axioms is translated
into a SHIQ(D) terminology T (a set of axioms) as follows:

σ(A1, . . . , An) = {σ(A1), . . . , σ(A1)} ∪
⋃

16j<n

⋃

j<k6n

{Pj v ¬Pk}

where i1, . . . , in are the individuals used in the ontology, and Pi is the SHIQ(D)
primitive concept used to represent i.

Class definitions An OIL class definition (class-def) consists of an optional
keyword K followed by a class name CN , an optional documentation string, and a
class description D. If K = primitive, or if K is omitted, then the class definition
corresponds to a DL axiom of the form CN v D. If K = defined, then the class
definition corresponds to a DL axiom of the form CN ≡ D.

A class description consists of an optional subclass-of component, with a list of
one or more class expressions, followed by a list of zero or more slot-constraints.
Each slot constraint can specify a list of constraints that apply to the given slot,
e.g., value restrictions and existential quantifications. The set of class expressions
and slot constraints is treated as an implicit conjunction.

The complete mapping from OIL class definitions to SHIQ(D) axioms is given
in Figure 14.2, where CN is a class or concept name and C is a class expression.

Digital Libraries and Web-Based Information Systems 447

OIL SHIQ(D)
class-def (primitive | defined) CN CN (v | ≡) >
subclass-of C1 . . . Cn u σ(C1) u . . . u σ(Cn)
slot-constraint1 u σ(slot-constraint1)
...

...
slot-constraintm u σ(slot-constraintm)

Fig. 14.2. OIL to SHIQ(D) mapping (class definitions).

Slot constraints A slot-constraint consists of a slot name followed by a list of
one or more constraints that apply to the slot. A constraint can be either:

• A has-value constraint with a list of one or more class-expressions or datatype
expressions.

• A value-type constraint with a list of one or more class-expressions or datatype
expressions.

• A max-cardinality, min-cardinality or cardinality constraint with a non-
negative integer followed (optionally) by either a class expression or a datatype
expression.

• A has-filler constraint with a list of one or more individual names or data
values.

OIL has-value and value-type constraints correspond to DL existential quan-
tifications and value restrictions respectively. OIL cardinality constraints corre-
spond to DL qualified number restrictions, where the qualifying concept is taken
to be > if the class expression is omitted. In order to maintain the decidability of
the language, cardinality constraints can only be applied to simple slots, a simple
slot being one that is neither transitive nor has any transitive subslots [Horrocks
et al., 1999] (note that the transitivity of a slot can be inferred, e.g., from the fact
that the inverse of the slot is a transitive slot). An OIL has-filler constraint is
equivalent to a set of has-value constraints where each individual i is transformed
into a class expression of the form one-of i and each data value d is transformed
into a datatype of the form equal d.

The complete mapping from OIL slot constraints to SHIQ(D) concepts is given
in Figure 14.3, where SN is a slot or role name, C is a class expression or datatype,
i is an individual and d is a data value (i.e., a string or an integer).

Class expressions One of the key features of OIL is that, in contrast to standard
frame languages, class expressions are used instead of class names, e.g., in the list
of super-classes, or in slot constraints. A class-expression is either a class name
CN , an enumerated-class, a slot-constraint, a conjunction of class expressions

448 I. Horrocks, D. L. McGuinness, C. Welty

OIL SHIQ(D)
slot-constraint SN >
has-value C1 . . . Cn u ∃SN .σ(C1) u . . . u ∃SN .σ(Cn)
value-type C1 . . . Cn u ∀SN .σ(C1) u . . . u ∀SN .σ(Cn)
max-cardinality n C u6nSN .σ(C)
min-cardinality n C u> nSN .σ(C)
cardinality n C u> nSN .σ(C) u6 nSN .σ(C)
has-filler i1 . . . dn u ∃SN .σ(one-of i1) u . . . u ∃SN .σ(equal dn)

Fig. 14.3. OIL to SHIQ(D) mapping (slot constraints).

OIL SHIQ(D)
top >
thing >
bottom ⊥
and C1 . . . Cn σ(C1) u . . . u σ(Cn)
or C1 . . . Cn σ(C1) t . . . t σ(Cn)
not C ¬σ(C)
one-of i1 . . . in Pi1 t . . . t Pin

Fig. 14.4. OIL to SHIQ(D) mapping (class expressions).

(written and C1 . . . Cn), a disjunction of class expressions (written or C1 . . . Cn) or
a negated class expression (written not C).

The class names top, thing and bottom have pre-defined interpretations: top
and thing are interpreted as the most general class (>), while bottom is interpreted
as the inconsistent class (⊥). Note that top and bottom can just be considered
as abbreviations for the class expressions (or C (not C)) and (and (C not C))
respectively (for some arbitrary class C).

An enumerated-class consists of a list of individual names, written
one-of C1 . . . Cn. As already noted, this is not treated like the DL one-of con-
structor described in Chapter 2, but is mapped to a disjunction of disjoint primitive
concepts corresponding to the individual names.

The complete mapping from OIL class expressions to SHIQ(D) concepts is given
in Figure 14.4, where C is a class expression, i is an individual and Pi is the primitive
concept corresponding to the individual i.

Datatypes In OIL slot constraints, datatypes and values can be used as well as
or instead of class expressions and individuals. Datatypes can be either integer
(i.e., the entire range of integer values), string (i.e., the entire range of string
values), a subrange defined by a unary predicate such as less-than 10 or a Boolean
combination of datatypes [Horrocks and Sattler, 2001].

The complete mapping from OIL datatypes to SHIQ(D) concepts is given in
Figure 14.5, where d is a data value (an integer or a string), C is a datatype and

Digital Libraries and Web-Based Information Systems 449

OIL SHIQ(D)
min d >d
max d 6d
greater-than d >d
less-than d <d
equal d >d u6d
range d1 d2 >d1 u6d2

and C1 . . . Cn σ(C1) u . . . u σ(Cn)
or C1 . . . Cn σ(C1) t . . . t σ(Cn)
not C ¬σ(C)

Fig. 14.5. OIL to SHIQ(D) mapping (datatypes).

OIL SHIQ(D)
disjoint C1 . . . Cn σ(C1) v ¬(σ(C2) t . . . t σ(Cn))

...
σ(Cn−1) v ¬σ(Cn)

covered C by C1 . . . Cn σ(C) v σ(C1) t . . . t σ(Cn)
disjoint-covered C by C1 . . . Cn σ(C) v σ(C1) t . . . t σ(Cn)

σ(C1) v ¬(σ(C2) t . . . t σ(Cn))
...
σ(Cn−1) v ¬σ(Cn)

equivalent C1 . . . Cn σ(C1) ≡ σ(C2), . . . , σ(Cn−1) ≡ σ(Cn)

Fig. 14.6. OIL to SHIQ(D) mapping (axioms).

>d (respectively 6d, >d, <d) is a unary predicate that returns true for all integers
greater than or equal to (respectively less than or equal to, greater than, less than)
d.

Axioms In addition to class definitions, OIL includes four kinds of axiom:

disjoint C1 . . . Cn asserts that the class expressions C1 . . . Cn are pairwise disjoint.
covered C by C1 . . . Cn asserts that the class expression C is covered (subsumed)

by the union of class expressions C1 . . . Cn.
disjoint-covered C by C1 . . . Cn asserts that the class expression C is covered

(subsumed) by the union of class expressions C1 . . . Cn, and that C1 . . . Cn

are pairwise disjoint.
equivalent C1 . . . Cn asserts that the class expressions C1 . . . Cn are equivalent.

The complete mapping from OIL axioms to SHIQ(D) axioms is given in Fig-
ure 14.6, where C is a class expression.

Slot definitions An OIL slot definition (slot-def) consists of a slot name SN
followed by an optional documentation string and a slot description. A slot descrip-

450 I. Horrocks, D. L. McGuinness, C. Welty

OIL SHIQ(D)
slot-def SN
subslot-of RN 1 . . .RN n SN v RN 1, . . . ,SN v RN n
domain C1 . . . Cn ∃SN .> v σ(C1) u . . . u σ(Cn)
range C1 . . . Cn > v ∀SN .σ(C1) u . . . u σ(Cn)
inverse RN SN− v RN , RN− v SN
properties transitive SN ∈ R+

properties symmetric SN v SN−, SN− v SN
properties functional > v 6 1SN

Fig. 14.7. OIL to SHIQ(D) mapping (slot definitions).

hasChild− v isChildOf
isChildOf− v hasChild

Woman ≡ Person u Female
Man ≡ Person u ¬Woman

Mother ≡ Woman u ∃hasChild.Person
Father ≡ Man u ∃hasChild.Person
Parent ≡ Father tMother

Grandmother ≡ Mother u ∃hasChild.Parent
MotherWithManyChildren ≡ Mother u> 3 hasChild
MotherWithoutDaughter ≡ Mother u ∀hasChild.¬Woman

Fig. 14.8. SHIQ(D) equivalent of the “family” ontology.

tion consists of an optional subslot-of component, with a list of one or more slot
names, followed by a list of zero or more global slot constraints (e.g., domain and
range constraints) and properties (e.g., transitive and functional).

The complete mapping from OIL class definitions to SHIQ(D) axioms is given
in Figure 14.7, where SN and RN are slot or role names, C is a class expression
and R+ is the set of SHIQ(D) transitive role names.

The mapping from OIL to SHIQ(D) has now been fully specified and we can
illustrate, in Figure 14.8, the SHIQ(D) ontology corresponding to the OIL ontology
from Figure 14.1.

14.3.1.2 XML and RDFS serialisations for OIL

The above language description uses OIL’s “human readable” serialisation. This
aids readability, but is not suitable for publishing ontologies on the web. For this
purpose OIL is also provided with both XML and RDFS serialisations.

OIL’s XML serialisation directly corresponds with the human readable form:

Digital Libraries and Web-Based Information Systems 451

<ontology>
<ontology-definitions>

<slot-def>
<slot name="hasChild"/>
<inverse>

<slot name="isChildOf"/>
</inverse>

</slot-def>

<class-def type="defined">
<class name="Woman"/>
<subclass-of>

<class name="Person"/>
<class name="Female"/>

</subclass-of>
</class-def>

<class-def type="defined">
<class name="Man"/>
<subclass-of>

<class name="Person"/>
<NOT>

<class name="Woman"/>
</NOT>

</subclass-of>
</class-def>

<class-def type="defined">
<class name="Mother"/>
<subclass-of>

<class name="Woman"/>
</subclass-of>
<slot-constraint>

<slot name="hasChild"/>
<has-value>

<class name="Person"/>
</has-value>

</slot-constraint>
</class-def>

</ontology-definitions>
</ontology>

Fig. 14.9. OIL XML serialisation.

Figure 14.9 illustrates the XML serialisation of a fragment of the “family” ontology.
A full specification and XML DTD can found in [Horrocks et al., 2000a].

The RDFS serialisation is more interesting as it uses the features of RDFS both
to capture as much as possible of OIL ontologies and to define a “meta-ontology”

452 I. Horrocks, D. L. McGuinness, C. Welty

describing the structure of the OIL language itself. Figure 14.10 shows part of the
RDFS description of OIL. The second and third lines contain XML namespace
definitions that make the external RDF and RDFS definitions available for local
use by preceding them with rdf: and rdfs: respectively. There then follows a
“meta-ontology” describing (part of) the structure of OIL slot constraints.

The “meta-ontology” defines hasPropertyRestriction as an instance of RDFS
ConstraintProperty1 that connects an RDFS class (the property’s domain) to
an OIL property restriction (the property’s range). A PropertyRestriction
(slot constraint) is then defined as a kind of ClassExpression, with HasValue
(an existential quantification) being a kind of PropertyRestriction. Properties
onProperty and toClass are then defined as “meta-slots” of PropertyRestriction
whose fillers will be the name of the property (slot) to be restricted and the restric-
tion class expression. The complete description of OIL in RDFS, as well as a more
detailed description of RDF and RDFS, can be found in [Horrocks et al., 2000a].

Figure 14.11 illustrates the RDFS serialisation of a fragment of the “family” on-
tology. Note that most of the ontology consists of standard RDFS. For example, in
the definition of Woman RDFS is used to specify that it is a subClassOf both Person
and Female. Additional OIL specific vocabulary is only used where necessary, e.g.,
to specify that Woman is a defined class. The advantage of this is that much of the
ontology’s meaning would still be accessible to software that was “RDFS aware”
but not “OIL aware”.

14.3.2 DAML+OIL

DAML+OIL is similar to OIL in many respects, but is more tightly integrated
with RDFS, which provides the only specification of the language and its only
serialisation. While the dependence on RDFS has some advantages in terms of
the re-use of existing RDFS infrastructure and the portability of DAML+OIL
ontologies, using RDFS to completely define the structure of DAML+OIL is quite
difficult as, unlike XML, RDFS is not designed for the precise specification of
syntactic structure. For example, there is no way in RDFS to state that a restriction
(slot constraint) should consist of exactly one property (slot) and one class.

The solution to this problem adopted by DAML+OIL is to define the semantics
of the language in such a way that they give a meaning to any (parts of) ontologies
that conform to the RDFS specification, including “strange” constructs such as slot
constraints with multiple slots and classes. This is made easier by the fact that,
unlike OIL, the semantics of DAML+OIL are directly defined in both a model
theoretic and an axiomatic form (using KIF [Genesereth and Fikes, 1992]). The
meaning given to strange constructs may, however, include strange “side effects”.
1 Property is the RDF name for a binary relation like a slot or role.

Digital Libraries and Web-Based Information Systems 453

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdf:Property rdf:ID="hasPropertyRestriction">
<rdf:type rdf:resource=
"http://www.w3.org/2000/01/rdf-schema#ConstraintProperty"/>

<rdfs:domain rdf:resource=
"http://www.w3.org/2000/01/rdf-schema#Class"/>

<rdfs:range rdf:resource="#PropertyRestriction"/>
</rdf:Property>

<rdfs:Class rdf:ID="PropertyRestriction">
<rdfs:subClassOf rdf:resource="#ClassExpression"/>

</rdfs:Class>

<rdfs:Class rdf:ID="HasValue">
<rdfs:subClassOf rdf:resource="#PropertyRestriction"/>

</rdfs:Class>

<rdf:Property rdf:ID="onProperty">
<rdfs:domain rdf:resource="#PropertyRestriction"/>
<rdfs:range rdf:resource=
"http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>

</rdf:Property>

<rdf:Property rdf:ID="toClass">
<rdfs:domain rdf:resource="#PropertyRestriction"/>
<rdfs:range rdf:resource="#ClassExpression"/>

</rdf:Property>

</rdf:RDF>

Fig. 14.10. Definition of OIL in RDFS.

For example, in the case of a slot constraint with multiple slots and classes, the
semantics interpret this in the same way as a conjunction of all the constraints
that would result from taking the cross product of the specified slots and classes,
but with the added (and possibly unexpected) effect that all these slot constraints
must have the same interpretation (i.e., are equivalent). Although OIL’s RDFS
based syntax would seem to be susceptible to the same difficulties, in the case of OIL
there does not seem to be an assumption that any ontology conforming to the RDFS
meta-description would be a valid OIL ontology—presumably ontologies containing
unexpected usages of the meta-properties would be rejected by OIL processors as
the semantics do not specify how these could be translated into SHIQ(D).

DAML+OIL’s dependence on RDFS also has consequences for the decidability
of the language. In OIL, the language specification states that the slots used in
cardinality constraints can only be applied to simple slots (slots that are neither

454 I. Horrocks, D. L. McGuinness, C. Welty

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:oil="http://www.ontoknolwedge.org/oil/rdfschema">

<rdf:Property rdf:ID="hasChild">
<oil:inverseRelationOf rdf:resource="#isChildOf"/>

</rdf:Property>
<rdf:Property rdf:ID="isChildOf"/>

<rdfs:Class rdf:ID="Woman">
<rdf:type rdf:resource=
"http://www.ontoknowledge.org/oil/rdfs-schema/#DefinedClass"/>

<rdfs:subClassOf rdf:resource="#Person"/>
<rdfs:subClassOf rdf:resource="#Female"/>

</rdfs:Class>

<rdfs:Class rdf:ID="Man">
<rdf:type rdf:resource=
"http://www.ontoknowledge.org/oil/rdfs-schema/#DefinedClass"/>

<rdfs:subClassOf rdf:resource="#Person"/>
<rdfs:subClassOf>

<oil:Not>
<oil:hasOperand rdf:resource="#Woman"/>

</oil:Not>
</rdfs:subClassOf>

</rdfs:Class>

<rdfs:Class rdf:ID="Mother">
<rdf:type rdf:resource=
"http://www.ontoknowledge.org/oil/rdfs-schema/#DefinedClass"/>
<rdfs:subClassOf rdf:resource="#Woman"/>
<oil:hasPropertyRestriction>

<oil:HasValue>
<oil:onProperty rdf:resource="#hasChild"/>
<oil:toClass rdf:resource="#Person"/>

</oil:HasValue>
</oil:hasPropertyRestriction>

</rdfs:Class>

</rdf:RDF>

Fig. 14.11. OIL RDFS serialisation.

transitive nor have transitive subslots). There is no way to capture this constraint
in RDFS (although the language specification does include a warning about the
problem), so DAML+OIL is theoretically undecidable. In practice, however, this
may not be a very serious problem as it would be easy for a DAML+OIL processor
to detect the occurrence of such a constraint and warn the user of the consequences.

Another effect of DAML+OIL’s tight integration with RDFS is that the frame

Digital Libraries and Web-Based Information Systems 455

<daml:ObjectProperty rdf:ID="hasChild">
<daml:inverseOf rdf:resource="#isChildOf"/>

</daml:ObjectProperty>
<daml:Class rdf:ID="Woman">

<daml:intersectionOf rdf:parseType="daml:collection">
<daml:Class rdf:about="#Person"/>
<daml:Class rdf:about="#Female"/>

</daml:intersectionOf>
</daml:Class>
<daml:Class rdf:ID="Man">

<daml:intersectionOf rdf:parseType="daml:collection">
<daml:Class rdf:about="#Person"/>
<daml:Class>

<daml:complementOf rdf:resource="#Woman"/>
</daml:Class>

</daml:intersectionOf>
</daml:Class>
<daml:Class rdf:ID="Mother">

<daml:intersectionOf rdf:parseType="daml:collection">
<daml:Class rdf:about="#Woman"/>
<daml:Restriction>
<daml:onProperty rdf:resource="#hasChild"/>
<daml:hasClass rdf:resource="#Person"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

Fig. 14.12. DAML+OIL ontology serialisation.

structure of OIL’s syntax is much less evident: a DAML+OIL ontology is more
DL-like in that it consists largely of a relatively unstructured collection of subsump-
tion and equality axioms. This can make it more difficult to use DAML+OIL with
frame based tools such as Protégé [Grosso et al., 1999] or OilEd [Bechhofer
et al., 2001b] because the axioms may be susceptible to many different frame-like
groupings [Bechhofer et al., 2001a].

From the point of view of language constructs, the differences between OIL and
DAML+OIL are relatively trivial. Although there is some difference in “keyword”
vocabulary, there is usually a one to one mapping of constructors, and in the cases
where the constructors are not completely equivalent, simple translations are pos-
sible. For example, DAML+OIL restrictions (slot constraints) use has-class and
to-class where OIL uses ValueType and HasValue, and while DAML+OIL has
no direct equivalent to OIL’s covering axioms, the same effects can be achieved
using a combination of (disjoint) union and subClass. The similarities can clearly
be seen in Figure 14.12, which illustrates the DAML+OIL version of the “family”
ontology fragment from Figure 14.9.

The treatment of individuals in DAML+OIL is, however, very different from that

456 I. Horrocks, D. L. McGuinness, C. Welty

in OIL. In the first place, DAML+OIL relies wholly on RDF for ABox assertions,
i.e., axioms asserting the type (class) of an individual or a relationship between a
pair of individuals. In the second place, DAML+OIL treats individuals occurring
in the ontology (in oneOf constructs or hasValue restrictions) as true individuals
(i.e., interpreted as single elements in the domain of discourse) and not as primitive
concepts as is the case in OIL (see Chapter 2). Moreover, there is no unique name
assumption: in DAML+OIL it is possible to explicitly assert that two individuals
are the same or different, or to leave their relationship unspecified.

This treatment of individuals is very powerful, and justifies intuitive inferences
that would not be valid for OIL, e.g., that persons all of whose countries of residence
are Italy are kinds of person that have at most one country of residence:

Person u ∀residence.{Italy} v 6 1 residence

Unfortunately, the combination of individuals with inverse roles is so powerful
that no “practical” decision procedure (for satisfiability/subsumption) is currently
known, and there is no implemented system that can provide sound and complete
reasoning for the whole DAML+OIL language. In the absence of inverse roles,
however, a tableaux algorithm has been devised [Horrocks and Sattler, 2001], and
in the absence of individuals DAML+OIL ontologies can exploit implemented DL
systems via a translation into SHIQ similar to the one described for OIL. It would,
of course, also be possible to translate DAML+OIL ontologies into SHIQ using
the disjoint primitive concept interpretation of individuals adopted by OIL, but in
this case reasoning with individuals would not be sound and complete with respect
to the semantics of the language.

14.3.2.1 DAML+OIL datatypes

The initial release of DAML+OIL did not include any specification of datatypes.
However, in the March 2001 release,1 the language was extended with arbitrary
datatypes from the XML Schema type system,2 which can be used in restrictions
(slot constraints) and range constraints. As in SHOQ(D) [Horrocks and Sattler,
2001], a clean separation is maintained between instances of “object” classes (defined
using the ontology language) and instances of datatypes (defined using the XML
Schema type system). In particular, it is assumed that the domain of interpretation
of object classes is disjoint from the domain of interpretation of datatypes, so that
an instance of an object class (e.g., the individual Italy) can never have the same
interpretation as a value of a datatype (e.g., the integer 5), and that the set of
object properties (which map individuals to individuals) is disjoint from the set of
datatype properties (which map individuals to datatype values).
1 http://www.daml.org/2001/03/daml+oil-index.html
2 http://www.w3.org/TR/xmlschema-2/#typesystem

Digital Libraries and Web-Based Information Systems 457

The disjointness of object and datatype domains was motivated by both philo-
sophical and pragmatic considerations:

• Datatypes are considered to be already sufficiently structured by the built-in
predicates, and it is, therefore, not appropriate to form new classes of datatype
values using the ontology language [Hollunder and Baader, 1991b].

• The simplicity and compactness of the ontology language are not compromised—
even enumerating all the XML Schema datatypes would add greatly to its com-
plexity, while adding a theory for each datatype, even if it were possible, would
lead to a language of monumental proportions.

• The semantic integrity of the language is not compromised—defining theories for
all the XML Schema datatypes would be difficult or impossible without extending
the language in directions whose semantics may be difficult to capture in the
existing framework.

• The “implementability” of the language is not compromised—a hybrid reasoner
can easily be implemented by combining a reasoner for the “object” language
with one capable of deciding satisfiability questions with respect to conjunctions
of (possibly negated) datatypes [Horrocks and Sattler, 2001].

From a theoretical point of view, this design means that the ontology language can
specify constraints on data values, but as data values can never be instances of object
classes they cannot apply additional constraints to elements of the object domain.
This allows the type system to be extended without having any impact on the
object class (ontology) language, and vice versa. Similarly, reasoning components
can be independently developed and trivially combined to give a hybrid reasoner
whose properties are determined by those of the two components; in particular, the
combined reasoner will be sound and complete if both components are sound and
complete.

From a practical point of view, DAML+OIL implementations can choose to sup-
port some or all of the XML Schema datatypes. For supported data types, they can
either implement their own type checker/validater or rely on some external com-
ponent (non-supported data types could either be trapped as an error or ignored).
The job of a type checker/validater is simply to take zero or more data values and
one or more datatypes, and determine if there exists any data value that is equal to
every one of the specified data values and is an instance of every one of the specified
data types.

14.4 Summary

It has long been realised that the web would benefit from more structure, and it is
widely agreed that ontologies will play a key role in providing this structure. De-

458 I. Horrocks, D. L. McGuinness, C. Welty

scription logics have made important contributions to research in this area, ranging
from formal foundations and early web applications through to the development of
description logic based languages designed to facilitate the development and deploy-
ment of web ontologies. OIL and its successor DAML+OIL are two such ontology
languages, specifically designed for use on the web; they exploit existing web stan-
dards (XML, RDF and RDFS), adding the formal rigor of a description logic and
the ontological primitives of object oriented and frame based systems.

This combination of features has proved very attractive, and DAML+OIL has al-
ready been widely adopted. At the time of writing, the DAML ontology library con-
tains over 175 ontologies, and DAML crawlers have found millions of DAML+OIL
markup statements in documents. Possibly more important, however, is that some
major efforts have committed to encoding their ontologies in DAML+OIL. This
has been particularly evident in the bio-ontology domain, where the Bio-Ontology
Consortium has specified DAML+OIL as their ontology exchange language, and
the Gene Ontology [The Gene Ontology Consortium, 2000] is being migrated to
DAML+OIL in a project partially funded by GlaxoSmithKline Pharmaceuticals
in cooperation with the Gene Ontology Consortium.

There has also been significant progress in the development of tools support-
ing DAML+OIL. Several DAML+OIL ontology editors are now available includ-
ing Manchester University’s OilEd (which incorporates reasoning support from
the Fact system) [Bechhofer et al., 2001b], Protégé [Grosso et al., 1999] and
OntoEdit [Staab and Maedche, 2000]. At Stanford University, a combination
of Ontolingua, Chimaera and JTP (Java Theorem Prover) are being used to
provide editing, evolution, maintenance, and reasoning services for DAML+OIL
ontologies [McGuinness et al., 2000b; 2000a]. Commercial endeavors are also sup-
porting DAML+OIL. Network Inference Limited, for example, have developed a
DAML+OIL reasoning engine based on their own implementation of a DL rea-
soner.

What of the future? The development of the semantic web, and of web ontology
languages, presents many opportunities and challenges for description logic research.
A “practical” (satisfiability/subsumption) algorithm for the full DAML+OIL lan-
guage has yet to be developed, and even for OIL, it is not yet clear that sound
and complete DL reasoners can provide adequate performance for typical web ap-
plications. It is also unclear how a DL system would cope with the very large
ABoxes that could result from the use of ontologies to add semantic markup
to (large numbers of) web pages. DL researchers are also beginning to address
new inference problems that may be important in providing reasoning services
for the semantic web, e.g., querying [Rousset, 1999a; Calvanese et al., 1999a;
Horrocks and Tessaris, 2000], matching [Baader et al., 1999a] and comput-

Digital Libraries and Web-Based Information Systems 459

ing least common subsumers and most specific concepts [Cohen et al., 1992;
Baader and Küsters, 1998; Baader et al., 1999b].

Finally, the developers of both OIL and DAML+OIL always understood that
a single language would not be adequate for all semantic web applications—OIL
even gave a name (Heavy OIL) to an as yet undefined extension of the language—
and extensions up to (at least) full first order logic are already being discussed.
Clearly, most of these extended languages will be undecidable. Description Logics
research can, however, still make important contributions, e.g., by investigating the
boundaries of decidability, identifying decidable subsets of extended languages and
developing decision procedures. DL implementations can also play a key role, both
as reasoning engines for the core language and as efficient components of hybrid
reasoners dealing with a variety of language extensions.

Acknowledgements

We would like to thank Jérôme Euzenat and Frank van Harmelen for their insightful
comments on a previous version of the paper. All remaining errors are, of course,
our own.

