
6

Extensions to Description Logics
Franz Baader

Ralf Küsters

Frank Wolter

Abstract

This chapter considers, on the one hand, extensions of Description Logics by features
not available in the basic framework, but considered important for using Description
Logics as a modeling language. In particular, it addresses the extensions concerning:
concrete domain constraints; modal, epistemic, and temporal operators; probabili-
ties and fuzzy logic; and defaults.

On the other hand, it considers non-standard inference problems for Description
Logics, i.e., inference problems that—unlike subsumption or instance checking—are
not available in all systems, but have turned out to be useful in applications. In par-
ticular, it addresses the non-standard inference problems: least common subsumer
and most specific concept; unification and matching of concepts; and rewriting.

6.1 Introduction

Chapter 2 introduces the language ALCN as a prototypical Description Logic, de-
fines the most important reasoning tasks (like subsumption, instance checking, etc.),
and shows how these tasks can be realized with the help of tableau-based algorithms.
For many applications, the expressive power of ALCN is not sufficient to express
the relevant terminological knowledge of the application domain. Some of the most
important extensions of ALCN by concept and role constructs have already been
briefly introduced in Chapter 2; these and other extensions have then been treated
in more detail in Chapter 5. All these extensions are “classical” in the sense that
their semantics can easily be defined within the model-theoretic framework intro-
duced in Chapter 2. Although combinations of these constructs may lead to very
expressive DLs (the unrestricted combination even to undecidable ones), all the DLs
obtained this way can only be used to represent time-independent, objective, and
certain knowledge. In addition, they do not allow for “built-in data structures” like
numerical domains.

226

Extensions to Description Logics 227

The “nonclassical” language extensions considered in the first part of this chap-
ter try to overcome some of these deficiencies. The extension by concrete domains
allows us to integrate numerical and other domains in a schematic way into Descrip-
tion Logics. The extension of DLs by modal operators allows for the representation
of time-dependent and subjective knowledge (e.g., knowledge about knowledge and
belief of intelligent agents). DLs that can explicitly represent time have also been
introduced outside the modal framework. The extension by epistemic operators
provides a model-theoretic semantics for rules, it can be used to impose “local”
closed world assumptions, and to integrate integrity constraints into DLs. In order
to represent vague and uncertain knowledge, different approaches based on proba-
bilistic, possibilistic, and fuzzy logics have been proposed. Finally, non-monotonic
Description Logics are obtained by the integration of defaults into DLs.

When building and maintaining large DL knowledge bases, inference services like
subsumption and satisfiability are very helpful, but in general not quite sufficient
for an adequate support of the knowledge engineer. For this reason, some DLs
systems (e.g., Classic) provide their users with additional system services, which
can formally be reconstructed as new types of inference problems. In the second
part of this chapter we will motivate and introduce the most prominent of these
“non-standard” inference problems, and try to give an intuition on how they can
be solved.

6.2 Language extensions

The extensions introduced in this section are “nonclassical” in the sense that defin-
ing their semantics is not obvious and requires an extension of the model-theoretic
framework considered until now; for many (but not all) of these extensions, non-
classical logics (such as modal and non-monotonic logics) are employed to provide
the right framework.

6.2.1 Concrete domains

A drawback that all Description Logics introduced until now share is that all the
knowledge must be represented on the abstract logical level. In many applications,
one would like to be able to refer to concrete domains and predefined predicates
on these domains when defining concepts. An example for such a concrete domain
could be the set of nonnegative integers, with predicates such as ≥ (greater-or-equal)
or < (less-than). For example, assume that we want to give an adequate definition
of the concept Woman. The first idea could be to use the concept description
HumanuFemale for this purpose. However, a newborn female baby would probably
not be called a woman, and neither would a three-year old toddler. Thus, as an

228 F. Baader, R. Küsters, F. Wolter

additional property, one could require that a female human-being should be old
enough (e.g., at least 18) to be called a woman. In order to express this property,
one would like to introduce a new (functional) role has-age, and define Woman by
an expression of the form Human u Female u ∃has-age.≥18. Here ≥18 stands for the
unary predicate {n | n ≥ 18} of all nonnegative integers greater than or equal to
18.

Stating such properties directly with reference to a given numerical domain seems
to be easier and more natural than encoding them somehow into abstract concept
expressions. In addition, such a direct representation makes it possible to use ex-
isting reasoners for the concrete domain. For example, we could have also decided
to introduce a new atomic concept AtLeast18 to express the property of being at
least 18 years old. However, if for some reason we also need the property of be-
ing at least 21 years old, we must make sure that the appropriate subsumption
relationship between AtLeast18 and AtLeast21 is asserted as well. While this could
still be done by adding appropriate inclusion axioms, it does not appear to be an
elegant solution, and it would still not take care of other relationships, e.g., the
fact that AtLeast18 u AtMost16 is unsatisfiable. In contrast, an appropriate rea-
soner for intervals of nonnegative integers would automatically take care of these
relationships.

The need for such a language extension was already evident to the designers of
early DL systems such as Meson [Edelmann and Owsnicki, 1986; Patel-Schneider
et al., 1990], K-Rep [Mays et al., 1988; 1991a], and Classic [Brachman et al.,
1991; Borgida and Patel-Schneider, 1994]: in addition to abstract individuals, these
systems also allow one to refer to “concrete” individuals such as numbers and strings.
Both the Classic and the K-Rep reasoner can deal correctly with intervals, whereas
in Meson the user had to supply the adequate relationships between the concrete
predicates in a separate hierarchy. All these approaches are, however, ad hoc in the
sense that they are restricted to a specific collection of concrete objects.

In contrast, Baader and Hanschke [1991a] propose a scheme for integrating (al-
most) arbitrary concrete domains into Description Logics. This extension was de-
signed such that

• it still has a formal declarative semantics that is very close to the usual semantics
employed for DLs;

• it is possible to combine the tableau-based algorithms available for DLs with
existing reasoning algorithms in the concrete domain in order to obtain the ap-
propriate algorithms for the extension;

• it provides a scheme for extending DLs by various concrete domains rather than
constructing a single ad hoc extension for a specific concrete domain.

In the following, we will first introduce the original proposal by Baader and

Extensions to Description Logics 229

Hanschke, and then describe two extensions of this proposal [Hanschke, 1992;
Haarslev et al., 1999].

6.2.1.1 The family of Description Logics ALC(D)

Before we can define the members of this family of DLs, we must formalize the
notion of a concrete domain.

Definition 6.1 A concrete domain D consists of a set ∆D, the domain of D, and
a set pred(D), the predicate names of D. Each predicate name P ∈ pred(D) is
associated with an arity n, and an n-ary predicate PD ⊆ (∆D)n.

Let us illustrate this definition by examples of interesting concrete domains. Let us
start with some numerical ones:

• The concrete domain N , which we have employed in our introductory example,
has the set IN of all nonnegative integers as its domain, and pred(N) consists of
the binary predicate names <, ≤, ≥, > as well as the unary predicate names <n,
≤n, ≥n, >n for n ∈ IN, which are interpreted by predicates on IN in the obvious
way.

• The concrete domain R has the set IR of all real numbers as its domain, and the
predicates of R are given by formulae that are built by first-order means (i.e.,
by using Boolean connectives and quantifiers) from equalities and inequalities
between integer polynomials in several indeterminates. For example, x + z2 = y
is an equality between the polynomials p(x, z) = x + z2 and q(y) = y; and
x > y is an inequality between very simple polynomials. From these equalities
and inequalities one can for instance build the formulae ∃z.(x + z2 = y) and
∃z.(x + z2 = y) ∨ (x > y). The first formula yields a predicate name of arity 2
(since it has two free variables), and it is easy to see that the associated predicate
is {(r, s) | r and s are real numbers and r ≤ s}. Consequently, the predicate
associated to the second formula is {(r, s) | r and s are real numbers} = IR× IR.

• The concrete domain Z is defined just like R, with the only difference that ∆Z

is the set of all integers instead of all real numbers.

In addition to numerical domains, Definition 6.1 also captures more abstract do-
mains:

• A given (fixed) relational database DB can be seen as a concrete domain DB,
whose domain is the set of atomic values occurring in DB, and whose predicates
are the relations that can be defined over DB using a query language (such as
SQL).

230 F. Baader, R. Küsters, F. Wolter

• One can also consider Allen’s interval calculus [Allen, 1983] as concrete domain
IC. Here ∆IC consists of time intervals, and the predicates are built from Allen’s
basic interval relations (such as before, after, . . .) with the help of Boolean
connectives.

• Instead of time intervals one can also consider spatial regions (e.g., in IR × IR),
and use Boolean combinations of the basic RCC-8 relations as predicates [Randell
et al., 1992; Bennett, 1997].

Although syntax and semantics of DLs extended by concrete domains could be
defined with the general notion of a concrete domain introduced in Definition 6.1,
the requirement that the extended language should still have decidable reasoning
problems adds some additional restrictions.

To be able to compute the negation normal form of concepts in the extended
language, we must require that the set of predicate names of the concrete domain
is closed under negation, i.e., if P is an n-ary predicate name in pred(D) then there
has to exist a predicate name Q in pred(D) such that QD = (∆D)n \ PD. We will
refer to this predicate name by P . In addition, we need a unary predicate name that
denotes the predicate ∆D. The domain N from above satisfies these two properties
since, e.g., <n = ≥n and (≥0)N = IN.

Let us now clarify what kind of reasoning mechanisms are required in the concrete
domain. Let P1, . . . , Pk be k (not necessarily different) predicate names in pred(D)
of arities n1, . . . , nk. We consider the conjunction

k
∧

i=1

Pi(x(i)).

Here x(i) stands for an ni-tuple (x(i)
1 , . . . , x(i)

ni) of variables. It is important to note
that neither all variables in one tuple nor those in different tuples are assumed to be
distinct. Such a conjunction is said to be satisfiable iff there exists an assignment
of elements of ∆D to the variables such that the conjunction becomes true in D.
We will call the problem of deciding satisfiability of finite conjunctions of this form
the satisfiability problem for D.

Definition 6.2 The concrete domain D is called admissible iff (i) the set of its
predicate names is closed under negation and contains a name >D for ∆D, and
(ii) the satisfiability problem for D is decidable.

With the exception of Z, all the concrete domains introduced above are admis-
sible. For example, decidability of the satisfiability problem for R is a conse-
quence of Tarski’s decidability result for real arithmetic [Tarski, 1951; Collins,

Extensions to Description Logics 231

1975]. In contrast, undecidability of the satisfiability problem for Z is a con-
sequence of the undecidability of Hilbert’s 10th problem [Matiyasevich, 1971;
Davis, 1973].

In the following, we will take the language ALC as the (prototypical) starting
point of our extension.1 In the following, let D be an arbitrary (but fixed) con-
crete domain. The interface between ALC and the concrete domain is inspired by
the agreement construct between chains of functional roles (see Chapter 2, Sub-
section 2.4.3). With this construct one can, for example, express the concept
of all women whose father and husband are of the same age by the expression
Womanuhas-father ◦ has-age .= has-husband ◦ has-age. However, one cannot express
that the husband is even older than the father. This becomes possible if we take
the concrete domain N . Then we can simply write

Woman u ∃(has-father ◦ has-age, has-husband ◦ has-age).<.

More generally, our extension, called ALC(D), will allow to state that a tuple of
chains of functional roles satisfies a (not necessarily binary) predicate, which is
provided by the concrete domain in question.

Thus, ALC(D) extends ALC in two respects. First, the set of role names is now
assumed to be partitioned into a set of functional roles and a set of ordinary roles.
Both types of roles are allowed to occur in value restrictions and in the existential
quantification construct. In addition, there is a new constructor, called existential
predicate restriction, which is defined by adding to the syntax rules for ALC the
rule

C, D −→ ∃(u1, . . . , un).P,

where P is an n-ary predicate of D and u1, . . . , un are chains of functional roles.
When considering ALC(D)-ABoxes, one must distinguish between names for ab-
stract and for concrete individuals. Concrete predicates P ∈ pred(D) give rise to
additional ABox assertions of the form P (x1, . . . , xn), where x1, . . . , xn are names
for concrete individuals.

Definition 6.3 An interpretation I for ALC(D) consists of a set ∆I , the abstract
domain of the interpretation, and an interpretation function. The abstract domain
and the given concrete domain must be disjoint, i.e., ∆D ∩ ∆I = ∅. As before,
the interpretation function associates with each concept name a subset of ∆I and
with each ordinary role name a binary relation on ∆I . The new feature is that the
functional roles are now interpreted by partial functions from ∆I into ∆I ∪ ∆D.
If u = f1 ◦ · · · ◦ fn is a chain of functional roles, then uI denotes the composition
fI1 ◦ · · · ◦ fIn of the partial functions fI1 , . . . , fIn .
1 All the definitions would, of course, also work for any other concept description language. The approach

for combining the reasoning algorithms will work for many other languages, but not for all of them.

232 F. Baader, R. Küsters, F. Wolter

The semantics of the usual ALC-constructors is defined as before. In particular,
this means that complex concept descriptions are always interpreted as subsets
of the abstract domain ∆I . The existential predicate restriction is interpreted as
follows:

(∃(u1, . . . , un).P)I = {x ∈ ∆I | there exist r1, . . . , rn ∈ ∆D such that
uI1 (x) = r1, . . . , uIn(x) = rn and (r1, . . . , rn) ∈ PD}.

Above, we have already seen two examples of concepts of ALC(N). The following
ALC(R)-concepts describe rectangles and squares in the IR× IR:

Rectangle = ∃(x, y, b, h).rectangle-cond,

Square = Rectangle u ∃(b, h).equal,

where the concrete predicates rectangle-cond and equal are defined as equal(x, y) ⇔
x = y and rectangle-cond(x, y, b, h) ⇔ b > 0 ∧ h > 0. In rectangle-cond, the first
two arguments are assumed to express the x- and y- coordinate of the lower left
corner of the rectangle, whereas the third and fourth argument express the breadth
and hight of the rectangle. We leave it to the reader to define the concept “pairs
of rectangles” where the first component is a square that is contained in the second
component.

A tableau-based algorithm for deciding consistency of ALC(D)-ABoxes for ad-
missible D was introduced in [Baader and Hanschke, 1991b]. The algorithm has an
additional rule that treats existential predicate restrictions according to their se-
mantics. The main new feature is that, in addition to the usual “abstract” clashes,
there may be concrete ones, i.e., one must test whether the given combination of
concrete predicate assertions is non-contradictory. This is the reason why we must
require that the satisfiability problem for D is decidable. As described in [Baader
and Hanschke, 1991b], the algorithm is not in PSpace. Using techniques similar
to the ones employed for ALC it can be shown, however, that the algorithm can
be modified such that it needs only polynomial space [Lutz, 1999b], provided that
the satisfiability procedure for D is in PSpace. In the presence of acyclic TBoxes,
reasoning in ALC(D) may become NExpTime-hard even for rather simple concrete
domains with a polynomial satisfiability problem [Lutz, 2001b].

This technique of combining a tableau-based algorithm for the description log-
ics with a satisfiability procedure for the concrete domain can be extended to more
expressive DLs (e.g., ALCN and ALCN with agreements and disagreements). How-
ever, this is not true for arbitrary DLs with tableau-based decision procedures. For
example, the technique does not work if the tableau-based algorithm requires some
sort of blocking (see Chapter 2, Subsection 2.3.2.4) to ensure termination. Tech-

Extensions to Description Logics 233

nically, the problem is that concrete predicates can be used to state properties
concerning different individuals in the ABox, and that blocking, which is concerned
only with the properties of a single individual, cannot take this into account. The
main idea underlying an undecidability proof for such a logic is that elements of
the concrete domain (e.g., R) can encode configurations of a Turing machine and
that one can define a concrete predicate stating that one configuration is a direct
successor of the other. Finally, the DL must provide some means of representing
sequences of configurations of arbitrary length, which is usually the case for DLs
requiring blocking. More concretely, it was shown in [Baader and Hanschke, 1992]
(by reduction from Post’s correspondence problem) that satisfiability of concepts
becomes undecidable if transitive closure (of a single functional role) is added to
ALC(R). Post’s correspondence problem can also be used to show undecidability of
ALC(R) with general inclusion axioms, although one cannot use exactly the same
reduction as for transitive closure (see [Haarslev et al., 1998] for a similar reduc-
tion). A notable exception to the rule of thumb that concrete domains together
with general inclusion axioms lead to undecidability has recently been shown by
Lutz [2001a], who combines ALC with the concrete domain of rational numbers
with equality and inequality predicates.

6.2.1.2 Predicate restrictions on role chains

The role chains occurring in predicate restrictions ofALC(D) are restricted to chains
of functional roles. In [Hanschke, 1992] this restriction was removed. To be more
precise, the syntax rules for ALC are extended by the two rules

C, D −→ ∃(u1, . . . , un).P | ∀(u1, . . . , un).P,

where P is an n-ary predicate of D and u1, . . . , un are chains of (not necessarily
functional) roles.

In this setting, ordinary roles are also allowed to have fillers in the concrete
domain, i.e., both functional and ordinary roles are interpreted as subsets of
∆I × (∆I ∪∆D). Of course, functional roles must still be be interpreted as partial
functions. The extension of the predicate restrictions is defined as

(∃(u1, . . . , un).P)I = {x ∈ ∆I | there exist r1, . . . , rn ∈ ∆D such that
(x, r1) ∈ uI1 , . . . , (x, rn) ∈ uIn and (r1, . . . , rn) ∈ PD},

(∀(u1, . . . , un).P)I = {x ∈ ∆I | for all r1, . . . , rn: (x, r1) ∈ uI1 , . . . , (x, rn) ∈ uIn
implies (r1, . . . , rn) ∈ PD}.

Using the universal predicate restriction one can, for example, define the concept
of parents all of whose children are younger than 4 by the description

Parent u ∀has-child ◦ has-age. ≤4 .

234 F. Baader, R. Küsters, F. Wolter

Hanschke [1992] shows that an extension of the DL we have just introduced still
has a decidable ABox consistency problem, provided that the concrete domain D is
admissible.

6.2.1.3 Predicate restrictions defining roles

In [Haarslev et al., 1998; 1999], ALC(D) was extended in a different direction:
predicate restrictions can now also be used to define new roles. To be more precise,
if P is a predicate of D of arity n + m and u1, . . . , un, v1, . . . , vm are chains of
functional roles, then

∃(u1, . . . , un)(v1, . . . , vm).P

is a complex role. These complex roles may be used both in value restrictions and in
the existential quantification construct. The semantics of complex roles is defined
as

(∃(u1, . . . , un)(v1, . . . , vm).P)I =

{(x, y) ∈ ∆I ×∆I | there exist r1, . . . , rn, s1, . . . , sm ∈ ∆D such that
uI1 (x) = r1, . . . , uIn(x) = rn, vI1 (y) = s1, . . . , vIm(y) = sm

and (r1, . . . , rn, s1, . . . , sm) ∈ PD}.

For example, the complex role ∃(has-age)(has-age).> consists of all pairs of indi-
viduals having an age such that the first is older than the second.

Unfortunately, it has turned out that the full logic obtained by this extension
has an undecidable satisfiability problem [Haarslev et al., 1998]. To overcome this
problem, Haarslev et al. [1999] define syntactic restrictions on concepts such that
the restricted language (i) is closed under negation, and (ii) has a decidable ABox
consistency problem. Consequently, the subsumption and the instance problem are
also decidable. The complexity of reasoning in this DL is investigated in [Lutz,
2001b]. Similar to the case of acyclic TBoxes, rather simple concrete domains can
already make reasoning NExpTime-hard.

An approach for integrating arithmetic reasoning into Description Logics that
considerable differs from the concrete domain approach described above was pro-
posed by Ohlbach and Koehler [1999].

6.2.2 Modal extensions

Although the DLs discussed so far provide a wide choice of constructors, usually they
are intended to represent only static knowledge and are not able to express various
dynamic aspects such as time-dependence, beliefs of different agents, obligations,
etc. For example, in every standard description language we can define a concept

Extensions to Description Logics 235

“good car” as, say, a car with an air-conditioner:

GoodCar ≡ Car u ∃part.Airconditioner. (6.1)

However, we have no means to represent the subtler knowledge that only John
believes (6.1) to be the case, while Mary does not think so:

[John believes](6.1) ∧ ¬[Mary believes](6.1).

Nor can we express the fact that (6.1) holds now, but in the future the notion of a
good car may change (since, for instance, all cars will have air conditioners):

(6.1) ∧ 〈eventually〉 ¬(6.1).

A way to bridge this gap seems quite clear and will be discussed in this and the
next section: one can simply combine a DL with a suitable modal language treating
belief, temporal, deontic or some other intensional operators. However, there are
a number of parameters that determine the design of a modal extension of a given
DL.

(I) First, modal operators can be applied to different kinds of well-formed ex-
pressions of the DL.

One may apply them only to conceptual and assertional axioms thereby forming
new axioms of the form:

[John believes](GoodCar ≡ Car u ∃part.Airconditioner),

[Mary believes] 〈eventually〉 (Rich(JOHN)).

Modal operators may also be applied to concepts in order to form new ones:

[John believes]expensive

i.e., the concept of all objects John believes to be expensive, or

HumanBeing u ∃child.[Mary believes] 〈eventually〉GoodStudent

i.e., the concept of all human beings with a child that Mary believes to be eventually
a good student. By allowing applications of modal operators to both concepts and
axioms we obtain expressions of the form

[John believes](GoodCar ≡ [Mary believes]GoodCar)

i.e., John believes that a car is good if and only if Mary thinks so.
Finally, one can supplement the options above with modal operators applicable

to roles. For example, using the temporal operator [always] (in future) and the role

236 F. Baader, R. Küsters, F. Wolter

loves, we can form the new role [always]loves (which is understood as a relation
between objects x and y that holds if and only if x will always love y) to say

(∃[always]loves.Woman)(JOHN)

i.e., John will always love the very same woman (but perhaps not only her), which
is not the same as ([always]∃loves.Woman)(JOHN).

(II) All these languages are interpreted with the help of the possible worlds
semantics, in which the accessibility relations between worlds (or points in time, . . .)
treat the modal operators, and the worlds themselves are DL interpretations.

The properties of the modal operators are determined by the conditions we im-
pose on the corresponding accessibility relations. For example, by imposing no
condition at all we obtain what is known as the minimal normal modal logic K—
although of definite theoretical interest, it does not have the properties required
to model operators like [agent A knows], 〈eventually〉, etc. In the temporal case,
depending on the application domain we may assume time to be linear and dis-
crete (for example, the usual strict ordering of the natural numbers), or branch-
ing, or dense, etc. (see [Gabbay et al., 1994; van Benthem, 1996]). Moreover,
we have the possibility to work with intervals instead of points in time (see Sec-
tion 6.2.4). In epistemic logic, transitivity of the accessibility relation for agent
A’s knowledge means what is called positive introspection (A knows what she
knows), euclideannes corresponds to negative introspection (A knows what she
does not know), and reflexivity means that everything known by A is true; see
Section 6.2.3 for a formulation of these principles in terms of Description Log-
ics. For more information and further references consult [Fagin et al., 1995;
Meyer and van der Hoek, 1995].

(III) When connecting worlds—that is, ordinary interpretations of the pure de-
scription language—by accessibility relations, we are facing the problem of connect-
ing their objects. Depending on the particular application, we may assume worlds
to have arbitrary domains (the varying domain assumption), or we may assume
that the domain of a world accessible from a world w contains the domain of w
(the expanding domain assumption), or that all the worlds share the same domain
(the constant domain assumption); see [van Benthem, 1996] for a discussion in the
context of first-order temporal logic. Consider, for instance, the following axioms:

¬[agent A knows](Unicorn ≡ ⊥),
([agent A knows]¬Unicorn) ≡ >.

The former means that agent A does not know that unicorns do not exist, while
according to the latter, for every existing object, A knows that it is not a unicorn.
Such a situation can be modeled under the expanding domain assumption, but these
two formulas cannot be simultaneously satisfied in a model with constant domains.

Extensions to Description Logics 237

(IV) Finally, one should take into account the difference between global (or rigid)
and local (or flexible) symbols. In our context, the former are the symbols which
have the same extension in every world in the model under consideration, while
the latter are those whose interpretation is not fixed. Again the choice between
these depends on the application domain: if the knowledge base is talking about
employees of a company then the name John Smith should probably denote the
same person no matter what world we consider, while President of the company
may refer to different persons in different worlds. For a more detailed discussion
consult, e.g., [Fitting, 1993; Kripke, 1980].

To describe the syntax and semantics more precisely we briefly introduce the
modal extension Ln

ALC of ALC with n unary modal operators 21, . . . , 2n, and their
duals 31, . . . , 3n.

Definition 6.4 (Concepts, roles, axioms) Concepts and roles of Ln
ALC are de-

fined inductively as follows: all concept names are concepts, and if C, D are con-
cepts, R is a role, and 3i is a modal operator, then C uD, ¬C, 3iC, and ∃R.C are
concepts.1 All role names are roles, and if R is a role, then 2iR and 3iR are roles.

Let C and D be concepts, R a role, and a, b object names. Then expressions of
the form C ≡ D, R(a, b), and C(a) are axioms. If ϕ and ψ are axioms then so are
3iϕ, ¬ϕ, and ϕ ∧ ψ.

We remind the reader that models of a propositional modal language are based
on Kripke frames, i.e., structures of the form F = 〈W,�1, . . . �n〉 in which each �i is
a binary (accessibility) relation on the set of worlds W . What is going on inside the
worlds is of no importance in the propositional framework (see, e.g., [Chagrov and
Zakharyaschev, 1997] for more information on propositional modal logics). Models
of Ln

ALC are also constructed on Kripke frames; however, in this case their worlds
come equipped with interpretations of ALC.

Definition 6.5 (model) A model of Ln
ALC based on a frame F = 〈W,�1, . . . ,�n〉

is a pair M = 〈F, I〉 in which I is a function associating with each w ∈ W an
ALC-interpretation

I(w) =
〈

∆I,w, ·I,w〉

.

M has constant domain iff ∆I(v) = ∆I(w), for all v, w ∈ W . M has expanding
domains iff ∆I(v) ⊆ ∆I(w) whenever v �i w, for some i.

Definition 6.6 For a model M = 〈F, I〉 and a world w in it, the extensions CI,w

1 Note that value restrictions (the modal box operators 2i) need not explicitly be included here since they
can be expressed using negation and existential restrictions (the modal diamond operators 3i).

238 F. Baader, R. Küsters, F. Wolter

and RI,w, and the satisfaction relation w |= ϕ (ϕ an axiom) are defined inductively.
The interesting new steps of the definition are:

(i) x ∈ (3iC)I,w iff ∃v. v �i w and x ∈ CI,v;
(ii) (x, y) ∈ (3iR)I,w iff ∃v. v �i w and (x, y) ∈ RI,v;
(iii) w |= 3iϕ iff ∃v. v �i w and v |= ϕ.

An axiom ϕ (a concept C) is satisfiable in a class of models M if there is a model
M ∈M and a world w in M such that w |= ϕ (CI,w 6= ∅).

Given a class of frames K, the satisfiability problems for axioms and concepts in K
are the most important reasoning tasks; others are reducible to them (see [Wolter
and Zakharyaschev, 1998; 1999b]). Notice that the satisfiability problem for con-
cepts is reducible to that for axioms since ¬(C ≡ ⊥) is satisfiable iff C is satisfiable.
Also, the satisfiability problem for models with expanding or varying domain is re-
ducible to that for models with constant domain (see [Wolter and Zakharyaschev,
1998]).

We are now going to survey briefly the state of the art in the field. We will restrict
ourselves first to modal description logics which are not temporal logics. The latter
will be considered in Section 6.2.4. Chronologically, the first investigations of modal
description logics are [Laux, 1994; Gräber et al., 1995; Baader and Laux, 1995;
Baader and Ohlbach, 1993; 1995]. The papers [Laux, 1994; Gräber et al., 1995]
construct multi-agent epistemic description logics in which the belief operators apply
only to axioms; the accessibility relations are transitive, serial, and euclidean. The
decidability of the satisfiability problem for axioms follows immediately from the
decidability of both, the propositional fragment of the logic and ALC, because in
languages without modalized concepts and roles there is no interaction between the
modal operators and role quantification (see [Finger and Gabbay, 1992]). Baader
and Laux [1995] introduce a DL in which modal operators can be applied to both
axioms and concepts (but not to roles); it is interpreted in models with arbitrary
accessibility relations under the expanding domain assumption. The decidability of
the satisfiability problem for axioms is proved by constructing a complete tableau
calculus. This tableau calculus was modified and extended for checking satisfiability
in models with constant domain in [Lutz et al., 2002]. It decides satisfiability in
constant domain models in NExpTime, which matches the lower bound established
in [Mosurovic and Zakharyaschev, 1999] (see also [Gabbay et al., 2002]).

The papers [Wolter and Zakharyaschev, 1998; 1999a; 1999c; 1999b; Wolter, 2000;
Mosurovic and Zakharyaschev, 1999] investigate the decision problem for various
families of modal description logics in detail. For example, in [Wolter and Za-
kharyaschev, 1999c; 1999b] it is shown that the satisfiability problem for arbitrary
axioms (possibly containing modalized roles) is decidable in the class of all frames

Extensions to Description Logics 239

and in the class of polymodal S5-frames—frames in which all accessibility rela-
tions are equivalence relations—based on constant, expanding, and varying do-
mains. It becomes undecidable, however, if common knowledge epistemic operators
(in the sense of [Fagin et al., 1995]) are added to the language or if the class of
frames consists of the flow of time 〈N, <〉. In [Wolter and Zakharyaschev, 1999a;
1998] it is shown that for expressive modal languages—like logics with common
knowledge operators or Propositional Dynamic Logics—the satisfiability problem
for axioms becomes decidable when modalized roles are not included. Wolter [2000]
shows that the satisfiability problem for concepts interpreted in frames with global
(i.e., world-independent) roles is decidable for expressive modal logics based on ALC
while the satisfiability problem for axioms is undecidable for them. However, even
the complexity of the satisfiability problem for concepts becomes non-elementary for
these logics [Gabbay et al., 2002]. In fact, for various decidable modal description
logics only computationally non-elementary decision procedures are known and the
precise complexity has not yet been determined (consult [Gabbay et al., 2002] for
further results).

The papers [Baader and Ohlbach, 1993; 1995] introduce a multi-dimensional de-
scription language that is even more expressive than Ln

ALC (but without object
names). Roughly, in this approach each dimension (object, time, belief, etc.) is rep-
resented by a set Di (of objects, moments of time, possible worlds, etc.), concepts
are interpreted as subsets of the cartesian product

∏n
i=1 Di, and roles of dimension i

as binary relations between n-tuples that may differ only in the ith coordinate. One
can quantify over both, roles and concepts, in any dimension. Thus, in contrast to
Ln
ALC arbitrarily many dimensions are considered and no dimension is labelled as

the “modal” or “ALC”-one. This language has turned out to be extremely expres-
sive. The satisfiability problem for the full language is known to be undecidable
and even for natural fragments no sound and complete reasoning procedures have
appeared. Baader and Ohlbach [1995] provide only a sound satisfiability checking
algorithm for such a fragment.

6.2.3 Epistemic operators

The systems Classic and Loom provide their users with the possibility to include
procedural rules into knowledge bases (see also Chapter 2, Section 2.2.5). Such rules
take the form

C ⇒ D,

where C and D are concepts. The meaning of a procedural rule is different from the
meaning of an inclusion axiom: while C v D represents conceptual knowledge and
says that—no matter what is known about individuals—the concept D subsumes

240 F. Baader, R. Küsters, F. Wolter

C, the rule C ⇒ D represents the incidental fact that “if an individual is known to
be an instance of C, then we can conclude that it is an instance of D”. Consider
the following example: suppose a knowledge base Φ consists of

GreatLogician v Professor, ¬Professor(a).

Obviously we can derive ¬GreatLogician(a) from Φ. In this representation we as-
sume a conceptual relation between the terms ‘professor’ and ‘great logician’. More
appropriate, however, seems to be the weaker claim that people who are known to
be great logicians are professors: let Φ′ be the knowledge base which results from
Φ when GreatLogician v Professor is replaced with

GreatLogician ⇒ Professor.

The assertion ¬GreatLogician(a) turns out to be not derivable from Φ′. The proce-
dural explanation for this phenomenon is this: in the knowledge base Φ′ we do not
find an individual belonging to the concept GreatLogician. Therefore the rule Great-
Logician ⇒ Professor does not “fire” and nothing new about the world is derivable
by using it. However, Description Logic is aiming at an extensional semantics for
frame-based systems, hence it would be desirable to have a precise model-theoretic
explanation of the behavior of procedural rules as well.

It turns out that adding an epistemic operator together with a possible worlds
semantics interpreting it provides us with the required models. Integrating the op-
erator K—‘the knowledge base knows that’—into ALC will allow us to rephrase the
rule GreatLogician ⇒ Professor by the inclusion axiom KGreatLogician v Professor,
which says that all objects that are known to be great logicians are professors. Ac-
tually, it will turn out that extensions of Description Logics by means of epistemic
operators are useful in other contexts as well. We postpone their discussion until we
have introduced some technical prerequisites. We will follow [Donini et al., 1992b;
1998a], where the extension of ALC by epistemic operators was introduced and
investigated.

Formulated in terms of Section 6.2.2, we consider the language L1
ALC in which the

modal operator 21 (now denoted by K) can be applied to concepts and roles but
not to axioms. Following [Donini et al., 1998a] we call this language ALCK. The
following principles are assumed to govern the epistemic operator (we formulate
them here for K applied to concepts; the formulation for roles is similar):

• KC v C (only true facts are known: if an object is known to be an instance of
C, then it is an instance of C);

• KC v KKC (positive introspection: if it is known that an object is an instance
of C, then this is known);

Extensions to Description Logics 241

• ¬KC v K¬KC (negative introspection: if it is not known whether an object is
an instance of C, then this is known).

These principles are valid in all models based on a Kripke frame F = 〈W,�〉 iff F is
an S5-frame, or, equivalently, if � is the universal relation on W , i.e., � = W ×W .
So, we consider frames of the form 〈W,W ×W 〉 only.

We assume also that:

• it is known which object an object name denotes (so, object names are assumed
to be global (or rigid) designators),

• the set of existing objects ∆ is known and countably infinite (so, we adopt the
constant domain assumption).

These assumptions together allow us to simplify the possible worlds semantics con-
siderably: we can identify the set of worlds W with a set of interpretations M (all
having the same countably infinite domain ∆ and the same interpretation of the
object names) and the accessibility relation is implicitly given as the universal rela-
tion on M. Hence, we call any set of interpretations M satisfying these constraints
a model (for ALCK) and can define the extensions CI,M and RI,M of a concept C
and a role R in an interpretation I in M as follows:

AI,M = AI for atomic concepts A

P I,M = P I for atomic roles P

(¬C)I,M = ∆ \ CI,M

(C1 u C2)I,M = CI,M
1 ∩ CI,M

2

(∃R.C)I,M = {a ∈ ∆ | ∃b. (a, b) ∈ RI,M ∧ b ∈ CI,M}
(KC)I,M =

⋂

J∈M
CJ ,M (= {a ∈ ∆ | ∀J ∈ M. a ∈ CJ ,M})

(KR)I,M =
⋂

J∈M
RJ ,M (= {(a, b) ∈ ∆ | ∀J ∈ M. (a, b) ∈ RJ ,M})

So, KC comprises the set of all objects that are instances of C in every world
regarded as possible.

An ALCK-knowledge base Φ consists of a set of inclusion axioms and ABox asser-
tions whose concepts and roles are in ALCK. A model M satisfies Φ (is a Φ-model)
iff all inclusion and membership assertions of Φ are true in every I ∈ M.

So far, we have introduced a rather simple version of the epistemic extensions
of ALC discussed in Section 6.2.2. In the present section, however, we are not
interested in the satisfiability of epistemic knowledge bases, but in a relation |=
between knowledge bases and assertions such that Φ |= ϕ iff a knowledge base knows
ϕ under the assumption that “all the knowledge base knows is Φ”. For example, if
Φ is empty (the knowledge base knows nothing), then ¬KC(a) as well as ¬K¬C(a)

242 F. Baader, R. Küsters, F. Wolter

should be derivable, since the knowledge base does not know whether a is an instance
of C or not. On the semantic level this means that we are not interested in arbitrary
models satisfying Φ but only in those Φ-models that refute as many ALC-assertions
as possible. In other words, we consider Φ-models only with as many worlds as
possible (corresponding to the intuition that more worlds are regarded as possible
if less is known). For example, if Φ is empty, then the intended models comprise all
interpretations (with a fixed domain and interpretation of the object names), since
all interpretations are regarded as possible by an empty knowledge base. Here are
the precise definitions:

Definition 6.7 An epistemic model for Φ is a maximal non-empty set of interpre-
tations M satisfying Φ. The knowledge base Φ logically implies an assertion ϕ,
written Φ |= ϕ, if every epistemic model M for Φ satisfies ϕ.

Consequently, |= is a non-monotonic consequence relation: while ∅ |= (¬KC ∧
¬K¬C)(a), we have C(a) |= KC(a). On the propositional level, this type of
reasoning is known as ground non-monotonic S5 (see [Donini et al., 1995; 1997c;
Nardi and Rosati, 1995]).

Reasoning with arbitrary ALCK-knowledge bases has not been investigated. In
fact, all applications considered in the literature require only very small fragments
of ALCK. In what follows, we shall briefly introduce two such fragments and some
of their applications.

6.2.3.1 ALCK as a query language

We first confine ourselves to knowledge bases that are ordinaryALC-ABoxes. Hence,
the epistemic operator K can be used only in queries. Recall that concept languages
can be applied as query languages in a straightforward manner: the answer set of a
query consisting of a concept C to a knowledge base Φ comprises the set of individ-
uals a with Φ |= C(a). Queries with epistemic operators enable us to extract the
knowledge which the knowledge base has about its own knowledge. Consider, for
example, the knowledge base Φ = {∃friend.Male(SUSAN)}, which contains incom-
plete information about Susan. Applications of K to different concepts and roles in
∃friend.Male enable us to form a variety of different queries:

• ∃friend.Male; clearly, the answer to this query is {SUSAN}.
• ∃friend.KMale; the answer set is empty, since no known male is a friend of Susan.
• ∃Kfriend.Male; the answer set is empty since we do not find a male individual

that is known to be a friend of Susan.
• K∃friend.Male; the answer set is {SUSAN} since the knowledge base knows that

Susan has a friend who is male.

Extensions to Description Logics 243

Observe that, for Φ′ = Φ∪{friend(SUSAN,BOB), Male(BOB)}, the answer set would
consist of SUSAN in all four cases. We refer the reader to [Donini et al., 1992b;
1998a] for more examples.

Epistemic queries can also be used to formulate integrity constraints. Recall
that integrity constraints can be viewed as epistemic sentences that state what a
knowledge base must know about the world [Reiter, 1990]. For example, suppose
that we want to rule out those knowledge bases that are uncertain about whether
a given course is a course for undergraduates or graduates. This can be expressed
using the query

¬KCourse t (KUndergraduate tKGraduate). (6.2)

A knowledge base satisfies the integrity constraint iff it logically implies the assertion
(6.2)(a), for every object name a appearing in it. Observe, by the way, that the query
¬Courset(UndergraduatetGraduate) has a different meaning: while ∅ |= (6.2)(a), for
all a (corresponding to the intention), ∅ 6|= (¬Courset(UndergraduatetGraduate))(a).
We refer the reader to [Levesque, 1984; Lifschitz, 1991; Reiter, 1990] for a discussion
of the use of epistemic queries in general.

What is the computational complexity of querying ALC-ABoxes by means of
ALCK-concepts? The following result is proved in [Donini et al., 1992b; 1998a]:

Theorem 6.8 There is an algorithm for deciding, given an ALC-ABox Σ, an object
name a, and an ALCK-concept C, whether Σ |= C(a). More precisely, the problem
Σ |= C(a) is PSpace-complete (w.r.t. the size of C and Σ).

Recall that querying ALC-ABoxes with ALC-concepts is PSpace-complete as well
[Hollunder, 1996]. Thus, the additional epistemic operators in queries do not cause
any increase of the computational complexity.

6.2.3.2 Semantics for procedural rules

To capture the meaning of procedural rules as discussed above (and in Chapter 2,
Section 2.2.5), we must admit assertions of the form KC v D in the knowledge
base. A rule ABox consists of an ALC-ABox and a set of sentences of the form

KC v D,

where C, D are ALC-concepts and C is not equivalent to > (the reason for this
technical condition will be discussed below).

Fortunately, the additional inclusion axioms again do not lead to any increase of
the complexity [Donini et al., 1992b; 1998a].

Theorem 6.9 There is an algorithm for deciding, given a rule ALC-ABox Σ, an

244 F. Baader, R. Küsters, F. Wolter

object name a, and an ALCK-concept C, whether Σ |= C(a). More precisely, the
problem Σ |= C(a) is PSpace-complete (w.r.t. the size of C and Σ).

Observe that this result does not extend to the language with inclusion axioms
of the form KC v D, where C is equivalent to >. In this case KC would be
equivalent to > as well, and so KC v D would be equivalent to D ≡ >. However,
for knowledge bases with axioms of this type instance checking is known to be
ExpTime-complete [Schild, 1994]. Notice that in applications a rule of the form
> ⇒ C does not make sense.

6.2.3.3 An extension of ALCK
The non-monotonic logic MKNF is an expressive extension of ground non-
monotonic S5, which can simulate in a natural manner Default Logic, Autoepistemic
Logic, and Circumscription (see [Lifschitz, 1994]). This is achieved by adding to
classical logic not only the operator K (of ground non-monotonic S5) but also a
second epistemic operator A, which is interpreted in terms of autoepistemic as-
sumption. The papers [Donini et al., 1997b; Rosati, 1998] study the corresponding
bimodal extension of ALC by means of K and A, called ALCB in what follows.

We first consider the two operators K and A separately: the consequence relation
|= for assertions containing K only is still the one introduced above. On the other
side, for assertions containing A (‘it is assumed that’) only we are interested in
a consequence relation |=AE such that Φ |=AE ϕ1 iff ϕ belongs to every stable
expansion of Φ, i.e., iff ϕ belongs to every reasonable theory2 about the world which
a rational agent who assumes only the assertions in Φ can have. In particular, it is
assumed that agents are capable of introspection. Consider, for example, an agent
assuming precisely Φ = {AC ≡ >} (‘the set of all objects I assume to be in C
comprises all existing objects’). We still assume that agents know which objects
exist (the constant domain assumption). Hence Φ can be rephrased as ‘I assume
that all objects belong to C’. Now, according to the autoepistemic approach such
an agent cannot have a coherent theory about the world because if she would have
one then she should assume as well that C ≡ > from the very beginning.

From the “possible worlds” viewpoint the relation |=AE can be captured as fol-
lows. Firstly, the extension of ALC by A is interpreted in pairs (I,M) in precisely
the same manner as ALCK. However, now we allow that the actual world I is not in
M—corresponding to the idea that assumptions (in contrast to known assertions)
are not always true. Thus we may have (AC)I,M = > but CI,M 6= >, which is not
possible for K. The intended models are called AE-models in what follows.
1 AE indicates that autoepistemic propositional logic in the sense of [Moore, 1985] is extended here to
ALC.

2 In terms of propositional logic a theory T is called reasonable iff the following conditions hold: (0) T is
closed under classical reasoning, (1) if P ∈ T , then AP ∈ T , (2) if P 6∈ T , then ¬AP ∈ T .

Extensions to Description Logics 245

Definition 6.10 An AE-model for a set of assertions Φ is a set of interpretations
M that satisfies Φ and such that, for every interpretation I 6∈ M, Φ is refuted in
(I,M). Now put Φ |=AE ϕ iff ϕ is satisfied in all AE-models for Φ.

So, we do not maximize the set of possible worlds, but we exclude the case that
Φ is true in an actual world that is not regarded possible (i.e., is not a member of
M). The consequence relation |=AE is also non-monotonic since ∅ |=AE ¬AC(a)
but C(a) |= AC(a). Observe that |= and |=AE are different: while AC ≡ > has
no AE-models, KC ≡ > has the epistemic model consisting of all interpretations in
which C ≡ >.

How to interpret the combined languageALCB and define a consequence relation?
Following Lifschitz [1994], the intended models (called ALCB-models) are defined
as follows.

Definition 6.11 The ALCB-models for a set of ALCB-assertions Φ are those mod-
els M satisfying Φ and the following maximality condition: if a non-empty set of
new worlds N is added to M, K is interpreted in the model M ∪ N , and A is
interpreted in the old model M, then Φ is refuted in some interpretation from N .
Now Φ logically implies ϕ, in symbols Φ |= ϕ, iff ϕ is satisfied in every ALCB-model
satisfying Φ.

Thus, roughly speaking, we still maximize the set of worlds, but now we require
that any larger set of possible worlds contains a world at which Φ is refuted under
the interpretation of A by means of the original set of possible worlds. But this
corresponds, for the operator A, to the definition of AE-models. Clearly, the new
consequence relation is a conservative extension of the one defined for ALCK above
(and of |=AE as well). Hence using the same symbol for both does not cause any
ambiguity.

The new logic is considerably more expressive than ALCK. Donini et al. [1997b]
show that Default Logic can be embedded into ALCB more naturally than into
ALCK. They also consider the formalization of integrity constraints in knowledge
bases, which cannot be expressed in ALCK, and they discuss how role and concept
closure can be formalized in ALCB. Here we confine ourselves to a brief discussion
of the formalization of integrity constraints in ALCB. Above we have seen that the
query (6.2) can be used to express the constraint that every course known to the
knowledge base should be known to be for undergraduates or graduates. Sometimes
it is more useful not to formalize integrity constraints as queries, but as part of the
knowledge base (see [Donini et al., 1997b]). However, the addition of constraints
should not change the content of the knowledge base, but just force the knowledge
base to be inconsistent iff the constraint is violated. How can this be achieved in

246 F. Baader, R. Küsters, F. Wolter

ALCK? The naive idea is to add the assertion (6.2) ≡ > to the knowledge base
in order to express the constraint. Unfortunately, this does not work: consider
the knowledge base Φ consisting of Course(a), which does not satisfy the integrity
constraint. However, the knowledge base obtained from Φ by adding (6.2) ≡ > does
not tell us that the constraint is violated in Φ since the extended knowledge base is
still consistent: the set M consisting of all interpretations J (with a fixed domain
and interpretation of a) satisfying aJ ∈ CourseJ ∩GraduateJ is an epistemic model
for the extended knowledge base. In fact, there is no way to formulate the required
constraint within ALCK. On the other hand, by adding the ALCB-assertion

KCourse v AGraduate tAUndergraduate

to Φ, we obtain a knowledge base without ALCB-models, as required. Note, for
example, that the model M introduced above is not an ALCB-model for this knowl-
edge base because any set of worlds N = {I} with I 6∈ M and aI ∈ CourseI refutes
the maximality condition.

Donini et al. [1997b] present a number of decidability results for reasoning with
ALCB knowledge bases.

6.2.4 Temporal extensions

Temporal extensions are a special form of modal extensions of description logics.
However, because of the intended interpretation in flows of time they have a specific
flavour, which is slightly different from general modal logic. Chronologically, the
first example of a “modalized” description logic was the temporal description logic
of Schmiedel [1990]. The papers [Bettini, 1997; Artale and Franconi, 1994; 1998]
introduce and investigate variants of Schmiedel’s formalism. The papers mentioned
so far employ an interval-based approach to the semantics of temporal operators.
Point-based temporal description logics have been introduced by Schild [1993] and
further investigated by Wolter and Zakharyaschev [1999e].

For simplicity, let us first consider propositional temporal logic and then see how
it can be extended to temporal description logic. In what follows we assume that
a flow of time T = 〈T, <〉 consists of a set of points in time T and a precedence
relation < between points in time which is assumed to be a strict linear order. This
corresponds to the intuition that, for any two moments t1, t2 ∈ T , either t1 precedes
t2, t2 precedes t1, or t1 equals t2.

How to define a satisfiability relation |= between entities in a flow of time and
formulas? There exist (at least) two different possibilities to select the entities at
which formulas are evaluated: points in time and intervals. While in the first case we
are considering a relation t |= ϕ between time-points t and formulas ϕ, in the second
case we have a relation [u, v] |= ϕ between intervals [u, v] = {z ∈ T | u ≤ z ≤ v},

Extensions to Description Logics 247

where u ≤ v, in T and formulas ϕ. Denote by T∗ the set of all intervals in T. Both,
point- and interval-based temporal logics, are special instances of modal logics: in
the former the worlds of Kripke frames are interpreted as time-points while in the
latter they are interpreted as intervals. Point- as well as interval-based temporal
models are easily extended to temporal ALC-models:

Definition 6.12 A point-based temporal ALC-model M = (T, I) consists of a flow
of time T and a function I which associates with every t ∈ T an interpretation

I(t) =
〈

∆I,t, ·I,t〉 .

An interval-based temporal ALC-model M = 〈T, I〉 consists of a flow of time T and
a function I which associates with every interval i ∈ T∗ an interpretation

I(i) =
〈

∆I,i, ·I,i
〉

.

We can now evaluate ALC-concepts and axioms in point- and interval-based tem-
poral models. For example,

• (M, t) |= Alive(a) iff aI,t ∈ AliveI,t, i.e., a is alive at moment t,
• (M, i) |= Sleep(a) iff aI,i ∈ SleepI,i, i.e., a is sleeping in the interval i.

We now add temporal operators and quantifiers to ALC, which enable us to relate
different moments and intervals to each other.

For the point-based approach we have discussed appropriate operators already:
we can form the language L1

ALC and interpret the operator 2 = 21 as ‘always in
the future’. Thus, t |= 2(C ≡ D) iff t′ |= C ≡ D for all t′ > t, (always in the future
of t, C and D are interpreted as the same set), and x ∈ (3C)I,t iff there exists
t′ > t such that x ∈ CI,t′ (eventually x is an instance of C). Often, however, more
expressive temporal operators are required. The operator U (until), for example, is
a binary temporal operator with the following truth-conditions, for all concepts C,
D and axioms ϕ, ψ:

(i) x ∈ (CUD)I,t iff there exists t′ > t such that x ∈ DI,t′ and, for all t′′ with
t < t′′ < t′, x ∈ CI,t′′ ,

(ii) t |= ϕUψ iff there exists t′ > t such that t′ |= ψ and, for all t′′ with t < t′′ < t′,
t′′ |= ϕ.

In this language we can define a mortal as, say, a living being that is alive until it
dies:

Mortal ≡ LivingBeing u (LivingBeing U 2¬LivingBeing).

This language, interpreted in the flow of time 〈N, <〉, was first considered by
Schild [1993], who showed that the satisfiability problem for concepts (without

248 F. Baader, R. Küsters, F. Wolter

modalized or global roles) is decidable. Wolter [2000] proves the decidability for
concepts with global roles (but without modalized roles). However, the complex-
ity of the decision problem for this language is non-elementary [Gabbay et al.,
2002]. Wolter and Zakharyaschev [1999e] prove that even for axioms the satis-
fiability problem is decidable, provided that they do not contain modalized or
global roles. Tableau calculi (running in double-exponential time) for the case
of expanding and constant domains were developed in [Sturm and Wolter, 2002;
Lutz et al., 2001b]. The satisfiability problem for axioms in the full language with
the flow of time 〈N, <〉 is undecidable.

For the interval-based approach we find both languages that extend ALC by
means of temporal operators which are interpreted by accessibility relations between
intervals [Bettini, 1997] and languages that allow for explicit quantification over
intervals [Schmiedel, 1990; Artale and Franconi, 1994; 1998].

We start the discussion with the temporal operators approach. Bettini [1997]
extends the propositional interval-based temporal logic of [Halpern and Shoham,
1991] to ALC (and weaker description logics). Thus, given a concept C, we can
now form new concepts like 〈starts〉C and 〈finishes〉C. They are interpreted in
interval-based models 〈T, I〉 as follows:

• x ∈ (〈starts〉C)I,[u,v] iff ∃t ∈ T. u ≤ t < v ∧ x ∈ CI,[u,t]

(x is an instance of 〈starts〉C in the interval [u, v] iff x is an instance of C in some
interval starting [u, v]),

• x ∈ (〈finishes〉C)I,[u,v] iff ∃t ∈ T. u < t ≤ v ∧ x ∈ CI,[t,v].

In other words, the modal operators 〈starts〉 and 〈finishes〉 are interpreted in the
standard “possible worlds manner” by means of the accessibility relations ‘starts’
and ‘finishes’, respectively, where (i, j) ∈ starts iff j starts i and (i, j) ∈ finishes
if j finishes i. By adding the converse operators of 〈starts〉 and 〈finishes〉 to the
language, we obtain a language that can express all the thirteen Allen relations
between intervals [Allen, 1983]. Here is a definition of Mortal in this language:

Mortal ≡ LivingBeing u 〈after〉 ¬LivingBeing.

Unfortunately, for the full language based on ALC the satisfiability problem for
concepts is undecidable in all interesting flows of time. This follows from the fact
that propositional interval-based temporal logic is undecidable already in 〈R, <〉,
〈Q, <〉, 〈N, <〉, etc. (see [Halpern and Shoham, 1991]). However, there are numerous
open decision problems when description logics weaker than ALC and different
notions of intervals are considered (see [Bettini, 1997; Artale and Franconi, 2000;
2001]).

Now, let us consider interval-based temporal extensions of description logics that

Extensions to Description Logics 249

allow for explicit quantification over intervals. Schmiedel [1990] develops an expres-
sive formalism in which we have two quantifiers 2(i)1 (‘for all intervals i’) and 3(i)
(‘there exists an interval i’), where i is a variable ranging over intervals. The lan-
guage does not contain negation so that the quantifiers are not mutually definable.
The quantifiers are relativized (alias bounded or guarded) by so called time nets,
which can, for example, be some relations like starts or finishes between intervals
(metric and granularity constraints are admitted as well). An operator @ specifies
the interval at which a concept applies to an object and] denotes a reference inter-
val. The following concept can be regarded as a definition of the concept Mortal in
Schmiedel’s language:

LivingBeing u (3(i)(after i])(¬LivingBeing @ i)).

Here (after i]) is the time net which relativizes the quantifier 3(i) by means of
the constraint expressing that i must be after the reference interval denoted by].
According to this definition, an object x is an instance of Mortal at the reference
interval] iff x is living at] and there exists an interval i that is after], and at which
x is not living.

Schmiedel [1990] does not address computational problems for his language. How-
ever, it is not difficult to see that, in the presence of negation, this language is more
expressive than the one of Bettini [1997] considered above—and thus subsumption is
undecidable for all interesting flows of time. The decision problem for the language
without negation appears to be open.

A brief remark concerning the relation between interval-based temporal logic
with and without explicit quantification over intervals is in order. Of course,
explicit quantification provides more expressive power. Using the temporal op-
erators introduced above, it is not possible to represent relations between more
than two intervals because reference to a fixed reference interval is impossible.
On the other hand, variable-free languages are much closer in spirit to pure de-
scription logics and therefore seem to be more natural candidates for temporal-
izations of description logics; we refer the reader to [Artale and Franconi, 2000;
2001] for a detailed discussion.

The papers [Artale and Franconi, 1994; 1998] present a number of languages
weaker than Schmiedel’s with a decidable subsumption problem. Among oth-
ers, they define a temporal extension of a description logic extending ALC with
functional roles. They show decidability of concept subsumption and PSpace-
completeness of satisfiability w.r.t. an empty KB in an unbounded and dense flow
of time. The main reason for the decidability is that the language does not admit
universal quantification over intervals and that the constructors of the underlying

1 Here and in what follows we use the notation of [Artale and Franconi, 1998].

250 F. Baader, R. Küsters, F. Wolter

description logic cannot be applied to the temporalized part of the language. In
particular, the negation of the underlying DL cannot be used to define the universal
quantifier by means of the existential one. The authors show by means of a num-
ber of examples that their formalism still has enough expressive power to represent
non-trivial actions and plans.

An interesting feature of the subsumption algorithm presented by Artale and
Franconi [1998] is that it consists of two parts: firstly, a normalization procedure is
employed to reduce the subsumption problem for the temporalized DL to that prob-
lem for the pure DL, which can then be solved with known algorithms [Hollunder
and Nutt, 1990]

For a more detailed survey of the state of art in temporal description logic we
refer the reader to [Artale and Franconi, 2000; 2001], where one can also find an
introduction to the work of Weida and Litman [1992], who propose a loose hy-
brid integration between description logics and constraint networks with the aim of
reasoning about plans.

6.2.5 Representing uncertain and vague knowledge

Description Logics whose semantics is based on classical first-order logic cannot
express vague or uncertain knowledge. To overcome this deficiency, approaches for
integrating probabilistic logic and fuzzy logic into Description Logics have been
proposed. Although both types of approaches assign numerical values to entries
in the knowledge base, they are quite different, not only from a technical point of
view, but also w.r.t. the basic phenomena they are trying to model. We talk about
uncertainty if we deal with propositions that are either true or false, but due to a
lack of information we do not know for certain which is the case. This gives rise to
statements about the probability with which a proposition is assumed to be true.
In contrast, vagueness means that the propositions themselves are only true to a
certain degree. This vagueness is not caused by incomplete knowledge; it is due to
the fact that fuzzy notions, i.e., notions without crisp boundaries (e.g., tall person)
are modeled.

In the following, we will restrict our attention to the probabilistic extensions
of DLs introduced in [Heinsohn, 1994; Jaeger, 1994; Koller et al., 1997; Yelland,
2000] and the fuzzy extensions of DLs introduced in [Yen, 1991; Tresp and Molitor,
1998; Straccia, 1998; 2001]. The possibilistic extension by Hollunder [1994b] can
be viewed as lying between these two approaches: possibilistic logic is mainly used
to model uncertainty, but its formal semantics is defined in terms of fuzzy sets of
interpretations.

Extensions to Description Logics 251

6.2.5.1 Probabilistic extensions

Let us first concentrate on how to extend the terminological (TBox) formalism. In
classical Description Logics, one has very restricted means of expressing (and testing
for) relationships between concepts. Given two concepts C and D, subsumption tells
us whether C is contained in D, and the satisfiability test (applied to C uD) tells
us whether C and D are disjoint. Relationships that are in-between (e.g., 90% of
all Cs are Ds) can neither be expressed nor be derived.

This deficiency is overcome in [Heinsohn, 1994; Jaeger, 1994] by allowing for
probabilistic terminological axioms of the form1

P(C|D) = p,

where C,D are concept descriptions and 0 < p < 1 is a real number. Such an axiom
states that the conditional probability for an object known to be in D to belong to
C is p. A given finite interpretation I satisfies P(C|D) = p iff

|(C uD)I |
|DI |

= p.

More generally, the formal semantics of the extended language is defined in terms
of probability measures on the set of all concept descriptions (modulo equivalence).

Given a knowledge base P consisting of probabilistic terminological axioms, the
main inference task is then to derive optimal bounds for additional conditional
probabilities. Intuitively,

P |= P(C|D) ∈ [p, q]

iff in all probability measures satisfying P the conditional probability P(C|D) be-
longs to the interval [p, q]. Given P, C, D, one is interested in finding the maximal
p and minimal q such that P |= P(C|D) ∈ [p, q] is true.

Heinsohn [1994] introduces local inference rules that can be used to derive bounds
for conditional probabilities, but these rules are not complete, that is, in general
they are not sufficient to derive the optimal bounds.

Jaeger [1994] only describes a naive method for computing optimal bounds. A
more sophisticated version of that method reduces the inference problem to a linear
optimization problem. In the following, we will sketch the main idea underlying
this reduction. Assume that C1, . . . , Cm are the concept descriptions occurring in
P and P(C|D), and consider all conjunctions D1u· · ·uDm, where Di is either Ci or
¬Ci. Let A be the set of those conjunctions that are satisfiable. Given a probability
measure on all concept descriptions, the values of this measure on C1, . . . , Cm is
uniquely determined by the values on A. To be more precise, its value for Ci can
1 Actually, Heinsohn uses a different notation and allows for more expressive axioms stating that P(C|D)

belongs to an interval [pl, pu], where 0 ≤ pl ≤ pu ≤ 1.

252 F. Baader, R. Küsters, F. Wolter

be obtained as the sum of the values for those elements of A that are subsumed by
Ci (i.e., the ones where Ci occurs positively). The idea is to introduce a numerical
variable xt (ranging over the real interval (0, 1)) for each element t ∈ A. For
example, if C1, C2 are two concept names, then A consists of the four elements
t0 = ¬C1 u ¬C2, t1 = ¬C1 u C2, t2 = C1 u ¬C2, and t3 = C1 u C2, for which we
introduce the variables x0, x1, x2, x3, respectively. Thus, the probability associated
with C1 u C2 is x3 and the one for C2 is x1 + x3. Consequently, the probabilistic
terminological axiom P(C1|C2) = 0.7 can be represented by the (linear) constraint
x3 = 0.7(x1 + x3).

We have to find the maximal and minimal values that P(C|D) attains on the set
of values (x0, . . . , xn) satisfying the linear constraints induced by P. The value of
the function P(C|D) (in terms of the variables xt) is given by

∑

{xt | t ∈ A ∧ t v C uD}
∑

{xt | t ∈ A ∧ t v D}
.

By a simple transformation, this fractional optimization problem can be transformed
into a linear optimization problem [Amarger et al., 1991].

Jaeger [1994] also extends the assertional formalism by allowing for probabilistic
assertions of the form

P(C(a)) = p,

where C is a concept description, a an individual name, and p a real number between
0 and 1. It should be noted that this kind of probabilistic statement is quite different
from the one introduced by the terminological formalism. Whereas probabilistic
terminological axioms state statistical information, which is usually obtained by
observing a large number of objects, probabilistic assertions express a degree of
belief in assertions for specific individuals. The formal semantics of probabilistic
assertions is again defined with the help of probability measures on the set of all
concept descriptions, one for each individual name. Intuitively, the measure for a
tells us for each concept C how likely it is (believed to be) that a belongs to C.

Given a knowledge base P consisting of probabilistic terminological axioms and
assertions, the main inference task is now to derive optimal bounds for additional
probabilistic assertions. However, if the probabilistic terminological axioms are sup-
posed to have an impact on this inference problem, the semantics as sketched until
now is not sufficient. In fact, until now there is no connection between the proba-
bility measure used for the terminological part and the measures for the assertional
part. Intuitively, one wants that the measures for the assertional part “most closely
resemble” the measure for the terminological part, while not violating the proba-
bilistic assertions. Jaeger [1994] uses cross entropy minimization in order to give
a formal meaning to this intuition. Until now, there is no algorithm for comput-

Extensions to Description Logics 253

ing optimal bounds for P(C(a)), given a knowledge base consisting of probabilistic
terminological axioms and assertions.

The work reported in [Koller et al., 1997], which is restricted to the terminologi-
cal component, has a focus that is quite different from the one in [Heinsohn, 1994;
Jaeger, 1994]. In the latter work, the probabilistic terminological axioms provide
constraints on the set of admissible probability measures. However, these con-
straints may still be satisfied by a large set of distributions, and hence the optimal
interval entailed for the probabilities of interest can be fairly large. In contrast,
Koller et al. [1997] present a framework for the specification of a unique probability
distribution on the set of all concept descriptions (modulo equivalence). Since there
are infinitely many such descriptions, providing such a (finite) specification is a
nontrivial task. The basic idea is to specify a distribution on concepts of role-depth
0, and then to specify how to extend a distribution on concepts of role-depth n to
one on concepts of role-depth n + 1. Koller et al. [1997] employ Bayesian networks
as the basic representation language for the required probabilistic specifications.
The probability P (C) of a concept description C can then be computed by using
inference algorithms developed for Bayesian networks. The complexity of this com-
putation is linear in the length of C. Under certain restrictions on the Bayesian
networks used in the specification, it is polynomial in the size of that specification.

Yelland [2000] also combines Bayesian networks and Description Logics. In con-
trast to [Koller et al., 1997], this work extends Bayesian networks by Description
Logic features rather than the other way round. The Description Logic used in [Yel-
land, 2000] is rather inexpressive, but this allows the author to avoid restrictions
on the network that had to be imposed by Koller et al. [1997].

6.2.5.2 Fuzzy extensions

The concepts in Description Logics are interpreted as crisp sets, i.e., an individual
either belongs to the set or not. However, many “real-life” concepts are vague in
the sense that they do not have precisely defined membership criteria. Consider,
for example, the concept of a tall person. It does not make sense to fix an exact
boundary such that persons of height larger than this boundary are tall and others
are not. In fact, what about a person whose height is 1 millimeter below the
boundary? It is more sensible to say that an individual belongs to the concept
“tall person” only to a certain degree n ∈ [0, 1], which depends on the height of the
individual. This is exactly what fuzzy logic allows one to do.

The main idea underlying the fuzzy extensions of Description Logics proposed in
[Yen, 1991; Tresp and Molitor, 1998; Straccia, 1998; 2001] is to leave the syntax
as it is, but to use fuzzy logic for defining the semantics. Thus, an interpreta-
tion now assigns fuzzy sets to concepts and roles, i.e., concept names A are in-

254 F. Baader, R. Küsters, F. Wolter

terpreted by membership degree functions of the form AI : ∆I → [0, 1], and role
names R by membership degree functions of the form RI : ∆I × ∆I → [0, 1].
The interpretation of the Boolean operators and the quantifiers must then be ex-
tended from {0, 1} to the interval [0, 1]. Fuzzy logics provides different options
for such an extension. In [Yen, 1991; Tresp and Molitor, 1998; Straccia, 1998;
2001], the usual interpretation of conjunction as minimum, disjunction as maximum,
negation as λx.(1−x), universal quantifier as infimum, and existential quantifier as
supremum is considered. For example,

(∀R.C)I(d) = inf{max{1−RI(d, e), CI(d, e)} | e ∈ ∆I},

since ∀R.C corresponds to the formula ∀x.(¬R(x, y) ∨ C(y)).
Tresp and Molitor [1998] also propose an extension of the syntax by so-called ma-

nipulators, which are unary operators that can be applied to concepts. Examples
of manipulators could be “mostly”, “more or less”, or “very”. For example, if Tall
is a concept (standing for the fuzzy set of all tall persons), then VeryTall, which is
obtained by applying the manipulator Very to the concept Tall, is a new concept
(standing for the fuzzy set of all very tall persons). Intuitively, the manipulators
modify the membership degree functions of the concepts they are applied to ap-
propriately. In our example, the membership function for VeryTall should have its
largest values at larger heights than the membership function for Tall. Formally, the
semantics of a manipulators is defined by a function that maps membership degree
functions to membership degree functions. The manipulators considered in [Tresp
and Molitor, 1998] are, however, of a very restricted form.

Lets us now consider what kind of inference problems are of interest in this con-
text. Yen [1991] considers crisp subsumption of fuzzy concepts, i.e., given two
concepts C, D defined in the fuzzy DL, he is interested in the question whether
CI(d) ≤ DI(d) for all fuzzy interpretations I and d ∈ ∆I . Thus, the subsumption
relationship itself is not fuzzified. He describes a structural subsumption algorithm
for a rather small fuzzy DL, which is almost identical to the subsumption algorithm
for the corresponding classical DL. In contrast, Tresp and Molitor [1998] are inter-
ested in determining fuzzy subsumption between fuzzy concepts, i.e., given concepts
C, D, they want to know to which degree C is a subset of D. In [Straccia, 1998;
2001] and [Molitor and Tresp, 2000], also ABoxes are considered, where the ABox
assertions are equipped with a degree. In this context one wants to find out to
which degree other assertions follow from the ABox.

Both [Straccia, 1998; 2001] and [Tresp and Molitor, 1998] contain complete al-
gorithms for solving these inference problems in the respective fuzzy extension of
ALC. Although both algorithms are extensions of the usual tableau-based algo-
rithm for ALC, they differ considerably. For example, the algorithm in [Tresp and
Molitor, 1998] introduces numerical variables for the degrees, and produces a lin-

Extensions to Description Logics 255

ear optimization problem, which must be solved in place of the usual clash test.
In contrast, Straccia deals with the membership degrees within his tableau-based
algorithm.

6.2.6 Extensions by default rules

In Description Logics, inclusion axioms of the form C v D are interpreted as univer-
sal statement, i.e., all instances of C also belong to D. The same is true for inferred
subsumption relationships. In commonsense reasoning, however, one often wants
to state and infer relationships that are only “normally” true, but may have excep-
tions. The most prominent example from the non-monotonic reasoning community
is the statement that all birds fly; but of course penguins and other non-flying birds
are exceptions. Allowing for such default statements has a strong impact both on
the semantics and the reasoning capabilities of Description Logics. Instead of bas-
ing the semantics on classical first-order logic, one must employ a non-monotonic
logic [Ginsberg, 1987]. In fact, conclusions drawn from a given knowledge base with
defaults may ultimately turn out to be false when additional knowledge is added,
and thus must be withdrawn.

Since most of the classical Description Logics can be seen as fragments of first-
order predicate logic, an obvious approach for extending DLs by non-monotonic
reasoning capabilities is to take one of the well-known non-monotonic logics, and
restrict the first-order version of this logic to the DL in question. This approach
was employed in [Baader and Hollunder, 1995a], where Reiter’s default logic [Reiter,
1980] is integrated into DLs. In addition to terminological axioms in the TBox and
assertions in the ABox, Baader and Hollunder allow for terminological defaults of
the form

C(x) : D(x)
E(x)

,

where C,D, E are concept descriptions (viewed as first-order formulae with one free
variable x). Intuitively, such a default rule can be applied to an ABox individual
a, i.e., E(a) is added to the current set of beliefs, if its prerequisite C(a) is already
believed for this individual and its justification D(a) is consistent with the set of
beliefs. Formally, the consequences of a terminological default theory (consisting of
a TBox, ABox, and a set of terminological defaults) are defined with reference to
the notion of an extension, which is a set of deductively closed first-order formulae
defined by a fixpoint construction (see [Reiter, 1980], p.89). In general, a default
theory may have more than one extension, or even no extension. Depending on
whether one wants to employ skeptical or credulous reasoning, an assertion F (a) is
a consequence of a default theory iff it is in all extensions or if it is in at least one
extension of the theory.

256 F. Baader, R. Küsters, F. Wolter

It should be noted that in this setting the application of default rules is re-
stricted to individuals explicitly present in the ABox.1 For example, assume
that the ABox consists of the fact that Tom has a child that is a doctor, i.e.,
A = {(∃has-child.Doctor)(TOM)}, and that by default we assume that doctors are
usually rich:

Doctor(x) : Rich(x)
Rich(x)

.

Intuitively, one might expect that (∃has-child.Rich)(TOM) is a default consequence
of this terminological default theory. However, since the ABox does not contain a
name for Tom’s child, the default cannot be applied to this “implicit” individual,
and thus one cannot conclude that Tom has a rich child by default. Baader and
Hollunder [1995a] give two reasons that justify restricting the application of defaults
to explicit individuals. From a semantic point of view, adapting Reiter’s treatment
of implicit individuals via Skolemization is quite unsatisfactory, since semantically
equivalent (but syntactically different) ABoxes may lead to different default conse-
quences. From the algorithmic point of view, the application of defaults to implicit
individuals is problematic since it may lead to an undecidable default consequence
relation, even though the employed DL is decidable. In contrast, the restriction
of default application to explicit individuals ensures that reasoning in terminolog-
ical default theories stays decidable whenever reasoning in the underlying DL is
decidable.

A major drawback, which terminological default logic inherits from general de-
fault logic, is that it does not take precedence of more specific defaults over more
general ones into account. For example, assume that we have a default that says
that doctors are usually rich, and another one that says that general practitioners
are usually not rich, and that classification shows that general practitioners are
doctors. Intuitively, for any general practitioner the more specific second default
should be preferred, which means that there should be only one default extension
in which the general practitioner is not rich. However, in default logic the second
default has no priority over the first one, which means that one also gets a second
extension where the general practitioner is rich. This behaviour has already been
criticized in the general context of default logic, but it is all the more problematic
in the terminological case where the emphasis lies on the hierarchical organization
of concepts. To overcome this problem, Baader and Hollunder [1995b] first define a
prioritized version of Reiter’s default logic, where priorities are given by an arbitrary
partial order on defaults. In the terminological case, the priority is induced by the
subsumption relationship between prerequisites of defaults. A similar approach is

1 This agrees with the semantics given to (monotonic) rules in DLs (see Subsection 6.2.3 and Chapter 2,
Subsection 2.2.5).

Extensions to Description Logics 257

proposed in [Straccia, 1993], with the main difference that in that paper the defaults
also influence the priority order. In addition, Straccia also allows for defaults of the
form

A(x) ∧ r(x, y) : C(y)
C(y)

,

where A is an atomic concept, r a role name, and C a concept description. Such a
default can, for example, be used to say that usually a child of a doctor is again a
doctor.

A quite different proposal for how to treat defaults in Description Logics can be
found in [Quantz and Royer, 1992]. There, preference semantics [Shoham, 1987] is
employed to define the semantics of default assertions C ; D, which are intuitively
interpreted as saying: “whenever an object is an instance of C, it is also an instance
of D, unless this is in conflict with other knowledge”. Though on this intuitive level
the meaning of the default C ; D coincides with that of the terminological default
C(x) : D(x)/D(x), the formal semantics (and thus also the default consequences)
differ significantly. The semantics proposed by Quantz and Royer is based on a
preference relation on models, which tries to minimize the exceptions to defaults
while maximizing the number of defaults that have been fired. In contrast to the
work mentioned above, Quantz and Royer restrict reasoning with defaults not only
to the derivation of concept assertions of the form C(a). They also consider default
subsumption between concepts. However, default subsumption is reduced to rea-
soning about individuals. The subsumption relationship C v D follows by default
from the knowledge base iff the knowledge base extended by C(a) implies D(a) by
default, where a is a new individual name. Designing reasoning methods for such
a model-based approach to non-monotonic reasoning is rather hard. Quantz and
Royer only provide some ideas for how to obtain a sound but incomplete procedure.

Default subsumption is also considered in [Padgham and Zhang, 1993], where non-
monotonic inheritance networks [Horty et al., 1987] are extended in the direction of
DLs, though the DL employed is of a very limited expressive power.

6.3 Non-standard inference problems

All DL systems provide their users with standard inference services like computing
the subsumption hierarchy and testing ABox consistency. In some applications it
has turned out, however, that these services are not quite sufficient for providing an
optimal support when building and maintaining large DL knowledge bases. For this
reason, some DL systems (e.g., Classic) provide their users with additional system
services, which can formally be reconstructed as new types of inference problems.

First, the standard inferences can be applied after a new concept has been defined
to find out whether the concept is non-contradictory or whether its place in the

258 F. Baader, R. Küsters, F. Wolter

taxonomy coincides with the intuition of the knowledge engineer; however, these
inferences do not directly support the process of actually defining the new concept.
To overcome this problem, the non-standard inference services of computing the
least common subsumer and the most specific concept have been proposed.

Second, if a knowledge base is maintained by different knowledge engineers, one
needs support for detecting multiple definitions of the same intuitive concept. Since
different knowledge engineers might use different names for the “same” primitive
concept, the standard equivalence test may not be adequate to check whether differ-
ent descriptions refer to the same notion. The non-standard inference service uni-
fication of concept descriptions tackles this problem by allowing to replace concept
names by appropriate concept descriptions before testing for equivalence. Match-
ing is a special case of unification, which has, for example, been used for pruning
irrelevant parts of large concept descriptions before displaying them to the user.

Third, and very abstractly speaking, rewriting of concept descriptions allows one
to transform a given concept description C into a “better” description D, which
satisfies certain optimality criteria (e.g., small size) and is in a certain relationship
(e.g., equivalence or subsumption) with the original description C.

Before describing the different non-standard inferences in more detail, we start
with some general remarks on how these new problems have until now been tackled
in the literature. An overview of the state of the art in this field and detailed proofs
of several of the results mentioned below can be found in [Küsters, 2001].

6.3.1 Techniques for solving non-standard inferences—a general remark

Approaches for solving the new inference problems are usually based on an appro-
priate characterization of subsumption, which can be used to obtain a structural
subsumption algorithm. First, the concept descriptions are turned into a certain
normal form, in which implicit facts have been made explicit. Second, the structure
of the normal forms is compared appropriately. This is one of the reasons why most
of the results on non-standard inferences are restricted to languages that can be
treated by structural subsumption algorithms.

One can distinguish two kinds of normal forms proposed in the literature. In
one approach, called language-based approach in the sequel, the normal form of a
concept description is given in terms of certain finite or regular sets of words over
the alphabet of all role names. Then, subsumption can be characterized via the
inclusion of these sets (see Chapter 2, Section 2.3.3.2). The second approach, called
graph-based in the following, turns concept descriptions into so-called description
graphs. Here, subsumption of concept descriptions is characterized via the ex-
istence of certain homomorphisms between the corresponding description graphs.

Extensions to Description Logics 259

The structural subsumption algorithm introduced in Chapter 2, Subsection 2.3.1,
can be represented in this way (although this was not explicitly done in Chapter 2).

For the sublanguage ALN of Classic, the graph-based approach can be
seen as special implementation of the language-based approach [Baader et al.,
1998a]. In general, however, either the language-based or the graph-based ap-
proach may turn out to be more appropriate, depending on the DL under con-
sideration. On the one hand, the language-based approach is particularly useful
for characterizing subsumption between cyclic concept descriptions, i.e., descrip-
tions defined by means of cyclic terminologies in FL0 and ALN [Baader, 1996b;
Küsters, 1998]. On the other hand, the graph-based approach can be employed to
handle full Classic [Borgida and Patel-Schneider, 1994] as well as ALE [Baader et
al., 1999b], which extends FL0 by primitive negation and existential restrictions.
Although Borgida and Patel-Schneider did not explicitly characterize subsumption
in terms of homomorphisms between description graphs, their subsumption algo-
rithm does in fact check for the existence of an appropriate homomorphism.

The known approaches for solving non-standard inference problems are usually
based on one of the two approaches for characterizing subsumption, depending on
the DL of choice. In the sequel, we will give an idea of how to solve the inference
problems by mainly looking at the language-based approach for the DL FL0. We
will also briefly comment on how to treat extensions of FL0.

6.3.2 Least common subsumer and most specific concept

Intuitively, the least common subsumer of a given collection of concept descriptions
is a description that represents the properties that all the elements of the collection
have in common. More formally, it is the most specific concept description that
subsumes the given descriptions:

Definition 6.13 Let L be a description language. A concept description E of L
is the least common subsumer (lcs) of the concept descriptions C1, . . . , Cn in L
(lcs(C1, . . . , Cn) for short) iff it satisfies

(i) Ci v E for all i = 1, . . . , n, and
(ii) E is the least L-concept description satisfying (i), i.e., if E′ is an L-concept

description satisfying Ci v E′ for all i = 1, . . . , n, then E v E′.

As an easy consequence of this definition, the lcs is unique up to equivalence.
In fact, if E1 and E2 are both least common subsumers of the same collection of
concepts, then E1 v E2 (since E2 satisfies (i) and E1 is the least concept description
satisfying (i)). The subsumption relationship E2 v E1 can be derived analogously.
It should be noted, however, that the lcs need not always exist. This can have

260 F. Baader, R. Küsters, F. Wolter

two different reasons: (a) there may be several subsumption incomparable minimal
concept descriptions satisfying (i) of the definition; (b) there may be an infinite chain
of more and more specific descriptions satisfying (i). It is easy to see, however, that
for DLs allowing for conjunction of descriptions (a) cannot occur.

The lcs has first been introduced by Cohen et al. [1992] as a new inference task
that is useful for a number of different reasons. First, finding the most specific
concept that generalizes a set of examples is a common operation in inductive
learning, called learning from examples. Cohen and Hirsh [1994a] as well as Frazier
and Pitt [1994] investigate the learnability of sublanguages of Classic with regard
to the PAC learning model proposed by Valiant [1984]. The lcs-computation is used
as a subprocedure in their learning algorithms. Experimental results concerning
the learnability of concepts based on computing the lcs can be found in [Cohen and
Hirsh, 1994b].

Another motivation for considering the lcs is to use it as an alternative to disjunc-
tion. The idea is to replace disjunctions like C1t· · ·tCn by the lcs of C1, . . . , Cn. In
[Cohen et al., 1992; Borgida and Etherington, 1989], this operation is called knowl-
edge base vivification. Although, in general, the lcs is not equivalent to the corre-
sponding disjunction, it is the best approximation of the disjunctive concept within
the available DL. Using such an approximation is motivated by the fact that, in
many cases, adding disjunction would increase the complexity of reasoning. Observe
that, if the DL already allows for disjunction, we have lcs(C1, . . . , Cn) ≡ C1t· · ·tCn.
In particular, this means that, for such DLs, the lcs is not really of interest.

Finally, as proposed in [Baader and Küsters, 1998; Baader et al., 1999b], the lcs
operation can be used to support the “bottom-up” construction of DL knowledge
bases. In contrast to the usual “top-down” approach, where the knowledge engi-
neers first define the terminology of the application domain in the TBox and then
uses this terminology when describing individuals in the ABox, the “bottom-up”
approach proceeds as follows. The knowledge engineer first specifies some “typical”
examples of a concept to be defined using individuals in the ABox. Then, in a
second step, these individuals are generalized to their most specific concept, i.e.,
a concept description that (i) has all the individuals as instances, and (ii) is the
most specific description satisfying property (i). Finally, the knowledge engineers
inspects and possibly modifies the concept description obtained this way.

Let us now define the most specific concept of an ABox individual in more detail.

Definition 6.14 A concept description E in some description language L is the
most specific concept (msc) of the individuals a1, . . . , an defined in an ABox A
(msc(a1, . . . , an) for short) iff

(i) A |= E(ai) for all i = 1, . . . , n, and

Extensions to Description Logics 261

(ii) E is the least concept satisfying (i), i.e., if E′ is an L-concept description
satisfying A |= E′(ai) for all i = 1, . . . , n, then E v E′.

The task of computing the msc can be split into two subtasks: computing the most
specific concept of a single individual, and computing the least common subsumer
of a given finite number of concepts. In fact, it is easy to see that msc(a1, . . . , an) ≡
lcs(msc(a1), . . . , msc(an)).

6.3.2.1 Computing the lcs and the msc

We will now give an intuition on how to compute the lcs for the DL FL0 and an
extension, and briefly comment on the problems that arise when considering the
msc. As mentioned above, the first step towards an algorithm for computing the
lcs is to characterize subsumption of concept descriptions. For the DL FL0, we will
present such a characterization using the language-based approach.

The normal form of FL0-concept descriptions employed in the language-based
approach is the so-called concept-centered normal form (CCNF), which has already
been introduced in Chapter 2, Section 2.3.3.2. For example, using the equivalence
∀R.(C uD) ≡ ∀R.C u ∀R.D as well as commutativity of concept conjunction, the
FL0-concept description C = ∀R.(∀S.Au∀R.B)u∀S.∀S.A can be transformed into
CCNF as follows:

C ≡ ∀R.∀S.A u ∀S.∀S.A u ∀R.∀R.B

≡ ∀{RS, SS}.A u ∀{RR}.B.

Recall that ∀{RS, SS}.A has been introduced in Chapter 2, Subsection 2.3.3.2 as
an abbreviation for ∀R.∀S.Au∀S.∀S.A. Similarly, ∀{RR}.B abbreviates ∀R.∀R.B.

In general, if NC is a finite set of atomic concepts and NR is a finite set of role
names, then the CCNF of a concept C built using only these names is of the form

C ≡ u
A∈NC

∀UA.A,

where UA is a finite set of words over the alphabet of role names, i.e., UA ⊆ N∗
R.

Note that ∀∅.A represents the universal concept >, and ∀{ε}.A for the empty word
ε is equivalent to A.

If the CCNF of D is uA∈NC ∀VA.A, then subsumption of C by D can be charac-
terized as follows:

Proposition 6.15 C v D iff VA ⊆ UA for all A ∈ NC .

As an easy consequence, we obtain

Corollary 6.16 lcs(C, D) ≡ uA∈NC ∀(UA ∩ VA).A.

262 F. Baader, R. Küsters, F. Wolter

By Proposition 6.15, this concept description obviously subsumes C and D.
Moreover, UA ∩ VA is the largest set contained in both UA and VA, and thus
uA∈NC ∀(UA ∩ VA).A is in fact the least concept subsuming both C and D.

As an example consider the concept C specified above and D ≡ ∀{RS, RR}.A u
∀{RR, SR}.B. Then, lcs(C, D) ≡ ∀{RS}.A u ∀{RR}.B.

For DLs extending FL0 by constructs that can express unsatisfiable concepts,
like ⊥, the language-based approach can still be applied. However, in order to
characterize subsumption, we need to consider certain infinite regular languages
instead of finite ones. The reason is that ⊥ is subsumed by an infinite number
of concept descriptions. For example, although ∀{R,RSR}.⊥ v ∀{RR}.⊥, we do
not have V⊥ = {RR} ⊆ {R, RSR} =: U⊥. However, we know that ∀{R}.⊥ is
subsumed by ∀{Rw}.⊥ for any word w of the alphabet NR. Consequently, we must
use U⊥·N∗

R = {vw | v ∈ U⊥ and w ∈ N∗
R} in place of U⊥ in the inclusion test.

For this reason, the lcs must also be described in terms of possibly infinite regular
languages. As a simple example, consider the concept descriptions C ≡ ∀{R, SR}.⊥
and D ≡ ∀{RS, S}.⊥. Then,

lcs(C,D) ≡ ∀({R, SR}·N∗
R ∩ {RS, S}·N∗

R).⊥
≡ ∀({RS, SR}·N∗

R).⊥
≡ ∀{RS, SR}.⊥

A detailed description of how to compute the lcs in ALN , which extends FL0 by
⊥, atomic complement, and number restrictions, is given in [Baader and Küsters,
1998]. Moreover, Baader and Küsters investigate cyclic ALN -concept descriptions,
which are defined in terms of cyclic terminologies with greatest fixpoint seman-
tics. In this context, the languages UA introduced above can be arbitrary regular
languages (see also Chapter 2, Section 2.3.3.2).

Cyclic descriptions become necessary if one wants to guarantee the existence of
the msc. Consider, for example, the ABox consisting only of the assertion R(a, a).
Then, we know that msc(a) v ∀R. · · · ∀R.(6 1R) for arbitrarily deep nesting of
value restrictions. Baader and Küsters show that there does not exist an acyclic
ALN -concept description presenting the msc of a. However, the msc of individuals
described in ALN -ABoxes can always be represented by a cyclic ALN -concept
description. In our example, msc(a) can be represented by the concept A defined by
A ≡ (= 1R)u∀R.A, if this definition is interpreted with greatest fixpoint semantics.

Using the graph-based approach, the lcs can be computed for the DL that extends
FL0 by the same-as construct [Cohen and Hirsh, 1994a; Frazier and Pitt, 1994;
Küsters and Borgida, 2001], for the language ALE , which extends FL0 by full exis-
tential quantification as well as primitive negation [Baader et al., 1999b], and for the
language ALEN , which extends ALE by number restrictions [Küsters and Molitor,

Extensions to Description Logics 263

2001b]. On the one hand, it is not clear how to handle these languages with the
language-based approach. On the other hand, up to now the graph-based approach
cannot deal with cyclic concept descriptions, which are needed for computing the
msc. Consequently, for the extensions of FL0 treated with the help of the graph-
based approach, the msc can currently only be approximated [Cohen and Hirsh,
1994b; Küsters and Molitor, 2001a].

6.3.3 Unification and matching

Unification and matching are non-standard inferences that allow us to replace cer-
tain concept names by concept descriptions before testing for equivalence or sub-
sumption. This capability turns out to be useful when maintaining (large) knowl-
edge bases. In this subsection, we will first introduce unification and matching and
mention the main motivations for considering these new inference tasks. We will
then review the results available in the literature, and give an intuition on how
unification problems in the small language FL0 can be solved.

6.3.3.1 Unification

Unification of concepts has first been introduced by Baader and Narendran [1998],
motivated by the following application problem. If several knowledge engineers are
involved in defining new concepts, and if this knowledge acquisition process takes
rather long (several years), it happens that the same (intuitive) concept is intro-
duced several times, often with slightly differing descriptions. Testing for equiva-
lence of concepts is not always sufficient to find out whether, for a given concept
description, there already exists another concept description in the knowledge base
describing the same notion. As an example, let us ask whether the following two
FL0-concept descriptions might denote the same (intuitive) concept?

∀has-child.∀has-child.Rich u ∀has-child.Rmr,

Acr u ∀has-child.Acr u ∀has-child.∀has-spouse.Rich.

The answer is yes, since replacing the concept name Rmr by the description Rich u
∀has-spouse.Rich and Acr by ∀has-child.Rich yields the descriptions

∀has-child.∀has-child.Rich u ∀has-child.(Rich u ∀has-spouse.Rich),

∀has-child.Rich u ∀has-child.∀has-child.Rich u ∀has-child.∀has-spouse.Rich,

which are obviously equivalent. Thus, under the assumption that Rmr stands for
“Rich and married rich” and Acr for “All children are rich”, we can conclude that
both descriptions are meant to express the concept “All grandchildren are rich and
all children are rich and married rich”.

A substitution of concept descriptions for concept names that makes two concept

264 F. Baader, R. Küsters, F. Wolter

descriptions C, D equivalent is called a unifier of C and D. Of course, before testing
for unifiability, one must decide which of the concept names the unifier is allowed to
replace. These names are then called concept variables to distinguish them from the
usual concept names, which cannot be replaced. In the above example, the strange
acronyms Acr and Rmr were considered to be variables, whereas Rich was treated
as a (non-replaceable) concept name. Concept descriptions containing variables are
called concept patterns. More precisely, FL0-concept patterns are defined by means
of the following syntax rules:

C,D −→ X | A | ∀R.C | C uD

where X stands for concept variables.
Now, a substitution in FL0 is a mapping from the concept variables into the

set of FL0-concept descriptions. An example is the substitution {Rmr 7→ Rich u
∀has-spouse.Rich, Acr 7→ ∀has-child.Rich} used in our example. The application of
a substitution can be extended from variables to FL0-concept patterns in the usual
way (as exemplified above).

Definition 6.17 Let C, D be FL0-concept patterns. Then, a substitution σ is a
unifier of the unification problem C ≡? D iff σ(C) ≡ σ(D).

Of course, it is not necessarily the case that concept descriptions that are unifiable
in this way are really meant to represent the same notion. A unifiability test can,
however, suggest to the knowledge engineer possible candidate descriptions.

6.3.3.2 Matching

Matching can be seen as a special case of unification, where one of the two ex-
pressions to be unified do not contain variables [Baader and Narendran, 1998;
2001]. Thus, a matching problem is of the form C ≡? D where C is a concept
description and D a concept pattern. A substitution σ is a matcher of this problem
iff C ≡ σ(D).

Borgida and McGuinness [1996] have introduced a different notion of matching,
which we call matching modulo subsumption to distinguish it from matching modulo
equivalence, as introduced above. A matching problem modulo subsumption is of
the form C v? D, where C is a concept description and D is a concept pattern.
Such a problem asks for a substitution σ such that C v σ(D).

Since σ is a solution of C v? D iff σ solves C ≡? C uD, matching modulo sub-
sumption can be reduced to matching modulo equivalence, and thus to unification.
However, in the context of matching modulo subsumption, one is interested in find-
ing “minimal” solutions of C v? D, i.e., σ should satisfy the property that there
does not exist another substitution δ such that C v δ(D) @ σ(D). In addition,

Extensions to Description Logics 265

Baader et al. [1999a] introduce side conditions of the form X v E and X @ E, with
X a variable and E a concept pattern, to further restrict possible substitutions for
the variables occurring in the matching problem.

The original reason for introducing matching modulo equivalence was (i) to help
filter out unimportant aspects of complicated concepts appearing in large knowledge
bases, and (ii) to specify patterns for explaining proofs carried out by DL systems
[McGuinness and Borgida, 1995]. For example, matching the concept pattern

D = ∀research-interests.X

against the description

C = ∀pets.Cat u ∀research-interests.AI u ∀hobbies.Gardening

yields the minimal matcher σ = {X 7→ AI}, and thus finds the scientific interest
described in the concept, filtering out the other aspects described by C.

Another motivation for matching as well as unification can be found in the area
of integrating data or knowledge base schemata represented in some DL. An inte-
grated schema can be viewed as the union of the local schemata along with some
interschema assertions satisfying certain conditions. Finding such interschema as-
sertions can be supported be solving matching or unification problems. Borgida
and Küsters [2000] propose a formal framework for schema integration, and pro-
vide initial theoretical as well as experimental results concerning this application of
unification and matching.

6.3.3.3 Results on matching and unification

As with computing the lcs, the algorithms for matching that can be found in the
literature follow either the language-based or the graph-based approach. Match-
ing modulo subsumption for a description language containing most of the con-
structs available in Classic has been considered in [Borgida and McGuinness, 1996].
Borgida and McGuinness describe a polynomial-time matching algorithm, which
follows the graph-based approach. However, this algorithm cannot be applied to
arbitrary patterns, and it is not complete. Using the language-based approach, com-
plete and polynomial-time algorithms for matching modulo equivalence and match-
ing modulo subsumption in FL0 were presented in [Baader and Narendran, 1998;
2001]. This result was extended to the language ALN by Baader et al. [1999a] and
its extension ALN reg by the role constructors union, composition, and transitive
closure by Küsters [2001]. Baader et al. [2001] consider matching under side condi-
tions in more detail. Basically, subsumption conditions of the form X v E leave the
complexity of matching in ALN polynomial, whereas strict subsumption conditions
X @ E cause np-hardness. Matching in ALE based on the characterization of sub-
sumption by homomorphism between graphs has been investigated in [Baader and

266 F. Baader, R. Küsters, F. Wolter

Küsters, 2000]. It is shown that matching modulo equivalence is np-complete, and
that appropriate matchers can be computed in exponential time. Finally, complete
algorithms for matching in Classic are provided by Küsters [2001].

For unification, the only results available until now are for the small DL FL0

and its extension FLreg by the role constructors union, composition, and transitive
closure. In [Baader and Narendran, 1998; 2001] it is shown that deciding unifiability
of FL0-patterns is an ExpTime-complete problem, and in [Baader and Küsters,
2001] this result is extended to FLreg . In the remainder of this subsection, we will
try to give a flavor of how to solve unification problems in FL0.

As an immediate consequence of Proposition 6.15, equivalence of FL0-concept
descriptions C = uA∈NC ∀UA.A and D = uA∈NC ∀VA.A in CCNF can be charac-
terized as follows:

C ≡ D iff UA = VA for all A ∈ NC . (6.3)

This fact can be used to turn FL0-unification problems into certain formal language
equations, which then can be solved using tree automata.

Let us illustrate this on the example from Subsection 6.3.3.1. There, we consid-
ered the unification problem1

∀{cc}.R u ∀{c}.X ≡? ∀{ε, c}.Y u ∀{cs}.R.

As an easy consequence of (6.3), a substitution σ of the form

{X 7→ ∀UX .R, Y 7→ ∀UY .R},

where UX , UY are sets of words over the alphabet {c, s}, is a unifier of this problem
iff the assignment X = UX and Y = UY solves the formal language equation

{cc} ∪ {c}·X = {cs} ∪ {ε, c}·Y.

For example, the unifier {X 7→ R u ∀s.R, Y 7→ ∀c.R} corresponds to the solution
X = {ε, s}, Y = {c} of the above formal language equation. In general, unification
problems correspond to systems of formal language equations of the form

S0 ∪ S1·X1 ∪ · · · ∪ Sn·Xn = T0 ∪ T1·X1 ∪ · · · ∪ Tn·Xn,

where the Si, Ti are given finite sets of words and the Xi are variables ranging
over finite sets of words. In [Baader and Narendran, 1998; 2001] it is shown that
solvability of such a system of equations can be reduced (in exponential time) to
the emptiness problem for automata on finite trees. This yields an ExpTime-
decision procedure for unification in FL0. For unification in FLreg , the Si, Ti are
1 To increase readability, has-spouse is replaced by s, has-child by c, Rich by R, and Rmr, Acr by the

variables X, Y . In addition, we have already transformed the patterns into their CCNF.

Extensions to Description Logics 267

regular languages, and to test the equation for solvability one must employ automata
working on infinite trees.

6.3.4 Concept rewriting

A general framework for rewriting concepts using terminologies has been proposed
in Baader et al. [2000]. Assume that L1,L2, and L3 are three description languages,
and let C be an L1-concept description and T an L2-TBox. We are interested in
rewriting (i.e., transforming) C into an L3-concept description D such that C and
D are in a certain relationship (e.g., equivalence, subsumption w.r.t. T) and such
that D satisfies certain optimality criteria (e.g., being of minimal size).

This very general framework has several interesting instances. In the following,
we will discuss the three most promising ones.

The first instance is the translation of concept descriptions from one DL into
another. Here, we assume that L1 and L3 are different description languages, and
that the TBox T is empty. By trying to rewrite an L1-concept C into an equivalent
L3-concept D, one can find out whether C is expressible in L3. In many cases,
such an exact rewriting may not exist. In this case, one can try to approximate
C by an L3-concept from above (below), i.e., find a minimal (maximal) concept
description D in L3 such C v D (D v C). An inference service that can compute
such rewritings could, for example, support the transfer of knowledge bases between
different systems. First results in this direction for the case where L1 is ALC and
L3 is ALE can be found in [Brandt et al., 2001].

The second instance comes from the database area, where the problem of rewrit-
ing queries using views is a well-known research topic [Beeri et al., 1997]. The aim
is to optimize the runtime of queries by using cached views, which allows one to
minimize the (more expensive) access to source relations. In the context of the
above framework, views can be regarded as TBox definitions and queries as concept
descriptions. Beeri et al. [1997] investigate the instance where L1 = L2 = ALCNR
and L3 = {u,t}. More precisely, they are interested in maximally contained total
rewritings, i.e., D should be subsumed by C, contain only concept names defined
in the TBox, and be a maximal concept (w.r.t. subsumption) satisfying these prop-
erties. They show that such a rewriting is computable (whenever it exists).

The third instance of the general framework, which was first proposed in [Baader
and Molitor, 1999], tries to increase the readability of large concept descriptions
by using concepts defined in a TBox. The motivation comes from the expe-
riences made with non-standard inferences (like lcs, msc and matching) in ap-
plications. The concept descriptions produced by these services are usually un-
folded (i.e., do not use defined names), and are thus often very large and hard
to read and comprehend. Therefore, one is interested in automatically generat-

268 F. Baader, R. Küsters, F. Wolter

ing an equivalent concept description of minimal length that employs the con-
cept names defined in the underlying terminology. Referring to the framework,
one thus considers the case where L = L1 = L2 = L3 and the TBox is non-
empty. For a given concept description C and a TBox T in L one is inter-
ested in an L-concept description D (containing concept names defined in T)
such that C ≡T D and the size of D is minimal. Rewriting in this sense has
been investigated for the languages ALN and ALE [Baader and Molitor, 1999;
Baader et al., 2000]. Rewritings can be computed by a nondeterministic polyno-
mial algorithm that uses an oracle for deciding subsumption. The corresponding
decision problem (i.e., the question whether there exists a rewriting of size ≤ k for
a given number k) is np-hard for both languages.

Acknowledgement

We would like to thank Jochen Heinsohn and Manfred Jaeger for helpful discussions
regarding the treatment of uncertain and vague knowledge and Riccardo Rosati
regarding the treatment of epistemic operators.

