
4

Relationships with other Formalisms
Ulrike Sattler

Diego Calvanese

Ralf Molitor

Abstract

In this chapter, we are concerned with the relationship between Description Log-
ics and other formalisms, regardless of whether they were designed for knowledge
representation issues or not. We concentrated on those representation formalisms
that either (1) had or have a strong influence on Description Logics (e.g., modal
logics), (2) are closely related to Description Logics for historical reasons (e.g., se-
mantic networks and structured inheritance networks), or (3) have similar expressive
power (e.g., semantic data models). There are far more knowledge representation
formalisms than those mentioned in this section. For example, “verb-centered”
graphical formalisms like those introduced by Simmons [1973] are not mentioned
since we believe that their relationship with Description Logics is too weak.

4.1 AI knowledge representation formalisms

In artificial intelligence (AI), various “non-logical” knowledge representation for-
malisms were developed, motivated by the belief that classical logic is inadequate
for knowledge representation in AI applications. This belief was mainly based upon
cognitive experiments carried out with human beings and the wish to have repre-
sentational formalisms that are close to the representations in human brains. In this
Section, we will discuss some of these formalisms, namely semantic networks, frame
systems, and conceptual graphs. The first two formalisms are mainly presented for
historical reasons since they can be regarded as ancestors of Description Logics. In
contrast, the third formalism can be regarded as a “sibling” of Description Logics
since both have similar ancestors and live in the same time.

142

Relationships with other Formalisms 143

4.1.1 Semantic networks

Semantic networks originate in Quillian’s semantic memory models [Quillian, 1967],
a graphical formalism designed to represent “word concepts” in a definitorial way,
i.e., similar to the one that can be found in an encyclopedia definition. This for-
malism is based on labelled graphs with different kinds of edges and nodes. Besides
others, Quillian’s networks allow for subclass/superclass edges, for and - and or
edges, and for subject/object edges between nodes.

Following Quillian’s memory models, a great variety of semantic network for-
malisms were proposed; an overview of their history can be found in [Brachman,
1979]. In general, semantic networks distinguish between concepts (denoted by
generic nodes) and individuals (denoted by individual nodes), and between sub-
class/superclass edges and property edges. Using subclass/superclass links, concepts
can be organised in a specialisation hierarchy. Using property edges, properties can
be associated to concepts, that is, to the individuals belonging to the concept the
properties are associated with. Figure 4.1 contains a hierarchy of animals, birds,
fishes, etc. Interestingly, the cognitive adequacy of this approach was proven em-
pirically [Collins and Quillian, 1970].

The two kinds of edges interact with each other: A property is inherited along
subclass/superclass edges—if not modified in a more specific class. For example,
birds are equipped with skin because animals are equipped with skin, and birds

Canar Shark

Bird Fish

Animal
- has skin
- can move around
- eats
- breathes

- has feathers

- has wings
- can fly

- has fins
- can swim
- has gills

- can sing
- is yellow

- can bite
- is dangerous

Ostrich
- has long,
 thin legs
- is tall
- can’t fly

Salmon
- is pink
- is edible
- swims upstreams
 to lay eggs

ljbdfg

Fig. 4.1. A semantic network describing animals.

144 U. Sattler, D. Calvanese, R. Molitor

inherit this property because of the subclass/superclass edge between birds and
animals. In contrast, although ostriches are birds, they do not inherit the property
“can fly” from birds because this property is “modified” for ostriches.

Intuitively, it should be possible to translate subclass/superclass edges into con-
cept definitions, for example,1

Shark ≡ Fish u CanBite u IsDangerous.

According to Brachman [1985], the above translation is not always intended. Sub-
class/superclass edges can also be read as primitive concept definitions, that is,
they impose only necessary properties but not sufficient ones. Hence the above
translation might better be

Shark v Fish u CanBite u IsDangerous.

Due to the lack of a precise semantics, there are even more readings of subclass/su-
perclass edges which are discussed in Woods [1975], [1977b; 1985]. A prominent
reading is the one of inheritance by default, which can be specified in different ways,
thus leading to misunderstandings and to the question which of these specifications
is the “right” one (see also Chapter 6).

As a consequence of this ambiguity, new formalisms mainly evolved along two
lines: (1) To capture inheritance by default, various non-monotonic inheritance sys-
tems, respectively various ways of reasoning in non-monotonic inheritance systems,
were investigated [Touretzky et al., 1987; 1991; Selman and Levesque, 1993]. (2) To
capture the monotonic aspects of semantic networks, a new graphical formalism,
structured inheritance networks, was introduced and implemented in the system
Kl-One [Brachman, 1979; Brachman and Schmolze, 1985]. It was designed to cover
the declarative, monotonic aspects of semantic networks, and hence did not specify
the way in which (non-monotonic multiple) inheritance was supposed to function
in conflicting situations. Brachman and Schmolze [1985] argue that Kl-One does
not allow for cancellation or inheritance by default because such mechanisms would
make taxonomies meaningless. Indeed, all properties of a given concept could be
cancelled, so that it would fit everywhere in the taxonomy. Their proposition is to
make a strict separation of default assertions and conceptual descriptions.

Brachman and Schmolze [1985], besides pointing out the computation of the
taxonomy as a core system service, describe the meaning of various concept con-
structors that were implemented in Kl-One, for example conjunction, universal
value restrictions, role hierarchies, role-value-maps, etc. Moreover, we find a clear
distinction between individuals and concepts, and between a terminological and an
assertional formalism.
1 In the following, we use standard Description Logics as defined in Chapter 2.

Relationships with other Formalisms 145

Later [Levesque and Brachman, 1987], Kl-One was provided with a well-defined
“Tarski-style” semantics which fixed the precise meaning of its graphical constructs
and led to the definition of the first Description Logic [Levesque and Brachman,
1987], at that time also called terminological languages, concept languages, or Kl-
One based languages. Besides giving a precise meaning to semantic networks, this
formalisation allowed the investigation of inference algorithms with respect to their
soundness, completeness, and computational complexity. For example, it turned
out that subsumption in Kl-One is undecidable, mainly due to role-value-maps
[Schmidt-Schauß, 1989].

4.1.2 Frame systems

Minsky [1981] introduced frame systems as an alternative to logic-oriented ap-
proaches to knowledge representation, which he thought were not adequate to “sim-
ulate common sense thinking” for various reasons. His system provides record-like
data structures to represent prototypical knowledge concerning situations and ob-
jects and includes defaults, multiple perspectives, and analogies. Nowadays, se-
mantic networks and frame systems are often viewed as the same family of for-
malisms. However, in standard semantic networks, properties are restricted to
primitive, atomic ones, whereas, in general, properties in frame systems can be
complex concepts described by frames.

One goal of the frame approach was to gather all relevant knowledge about a situa-
tion (e.g., entering a restaurant) in one object instead of distributing this knowledge
across various axioms. Roughly spoken, a situation (or an object) is described in one
frame. Similar to entries in a record, a frame contains slots to represent properties
of the situation described by the frame. Reasoning comes in two shapes: (1) Using
a “partial matching”, more specific frames are embedded into more general ones,
thus giving, for example, meaning to a new situation or classifying an object as a
kind of, say, bird. (2) Searching for slot fillers to collect more information con-
cerning a specific situation. A variety of expert systems [Fikes and Kehler, 1985;
Christaller et al., 1992; Gen, 1995; Flex, 1999] are based on a frame-based formalism
and are further enhanced with rules, triggers, daemons, etc.

Despite the fact that frame systems were designed as an alternative to logic, the
monotonic, declarative part of this formalism could be shown to be captured us-
ing first-order predicate logic [Hayes, 1977; 1979]. To our knowledge, no precise
semantics could be given for the non-declarative, non-logic, or non-monotonic as-
pects of frame systems. Hence neither their expressive power nor the quality of
the corresponding reasoning algorithms and services can be compared with other
formalisms.

In the remainder of this section, we show how the monotonic part of a frame-

146 U. Sattler, D. Calvanese, R. Molitor

based knowledge base can be translated into an ALUN TBox [Calvanese et al.,
1994].1 Since there is no standard syntax for frame systems, we have chosen to use
basically the notation adopted by Fikes and Kehler [1985], which is used also in the
Kee 2 system.

A frame definition is of the form Frame : F in KB F E, where F is a frame
name and E is a frame expression, i.e., an expression formed according to the
following syntax:

E −→ SuperClasses : F1, . . . , Fh

MemberSlot : S1

ValueClass : H1

Cardinality.Min : m1

Cardinality.Max : n1

· · ·
MemberSlot : Sk

ValueClass : Hk

Cardinality.Min : mk

Cardinality.Max : nk

Fi denotes a frame name, Sj denotes a slot name, mj and nj denote positive integers,
and Hj denotes slot constraints. A slot constraint can be specified as follows:

H −→ F |
(INTERSECTION H1 H2) |
(UNION H1 H2) |
(NOT H)

A frame knowledge base F is a set of frame definitions.
For example, Figure 4.2 shows a simple Kee knowledge base describing courses in

a university. Cardinality restrictions are used to impose a minimum and maximum
number of students that may be enrolled in a course, and to express that each
course is taught by exactly one individual. The frame AdvCourse represents courses
which enroll only graduate students, i.e., students who already have a degree. Basic
courses, on the other hand, may be taught only by professors.

Hayes [1979] gives a semantics to frame definitions by translating them to first-
order formulae in which frame names are translated to unary predicates, and slots
are translated to binary predicates.

In order to translate frame knowledge bases to ALUN knowledge bases, we first
define the function Ψ that maps each frame expression into an ALUN concept ex-
pression as follows: Each frame name F is mapped onto an atomic concept Ψ(F),
1 Not only the translation but also the example are by Calvanese et al. [1994].
2 Kee is a trademark of Intellicorp. Note that a Kee user does not directly specify her knowledge base in

this notation, but is allowed to define frames interactively via the graphical system interface.

Relationships with other Formalisms 147

Frame: Course in KB University
MemberSlot: enrolls

ValueClass: Student
Cardinality.Min: 2
Cardinality.Max: 30

MemberSlot: taughtby
ValueClass: (UNION GradStudent

Professor)
Cardinality.Min: 1
Cardinality.Max: 1

Frame: AdvCourse in KB University
SuperClasses: Course
MemberSlot: enrolls

ValueClass: (INTERSECTION
GradStudent
(NOT Undergrad))

Cardinality.Max: 20

Frame: BasCourse in KB University
SuperClasses: Course
MemberSlot: taughtby

ValueClass: Professor

Frame: Professor in KB University

Frame: Student in KB University

Frame: GradStudent in KB University
SuperClasses: Student
MemberSlot: degree

ValueClass: String
Cardinality.Min: 1
Cardinality.Max: 1

Frame: Undergrad in KB University
SuperClasses: Student

Fig. 4.2. A Kee knowledge base.

each slot name S onto an atomic role Ψ(S), and each slot constraint H onto the cor-
responding Boolean combination Ψ(H) of concepts. Then, every frame expression
of the form

SuperClasses : F1, . . . , Fh

MemberSlot : S1

ValueClass : H1

Cardinality.Min : m1

Cardinality.Max : n1

· · ·
MemberSlot : Sk

ValueClass : Hk

Cardinality.Min : mk

Cardinality.Max : nk

is mapped into the concept

Ψ(F1) u · · · uΨ(Fh) u
∀Ψ(S1).Ψ(H1) u>m1 Ψ(S1) u6n1 Ψ(S1) u
· · ·
∀Ψ(Sk).Ψ(Hk) u>mk Ψ(Sk) u6nk Ψ(Sk).

Making use of the mapping Ψ, we obtain the ALUN knowledge base Ψ(F) cor-
responding to a frame knowledge base F , by introducing in Ψ(F) an inclusion
assertion Ψ(F) v Ψ(E) for each frame definition Frame : F in KB F E in F .

148 U. Sattler, D. Calvanese, R. Molitor

Course v ∀enrolls.Student u> 2 enrolls u6 30 enrolls u
∀taughtby.(Professor t GradStudent) u= 1 taughtby

AdvCourse v Course u ∀enrolls.(GradStudent u ¬Undergrad) u6 20 enrolls
BasCourse v Course u ∀taughtby.Professor

GradStudent v Student u ∀degree.String u=1 degree
Undergrad v Student

Fig. 4.3. The ALUN knowledge base corresponding to the
Kee knowledge base in Figure 4.2.

The ALUN knowledge base corresponding to the Kee knowledge base given in
Figure 4.2 is shown in Figure 4.3.

The correctness of the translation follows from the correspondence between the
set-theoretic semantics ofALUN and the first-order interpretation of frames [Hayes,
1979; Borgida, 1996; Donini et al., 1996b]. Consequently,

• verifying whether a frame F is satisfiable in a knowledge base and
• identifying which of the frames are more general than a given frame,

are captured by concept satisfiability and concept subsumption inALUN knowledge
bases. Hence reasoning for the monotonic, declarative part of frame systems can
be reduced to concept satisfiability and concept subsumption in ALUN knowledge
bases.

4.1.3 Conceptual graphs

Besides Description Logics, conceptual graphs [Sowa, 1984] can be viewed as de-
scendants of frame systems and semantic networks. Conceptual graphs (CGs) are a
rather popular (especially in natural language processing) and expressive formalism
for representing knowledge about an application domain in a graphical way. They
are given a formal semantics, e.g., by translating them into (first-order) formulae.

In the CG formalism, one is, just as for Description Logics, not only interested
in representing knowledge, but also in reasoning about it. Reasoning services for
CGs are, for example, deciding whether a given graph is valid, i.e., whether the
corresponding formula is valid, or whether a graph g is subsumed by a graph h,
i.e., whether the formula corresponding to g implies the formula corresponding to
h. Since CGs can express all of first-order predicate logic [Sowa, 1984], these rea-
soning problems are undecidable for general CGs. In the literature [Sowa, 1984;
Wermelinger, 1995; Kerdiles and Salvat, 1997] one can find complete calculi for va-
lidity of CGs, but implementations of these calculi may not terminate for formulae
that are not valid. An approach to overcome this problem, which has also been

Relationships with other Formalisms 149

employed in the area of Description Logics, is to identify decidable fragments of the
formalism. The most prominent decidable fragment of CGs is the class of simple con-
ceptual graphs (SGs) [Sowa, 1984], which corresponds to the conjunctive, positive,
and existential fragment of first-order predicate logic (i.e., existentially quantified
conjunctions of atoms). Even for this simple fragment, however, subsumption is
still an np-complete problem [Chein and Mugnier, 1992].1

Although Description Logics and CGs are employed in very similar applications,
precise comparisons were published, to our knowledge, only recently [Coupey and
Faron, 1998; Baader et al., 1999c]. These comparisons are based on translations of
CGs and Description Logic concepts into first-oder formulae. It turned out that the
two formalisms are quite different for several reasons:

(i) CGs are translated into closed first-order formulae, whereas Description
Logic concepts are translated into formulae in one free variable;

(ii) since Description Logics use a variable-free syntax, certain identifications of
variables expressed by cycles in SGs and by co-reference links in CGs cannot
be expressed in Description Logics;

(iii) in contrast to CGs, most Description Logics considered in the literature only
allow for unary and binary relations but not for relations of arity greater
than 2;

(iv) SGs are interpreted by existential sentences, whereas almost all Description
Logics considered in the literature allow for universal quantification.

Possibly as a consequence of these differences, so far no natural fragment of CGs
that corresponds to a Description Logic has been identified. In the sequel, we will
illustrate the main aspects of the correspondence result presented by Baader et
al. [1999c], which strictly extends the one proposed by Coupey and Faron [1998].

Simple Conceptual Graphs

Simple conceptual graphs (SGs) as introduced by Sowa [1984] are the most promi-
nent decidable fragment of CGs. They are defined with respect to a so-called sup-
port. Roughly spoken, the support is a partially ordered signature that can be used
to fix the a primitive ontology of a given application domain. It introduces a set of
concept types (unary predicates), a set of relation types (n-ary predicates), and a set
of individual markers (constants). As an example, consider the support S shown in
Figure 4.4, where > is the most general concept type representing the entire domain.
The partial ordering on the individual markers is flat, i.e., all individual markers
are pairwise incomparable and the so-called generic marker ∗ is more general than
1 Since SGs are equivalent to conjunctive queries (see also Chapter 16), the np-completeness of subsumption

of SGs is also an immediate consequence of np-completeness of containment of conjunctive queries
[Chandra and Merlin, 1977].

150 U. Sattler, D. Calvanese, R. Molitor

hasOffspring

attends hasChild likes

concept types: relation types: individual marker:

CSCourseHuman

> ∗

KR101PETERMARY

Male Female Student

Fig. 4.4. An example of a support.

all individual markers. In this example, all relation types are assumed to have arity
2 and to be pairwise incomparable except for hasOffspring, which is more general
than hasChild. The partial orderings on the types yield a fixed specialization hierar-
chy for these types that must be taken into account when computing subsumption
relations between SGs. For binary relation types, this partial ordering resembles a
role hierarchy in Description Logics.

An SG over the support S is a labelled bipartite graph of the form g = (C,R, E, `),
where C is a set of concept nodes, R is a set of relation nodes, and E ⊆ C × R is
the edge relation.

As an example, consider the SGs depicted in Figure 4.5: the SG g describes a
woman Mary having a child who likes its grandfather Peter and who attends the
computer science course number KR101; the SG h describes all mothers having a
child who likes one of its grandparents.

Each concept node is labelled with a concept type (such as Female) and a referent,
i.e., an individual marker (such as MARY) or the generic marker ∗. A concept
node is called generic if its referent is the generic marker; otherwise, it is called
individual concept node. Each relation node is labelled with a relation type r (such
as hasChild), and its outgoing edges are labelled with indices according to the arity
of r. For example, for the binary relation hasChild, there is one edge labelled with
1 (leading to the parent), and one edge labelled with 2 (leading to the child).

Simple graphs are given a formal semantics in first-order predicate logic (FOL)
by the operator Φ [Sowa, 1984]: each generic concept node is related to a unique
variable, and each individual concept node is related to its individual marker. Con-
cept types and relation types are translated into atomic formulae, and the whole
SG g is translated into the existentially closed conjunction of all atoms obtained
from the nodes in g.

In our example, this operator yields

Φ(g) = ∃x1.(Female(MARY) ∧ Human(PETER) ∧ Student(x1) ∧
CScourse(KR101) ∧ hasChild(PETER,MARY) ∧
hasChild(MARY, x1) ∧ likes(x1, PETER) ∧ attends(x1, KR101)),

Relationships with other Formalisms 151

Female : Maryc0
Female : ∗d0

CScourse : KR101c3

Student : ∗c2
Human : ∗d1

Human : ∗d2

g:

1 1

1 2

likeslikes

21

1

2

attends

22

c1

h:

1 1

2 2

hasChild hasChild

Human : PETER

hasChild hasChild

Fig. 4.5. Two simple graphs.

c0

d0

Female Student

>

c1 e0

2.) 3.)1.)

Female: MARY

Student: MARY

FemStud

FemStud: MARY {Female,Student} : MARY

Fig. 4.6. Expressing conjunction of concept types in SGs.

Φ(h) = ∃x0x1x2.(Female(x0) ∧ Human(x1) ∧ Human(x2) ∧
hasChild(x1, x0) ∧ hasChild(x0, x2) ∧ likes(x2, x1)),

where x1 in Φ(g) is (resp. x0, x1, and x2 in Φ(h) are) introduced for the generic
concept node c2 (resp. the generic concept nodes d0, d1, and d2).

In general, there are three different ways of expressing conjunction of concept
types. For example, suppose we want to express that Mary is both female and a
student. This can be expressed by a SG containing one individual concept node
for each statement (see Figure 4.6, 1.).1 A second possibility is to introduce a new
concept type in the support for a common specialization of Female(MARY) and
Student(MARY) (see Figure 4.6, 2.). Finally, such a conjunction can be represented
by labelling the corresponding concept node with a set of concept types instead of
a single concept type (see Figure 4.6, 3.; for details on how to handle SGs labelled
with sets of concept types see [Baader et al., 1999c]).

Subsumption with respect to a support S for two SGs g, h is defined by a so-
called projection from h to g [Sowa, 1984; Chein and Mugnier, 1992]: g is subsumed
by h w.r.t. S iff there exists a mapping from h to g that (1) maps concept nodes
1 Note that this solution cannot be applied if the individual marker MARY were substituted by the generic

marker ∗, because the two resulting generic concept nodes would be interpreted by different variables.

152 U. Sattler, D. Calvanese, R. Molitor

(resp. relation nodes) in h onto more specific (w.r.t. the partial ordering in S)
concept nodes (resp. relation nodes) in g and that (2) preserves adjacency.

In our example (Figure 4.5), it is easy to see that g is subsumed by h, since
mapping di onto ci for 0 ≤ i ≤ 2 yields a projection w.r.t. S from h to g.

Subsumption for SGs is an np-complete problem [Chein and Mugnier, 1992]. In
the restricted case where the subsumer h is a tree, subsumption can be decided in
polynomial time [Mugnier and Chein, 1992].

Concept Descriptions and Simple Graphs

In order to determine a Description Logic corresponding to (a fragment of) SGs,
one must take into account the differences between Description Logics and CGs
mentioned before.

• Most Description Logics only allow for role terms corresponding to binary rela-
tions and for concept descriptions describing connected structures. Thus, Baader
et al. [1999c] and Coupey and Faron [1998] restrict their attention to connected
SGs over a support S containing only unary and binary relation types.

• Due to the different semantics of SGs and concept descriptions (closed formulae
vs. formulae in one free variable), Coupey and Faron restrict their attention to
SGs that are trees. Baader et al. introduce so-called rooted SGs, i.e., SGs that
have one distinguished node called the root. An adaption of the operator Φ yields
a translation of a rooted SG g into a FO formula Φ(g)(x0) with one free variable
x0.

• Since all Description Logics considered in the literature allow for conjunction of
concepts, Baader et al. allow for concept nodes labelled with a set of concept
types instead of a single concept type in order to express conjunction of atomic
concepts in SGs. Coupey and Faron avoid the problem of expressing conjunction
of atomic concepts: they just do not allow for (1) conjunctions of atomic concepts
in concept descriptions, and (2) for individual concept nodes in SGs.

The Description Logic considered by Baader et al., denoted by ELIRO1, allows
for existential restrictions and intersection of concept descriptions (EL), inverse
roles (I), intersection of roles (R), and unary one-of concepts (O1). For the con-
stants occurring in the one-of concepts the unique name assumption applies, i.e.,
all constants are interpreted as different objects. Coupey and Faron only consider
a fragment of the Description Logic ELI.

In both papers, the correspondence result is based on translating concept descrip-
tions into syntax trees. For example, consider the ELIRO1-concept

C = Female u ∃hasChild−.(Human u {PETER}) u
∃(hasChild u likes).(Male u Student u ∃attends.CScourse)

Relationships with other Formalisms 153

attends

1

1

22

1

2

2

c2c1

c3

{Male, Student} : ∗

{CScourse} : ∗

likes

1

c3 : CScourse

attends

c2 : Male, Studentc1 : Human, {PETER}

hasChild−

TC :
c0 : Female

likes u has-child

{Female} : ∗
gC :

c0

{Human} : PETER

hasChild hasChild

Fig. 4.7. Translating concept descriptions into simple graphs.

describing all daughters of Peter who have a dear child that is a student attending
a computer science course. The syntax tree corresponding to C is depicted on the
left hand side of Figure 4.7.

One can show [Baader et al., 1999c] that, if concept descriptions C are restricted
to contain at most one unary one-of concept in each conjunction, the corresponding
syntax tree TC can be easily translated into an equivalent rooted SG gC that is
a tree1 (see Figure 4.7). Conversely, every rooted SG g that is a tree and that
contains only binary relation types can be translated into an equivalent ELIRO1-
concept description Cg. There are, however, rooted SGs that can be translated into
equivalent ELIRO1-concept descriptions though they are not trees. For example,
the rooted SG g depicted in Figure 4.5 is equivalent to the concept description

Cg = {MARY} u Female u ∃hasChild−.(Human u {PETER}) u
∃hasChild.(Student u ∃attends.({KR101} u CScourse) u ∃likes.{PETER})

In general, the above correspondence result can be strengthened as follows [Baader
et al., 1999c]: Every rooted SG g containing only binary relation types can be
transformed into an equivalent rooted SG that is a tree if each cycle in g with more
than 2 concept nodes contains at least one individual concept node. Hence, each
such rooted SG can be translated into an equivalent ELIRO1-concept description.

Note that the SG h with root d0 in Figure 4.5 cannot be translated into an equiv-
alent ELIRO1-concept description Ch because, in ELIRO1, one cannot express
that the grandparent (represented by the concept node d1) and the human liked by
the child (represented by the concept node d2) must be the same person.

The correspondence result between ELIRO1 and rooted SGs allows for transfer-
ring the tractability result for subsumption between SGs that are trees to ELIRO1.
Furthermore, the characterization of subsumption based on projections between
graphs was adapted to ELIRO1 and other Description Logics, e.g., ALE , and is
1 In this context, a tree may contain more than one relation between two adjacent concept nodes.

154 U. Sattler, D. Calvanese, R. Molitor

used in the context of inference problems like matching and computing least com-
mon subsumers [Baader and Küsters, 1999; Baader et al., 1999b]. Conversely, the
correspondence result can be used as a basis for determining more expressive frag-
ments of conceptual graphs, for which validity and subsumption is decidable. Based
on an appropriate characterization of a fragment of conceptual graphs correspond-
ing to a more expressive Description Logic (like ALC), one could use algorithms
for these Description Logics to decide validity or subsumption of graphs in this
fragment.

4.2 Logical formalisms

In this section, we will investigate the relationship between Description Logics and
other logical formalisms.

Traditionally, the semantics of Description Logics is given in a Tarski-style model-
theoretic way. Alternatively, it can be given by a translation into predicate logic,
where it depends on the Description Logic whether this translation yields first or-
der formulae or whether it goes beyond first order, as it is the case for Description
Logics that allow, e.g., for the transitive closure of roles or fixpoints. Due to the
variable-free syntax of Description Logics and the fact that concepts denote sets of
individuals, the translation of concepts yields formulae in one free variable. Fol-
lowing the definition by Borgida [1996], a concept C and its translation π(C)(x)
are said to be equivalent if and only if, for all interpretations1 I = (∆I , ·I) and all
a ∈ ∆I , we have

a ∈ CI iff I |= π(C)(a).

A Description Logic DL is said to be less expressive than a logic L if there is
a translation that translates all DL-concepts into equivalent L formulae. Such a
translation is called preserving.

Please note that there are various other ways in which equivalence of formulae and
logics being “less expressive than” others could have been defined [Baader, 1996a;
Kurtonina and de Rijke, 1997; Areces and de Rijke, 1998]. For example, a less strict
definition is the one that only asks the translation to be satisfiability preserving.

To start with, we give a translation π that translates ALC-concepts into predicate
logic and which will be useful in the remainder of this section. For those familiar with
modal logics, please note that this translation parallels the one from propositional
modal logic [van Benthem, 1983; 1984]; the close relationship between modal logic
and Description Logic will be discussed in Section 4.2.2. For ALC, the translation
of concepts into predicate logic formulae can be defined in such a way that the
resulting formulae involve only two variables, say x, y, and only unary and binary
1 In the following, we view interpretations both as Description Logic and predicate logic interpretations.

Relationships with other Formalisms 155

predicates. In the following, Lk denotes the first order predicate logic over unary
and binary predicates with k variables.

The translation is given by two mappings πx and πy from ALC-concepts into
L2 formulae in one free variable. Each concept name A is also viewed as a unary
predicate symbol, and each role name R is viewed as a binary predicate symbol.
For ALC-concepts, the translation is inductively defined as follows:

πx(A) = A(x), πy(A) = A(y),
πx(C uD) = πx(C) ∧ πx(D), πy(C uD) = πy(C) ∧ πy(D),
πx(C tD) = πx(C) ∨ πx(D), πy(C tD) = πy(C) ∨ πy(D),
πx(∃R.C) = ∃y.R(x, y) ∧ πy(C), πy(∃R.C) = ∃x.R(y, x) ∧ πx(C),
πx(∀R.C) = ∀y.R(x, y) ⊃ πy(C), πy(∀R.C) = ∀x.R(y, x) ⊃ πx(C).

Other concept and role constructors that can easily be translated into first order
predicate logic without involving more than two variables are inverse roles, conjunc-
tion, disjunction, and negation on roles, and one-of1.

If a Description Logic allows for number restrictions >nR, 6nR, the translation
either involves counting quantifiers ∃≥n, ∃≤n (and still involves only two variables)
or equality (and involves an unbounded number of variables):

πx(>nR) = ∃≥ny.R(x, y) = ∃y1, . . . , yn.
∧

i6=j yi 6= yj ∧
∧

i R(x, yi)
πx(6 nR) = ∃≤ny.R(x, y) = ∀y1, . . . , yn+1.

∧

i6=j yi 6= yj ⊃
∨

i ¬R(x, yi)

For qualified number restrictions, the translations can easily be modified with the
same consequence on the number of variables involved.

So far, all Description Logics were less expressive than first order predicate logic
(possibly with equality or counting quantifiers). In contrast, the expressive power of
a Description Logic including the transitive closure of roles goes beyond first order
logic: First, it is easy to see that expressing transitivity (ρ+(x, y) ∧ ρ+(y, z)) ⊃
ρ+(x, z) involves at least three variables. To express that a relation ρ+ is the
transitive closure of ρ, we first need to enforce that ρ+ is a transitive relation
including ρ—which can easily be axiomatized in first order predicate logic. Secondly,
we must enforce that ρ+ is the smallest transitive relation including ρ—which, as a
consequence of the Compactness Theorem, cannot be expressed in first order logic.

Internalisation of Knowledge Bases: So far, we were concerned with preserving
translations of concepts into logical formulae, and thus could reduce satisfiability
of concepts to satisfiability of formulae in the target logic. In Description Logics,
however, we are also concerned with concept consistency and logical implication
w.r.t. a TBox, and with ABox consistency w.r.t. a TBox.

Furthermore, TBoxes differ in whether they are restricted to be acyclic, allow for
1 In this case, the translation is to L2 with constants.

156 U. Sattler, D. Calvanese, R. Molitor

cyclic definitions, or allow for general concept inclusion axioms (see Chapter 2 for
details). In first order logic, the equivalent to a TBox assertion is simply a univer-
sally quantified formula, and thus it is not necessary to make the above mentioned
distinction between, for example, pure concept satisfiability and satisfiability with
respect to a TBox—provided that cyclic TBoxes are read with descriptive seman-
tics [Baader, 1990a; Nebel, 1991] (cyclic TBoxes read with least or greatest fixpoint
semantics go beyond the expressive power of first order predicate logic). In the fol-
lowing, we consider only the most expressive form of TBoxes, namely those allowing
for general concept inclusion axioms. Given a preserving translation π from Descrip-
tion Logic concepts into first order formulae and a TBox T = {Ci v Di | 1 ≤ i ≤ n},
we define

π(T) = ∀x.
n
∧

i=1

(πx(Ci) ⊃ πx(Di)).

Then it is easy to show that

• a concept C is satisfiable with respect to T iff the formula πx(C) ∧ π(T) is
satisfiable.

• a concept C is subsumed by a concept D with respect to T iff the formula πx(C)∧
¬πx(D) ∧ π(T) is unsatisfiable.

• given two index sets I, J , an ABox {Rk(ai, aj) | 〈i, j, k〉 ∈ I}∪{Cj(ai) | 〈i, j〉 ∈ J}
is consistent with T iff the formula

∧

〈i,j,k〉∈I

Rk(ai, aj) ∧
∧

〈i,j〉∈J

πx(Cj)(ai) ∧ π(T)

is satisfiable, where the ai-s in the formula are constants corresponding to the
individuals in the ABox.

Observe that, if all concepts in a TBox T can be translated to L2 (resp. C2), then
the translation π(T) of T is also a formula of L2 (resp. C2).

Hence in first order logic, reasoning with respect to a knowledge base (consisting
of a TBox and possibly an ABox) is not more complex than reasoning about concept
expressions alone—in contrast to the complexity of reasoning for most Description
Logics, where considering even acyclic TBoxes can make a considerable difference
(for example, see [Calvanese, 1996b; Lutz, 1999a]). This gap is not surprising since
first order predicate logic is far more complex than most Description Logics, namely
undecidable.

In the following, we investigate logics that are more closely related to Descrip-
tion Logics, namely restricted variable fragments, modal logics, and the guarded
fragment.

Relationships with other Formalisms 157

4.2.1 Restricted variable fragments

One possibility to define decidable fragments of first-order logic is to restrict the set
of variables which are allowed inside formulae and the arity of relation symbols. As
mentioned in the previous section, we use Lk to denote first order predicate logic
over unary and binary predicates with at most k variables. Analogously, Ck denotes
first order predicate logic over unary and binary predicates with at most k variables
and counting quantifiers ∃≥n, ∃≤n.

With the exception of the Description Logics introduced by Calvanese et
al. [1998a] and Lutz et al. [1999], the translation of Description Logic concepts
into predicate logic formulae involves predicates of arity at most 2.

From the translations in the previous section, it follows immediately that

• ALCR is less expressive than L2 and that
• ALCNR is less expressive than C2.

As we have shown above, general TBox assertions can be translated into L2 formu-
lae. These facts together with the linearity of the translation yields upper bounds
for the complexity of ALCR and ALCNR (even though these bounds are far from
being tight): L2 and C2 are known to be NExpTime-complete [Grädel et al., 1997a;
Pacholski et al., 2000] (for C2, this is true only if numbers in counting quantifiers are
assumed to be coded in unary, an assumption often made in Description Logics),
hence satisfiability and subsumption with respect to a (possibly cyclic) TBox are in
NExpTime for ALCR and ALCNR.

However, both L2 and C2 are far more expressive than ALCR and ALCNR,
respectively. For example, both logics allow for the negation of binary predi-
cates, i.e, subformulae of the form ¬R(x, y). In Description Logics, this cor-
responds to negation of roles, an operator that is rarely considered in Descrip-
tion Logics, except in the weakened form of difference1 [De Giacomo, 1995;
Calvanese et al., 1998a] (Exceptions are the work by Mameide and Montero [1993]
and Lutz and Sattler [2000b], which deal with genuine negation of roles). Moreover,
L2 and C2 allow for “global” quantification, i.e., for formulae of the form ∃x.Φ(x)
or ∀x.Ψ(x) that talk about the whole interpretation domain. In contrast, quantifi-
cation in Description Logics is, in general, “local”, e.g., concepts of the form ∀R.C
only constrain all R-successors of an individual.

Borgida [1996] presents a variety of results stating that a certain Description
Logic is less than or as expressive as a certain fragment of first order logic. We
mention only the most important ones:

• ALC extended with
1 Difference of roles is easier to deal with than genuine negation, since it does not destroy “locality” of

quantification.

158 U. Sattler, D. Calvanese, R. Molitor

(role constructors) full Boolean operators on roles, inverse roles, cross-product
of two concepts, an identity role id , and

(concept constructors) individuals (“one-of”),

is as expressive as L2 (and therefore decidable and, more precisely, NExpTime-
complete).

• A further extension of this logic with all sorts of role-value-maps is as expressive
as L3 (and therefore undecidable).

Since both extensions include full Boolean operators on roles, they can simulate a
universal role using the complex role R t ¬R, and thus general TBox assertions
can be internalised (see Chapter 5). Thus, for these two extensions, reasoning with
respect to (possibly cyclic) TBoxes can be reduced to pure concept reasoning—i.e.,
the TBox can be internalized—and the above complexity results include both sorts
of reasoning problems.

Later, a second Description Logic was presented that is as expressive as L2 [Lutz
et al., 2001a]. In contrast to the logic in [Borgida, 1996], this logic does not allow
to build a role as the cross-product of two concepts, and it does not provide indi-
viduals. However, using the identity role id (with idI = {(x, x) | x ∈ ∆I} for all
interpretations I), we can guarantee that (the atomic concept) N is interpreted as
an individual, i.e., a singleton set, using the following TBox axiom:

> v ∃(R t ¬R).(N u ∀¬id .¬N)

4.2.2 Modal logics

Modal logics and Description Logics have a very close relationship, which was
first described in [Schild, 1991]. In a nutshell, [Schild, 1991] points out that
ALC can be seen as a notational variant of the multi modal logic Km. Later,
a similar relationship was observed between more expressive modal logics and
Description Logics [De Giacomo and Lenzerini, 1994a; Schild, 1994], namely be-
tween (extensions of) Propositional Dynamic Logic pdl and (extensions of) ALCreg ,
i.e., ALC extended with regular roles. Following and exploiting these observa-
tions, various (complexity) results for Description Logics were found by trans-
lating results from modal or propositional dynamic logics and the µ-calculus
to Description Logics [De Giacomo and Lenzerini, 1994a; 1994b; Schild, 1994;
De Giacomo, 1995]. Moreover, upper bounds for the complexity of satisfiabil-
ity problems were tightened considerably, mostly in parallel with the develop-
ment of decision procedures suitable for implementations and optimisation tech-
niques for these procedures [De Giacomo and Lenzerini, 1995; De Giacomo, 1995;
Horrocks et al., 1999]. In the following, we will describe the relation between modal
logics and Description Logics in more detail.

Relationships with other Formalisms 159

We start by introducing the basic modal logic K; for a nice introduction and
overview see [Halpern and Moses, 1992; Blackburn et al., 2001]. Given a set of
propositional letters p1, p2, . . ., the set of formulae of the modal logic K is the small-
est set that

• contains p1, p2, . . .,
• is closed under Boolean connectives ∧, ∨, and ¬, and
• if it contains φ, then it also contains 2φ and 3φ.

The semantics of modal formulae is given by so-called Kripke structures M =
〈S, π,K〉, where S is a set of so-called states or worlds (which correspond to indi-
viduals in Description Logics), π is a mapping from the set of propositional letters
into sets of states (i.e., π(pi) is the set of states in which pi holds), and K is a binary
relation on the states S, the so-called accessibility relation (which can be seen as
the interpretation of a single role). The semantics is then given as follows, where,
for a modal formula φ and a state s ∈ S, the expression M, s |= φ is read as “φ
holds in M in state s”.

M, s |= pi iff s ∈ π(pi)
M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2

M, s |= φ1 ∨ φ2 iff M, s |= φ1 or M, s |= φ2

M, s |= ¬φ iff M, s 6|= φ
M, s |= 3φ iff there exists s′ ∈ S with (s, s′) ∈ K and M, s′ |= φ
M, s |= 2φ iff for all s′ ∈ S, if (s, s′) ∈ K, then M, s′ |= φ

In contrast to many other modal logics, K does not impose any restrictions on the
Kripke structures. For example, the modal logic S4 is obtained from K by restrict-
ing the Kripke structures to those where the accessibility relation K is reflexive and
transitive. Other modal logics restrict K to be symmetric, well-founded, an equiva-
lence relation, etc. Moreover, the number of accessibility relations may be different
from one. Then we are talking about multi modal logics, where each accessibility
relation Ki can be thought to correspond to one agent, and is quantified using the
multi modal operators 2i and 3i (or, alternatively [i] and 〈i〉). For example, Km

stands for the multi modal logic K with m agents.
To establish the correspondence between the modal logic Km and the Description

Logic ALC, Schild [1991] gave the following translation f from ALC-concepts using
role names R1, . . . , Rm to Km:

f(A) = A,

f(C uD) = f(C) ∧ f(D),

f(C tD) = f(C) ∨ f(D),

f(¬(C)) = ¬(f(C)),

160 U. Sattler, D. Calvanese, R. Molitor

f(∀Ri.C) = 2i(f(C)),

f(∃Ri.C) = 3i(f(C)).

Now, Kripke structures can easily be viewed as Description Logic interpretations
and vice versa. Then, from the semantics of Km and ALC, it follows immediately
that a is an instance of an ALC-concept C in an interpretation I iff its translation
f(C) holds in a in the Kripke structure corresponding to I. Obviously, we can
define an analogous translation from Km formulae into ALC.

There exists a large variety of modal logics for a variety of applications. In the
following, we will sketch some of them together with their relation to Description
Logics.

Propositional Dynamic Logics are designed for reasoning about the behaviour
of programs. Propositional Dynamic Logic (pdl) was introduced by Fischer and
Ladner [1979], and proven to have an ExpTime-complete satisfiability problem
by Fischer and Ladner [1979] and Pratt [1979]; for an overview, see [Harel et al.,
2000]. pdl was designed to describe the (dynamic) behaviour of programs: complex
programs can be built starting from atomic programs by using non-deterministic
choice (∪), composition (;), and iteration (·∗). pdl formulae can be used to describe
the properties that should hold in a state after the execution of a complex program.
For example, the following pdl formula holds in a state if the following condition
is satisfied: whenever program α or β is executed, a state is reached where p holds,
and there is a sequence of alternating executions of α and β such that a state is
reached where ¬p ∧ q holds:

[α ∪ β]p ∧ 〈(α;β)∗〉(¬p ∧ q)

Its Description Logic counterpart, ALCreg , was introduced independently by
Baader [1991]. ALCreg is the extension of ALC with regular expressions over roles1

and can be seen as a notational variant of Propositional Dynamic Logic. For this cor-
respondence, see the work by Schild [1991] and De Giacomo and Lenzerini [1994a],
and Chapter 5.. There exist a variety of extensions of pdl (or ALCreg), for example
with inverse roles, counting, or difference of roles, most of which still have an Exp-
Time satisfiability problem; see, e.g., [Kozen and Tiuryn, 1990; De Giacomo, 1995;
De Giacomo and Lenzerini, 1996] and Chapter 5.

The µ-Calculus can be viewed as a generalisation of dynamic logic, with similar
applications, and was introduced by Pratt [1981] and Kozen [1983]. It is obtained
from multi modal Km by allowing for (least and greated) fixpoint operators to be
1 Regular expressions over roles are built using union (t), composition (◦), and the Kleene operator (·∗)

on roles and can be used in ALCreg -concepts in the place of atomic roles (see Chapter 5).

Relationships with other Formalisms 161

used on propositional letters. For example, for µ the least fixpoint operator and X a
variable for propositional letters, the formula µX.p∨〈α〉X describes the states with a
(possibly empty) chain of α edges into a state in which p holds. In pdl, this formula
is written 〈α∗〉p, and its ALCreg counterpart is ∃R∗

α.p. However, the µ-calculus is
strictly more expressive than pdl orALCreg : for example, the µ-calculus can express
well-foundedness of a program (binary relation), i.e., there is a µ-calculus formula
that has only models in which α is interpreted as a well-founded relation (that is, a
relation without any infinite chains). In [De Giacomo and Lenzerini, 1994b; 1997;
Calvanese et al., 1999c], this additional expressive power is shown to be useful in a
variety of Description Logics applications. The Description Logic counterpart of the
µ-calculus extended with number restrictions [De Giacomo and Lenzerini, 1994b;
1997] and additionally with inverse roles [Calvanese et al., 1999c] is proven to have
an ExpTime-complete satisfiability problem.

There are two other classes of Description Logics with other forms of fixpoints: in
Description Logics, fixpoints first came in through (1) the transitive closure operator
[Baader, 1991], which is naturally defined using a least fixpoint, and (2) through
terminological cycles [Baader, 1990a], which have a different meaning according to
whether a greatest, least, or arbitrary fixpoint semantics is employed [Nebel, 1991;
Baader, 1996b; Küsters, 1998].

Temporal Logics are designed for reasoning about time-dependent information.
They have applications in databases, automated verification of programs, hardware,
and distributed systems, natural language processing, planning, etc. and come in
various different shapes; for a survey of temporal logics, see, e.g., [Gabbay et al.,
1994]. Firstly, they can differ in whether the basic temporal entities are time points
or time intervals. Secondly, they differ in whether they are based on a linear or
on a branching temporal structure. In the latter structures, the flow of time might
“branch” into various succeeding future times. Finally, they differ in the underlying
logic (e.g., Boolean logic or first order predicate logic) and in the operators provided
to speak about the past and the future (e.g., operators that refer to the next time
point, to all future time points, to a future time point and all its respective future
time points, etc.).

In contrast to some other modal logics, temporal logics do not have very close De-
scription Logic relatives. However, they are mentioned here because they are used
to “temporalise” Description Logics; for a survey on temporal Description Logics,
see [Artale and Franconi, 2001] and Chapter 6. When speaking of “the tempo-
ralisation” of a logic, e.g., ALC, one usually refers to a logic with two-dimensional
interpretations. One dimension refers to the flow of time, and each state in this flow
of time comprises an interpretation of the underlying logic, e.g., an ALC interpre-
tation. Obviously, the logic obtained depends on the temporal logic chosen for the

162 U. Sattler, D. Calvanese, R. Molitor

temporal dimension and on the underlying (description) logic. Moreover, one has
the choice to require that the interpretation domain of each time point is the same
for all states (“constant domain assumption”) or that it is a subset of the domains of
the interpretations underlying future states. Examples of temporalised Description
Logics can be found in [Wolter and Zakharyaschev, 1999d; Sturm and Wolter, 2002;
Artale et al., 2001; Schild, 1993; Lutz et al., 2001b]. An alternative to this tempo-
ralisation is to extend a Description Logic with a temporal concrete domain [Baader
and Hanschke, 1991a]. This yields a “two-sorted” interpretation domain, consisting
of abstract individuals on the one hand and time points or intervals on the other
hand. Abstract individuals are then related to the temporal structure using fea-
tures (functional roles) and the standard concrete domain constructs. An example
of such a logic is described by Lutz [2001a].

Hybrid Logics extend standard modal logics with the the possibility to refer to
single states (individuals in the interpretation domain) using so-called nominals
(see, e.g., [Blackburn and Seligman, 1995; Areces et al., 2000; Areces, 2000] for
hybrid logics related to Description Logics). Nominals are simply special propo-
sitional variables which hold in exactly one state. Hybrid logics enjoy a variety
of “nice” properties whose description goes beyond the scope of this article; for a
summary, see [Areces, 2000]. In Description Logics, there are three standard ways
to refer to individuals: (1) we can use ABox individuals in ABoxes, (2) we can
use the “one-of” concept constructor {o1, . . . , ok} which can be applied to individ-
ual names oi and which is present in only a few Description Logics (e.g., in the
Description Logic described in [Bresciani et al., 1995]), and (3) we can use nom-
inals in a similar way as in hybrid logics (e.g., [De Giacomo, 1995; Tobies, 2000;
Horrocks and Sattler, 2001]), namely as special atomic concepts that are interpreted
as singleton sets. For most Description Logics, there is a direct mapping between
nominals and the “one-of” constructor and back: let oi stand for individual names
and, at the same time, nominals. Then we can extend the translation f mentioned
above to the “one-of” constructor as follows—provided that we make the unique
name assumption (cf. Chapter 2) either for both the individual names and the
nominals or for none of them:

f({o1, . . . , ok}) = f({o1} t . . . t {ok}) = o1 ∨ . . . ∨ ok

ABox individuals can be viewed as a restricted form of nominals, and each ABox
in a Description Logic L can be translated into a single concept of (the extension
of) L with conjunction, existential restriction, and “one-of”: first, translate each
assertion of the form

C(a) into {a} u C and
R(a, b) into {a} u ∃R.{b}

Relationships with other Formalisms 163

Next, for C1, . . . , Cm the resulting concepts of this translation and U a role name
not occurring in any Ci, define C = u1≤i≤m∃U.Ci. Then each model of C is a
model of the original ABox—provided, again, that the unique name assumption
holds either for both individual names and nominals or for none. Vice versa, each
model of the original ABox can easily be extended to a model of C.

So far, we only mentioned the weakest way in which nominals occur in hybrid
logics. The next stronger form are formulae of the form ϕ@oi which describes,
intuitively, that ϕ holds in the state oi. For U a universal role and Cϕ the translation
of ϕ, this formula corresponds to the concept ∃U.(oi u Cϕ). Finally, we only point
out that there are even more expressive ways of talking about nominals in hybrid
logics using, for example, variables for nominals and quantification over them.

So far for the relation between certain modal logics and certain Description Logics.
In the remainder of this section, the relationship between standard Description
Logics constructors and their counterpart in modal logics are discussed.

Number Restrictions: In modal logics, the equivalent to qualified number re-
strictions > nR.C and 6nR.C [Hollunder and Baader, 1991b] is known as graded
modalities [Fine, 1972; Van der Hoek and de Rijke, 1995], whereas no equivalent
to the standard, weaker form of number restrictions, >nR and 6n R, has been
considered explicitly.

Number restrictions can be said to play a central role in Description Logics: they
are present in almost all knowledge representation systems based on Description
Logics, several variants have been investigated with respect to their computational
complexity (e.g., see [Tobies, 1999c] for qualified number restrictions, [Baader and
Sattler, 1999] for symbolic number restrictions and number restrictions on complex
roles), and it was proved by De Giacomo and Lenzerini [1994a] that reasoning
with respect to (possibly cyclic) TBoxes for the Description Logic equivalent to
converse-pdl extended with qualified number restrictions (on atomic and inverse
atomic roles) is ExpTime-complete.

In contrast, they play a minor role in modal and dynamic logics. A more promi-
nent role in dynamic logics is played by deterministic programs, i.e., programs that
are to be interpreted as functional relations (cf. Chapter 2). Ben-Ari et al. [1982]
and Parikh [1981] show that validity (and hence satisfiability) of dpdl (i.e., the logic
that is obtained from pdl by restricting programs to be deterministic) is ExpTime-
complete. Moreover, Parikh [1981] has shown that pdl formulae can be linearly
translated into dpdl formulae, and this translation was used by De Giacomo and
Lenzerini [1994a] to code qualified number restrictions into dpdl formulae. As a
consequence, we have that satisfiability and subsumption with respect to (possibly

164 U. Sattler, D. Calvanese, R. Molitor

cyclic) TBoxes in ALC extended with regular expressions over roles and qualified
number restrictions is in ExpTime.

Transitivity: In modal logics and Description Logics, transitivity comes in (at
least) two different shapes, as transitive roles (or frames whose accessibility rela-
tion is transitive, like in K4m) and as the transitive closure operator on roles (or
the Kleene star operator on programs in pdl). Interestingly, these two sorts of
transitivity differ in their complexity.

Fischer and Ladner [1979] prove that satisfiability in pdl is ExpTime-complete.
However, the only operator on programs (or roles) used in the hardness proof is the
transitive closure operator. Translated to Description Logics, this yields ExpTime-
completeness of satisfiability in ALC extended with the transitive closure operator
on roles.

In contrast, K4m is known to be of the same complexity as Km (or ALC), namely
PSpace-complete [Halpern and Moses, 1992], while providing transitivity: K4m is
obtained from Km by restricting Kripke structures to those where the accessibility
relations are transitive. Translated into Description Logics, this means that concept
satisfiability in ALC extended with transitive roles (i.e., the possibility to say that
certain roles are interpreted as transitive relations) is in PSpace [Sattler, 1996].
An extension of this Description Logic with role hierarchies was implemented in
the Description Logic system Fact [Horrocks, 1998a]. Although pure concept sat-
isfiability of this extension is ExpTime-hard, its highly optimised implementation
behaves quite well [Horrocks, 1998b].

Inverse Roles: Without the converse operator on programs/time (or the inverse
operator on roles), binary relations are restricted to be used asymmetrically: For
example, one is restricted to either model “into the future” or “into the past”, or
one must decide whether to use a role “has-child” or “is-child-of”, but may not
use both and relate them in the proper way. Hence in both modal and Description
Logics, the converse/inverse operator plays an important role since it overcomes
this asymmetry, and a variety of logics allowing for this operator were investigated
[Streett, 1982; Vardi, 1985; De Giacomo and Massacci, 1996; Calvanese, 1996a;
De Giacomo, 1996; Horrocks et al., 1999].

4.2.3 Guarded fragments

Andréka et al. [1996] introduce guarded fragments as natural generalisations of
modal logics to relations of arbitrary arity. Their definition and investigation was
motivated by the question why modal logics have such “nice” properties, e.g., finite

Relationships with other Formalisms 165

axiomatisability, Craig interpolation, and decidability. Guarded fragments are ob-
tained from first order logic by allowing the use of quantified variables only if these
variables are guarded by appropriate atoms1 before they are used in the body of a
formula. More precisely, quantifiers are restricted to appear only in the form

∃y(P (x,y) ∧ Φ(y)) or ∀y(P (x,y) ⊃ Φ(y)) (First Guarded Fragment)
∃y(P (x,y) ∧ Φ(x,y)) or ∀y(P (x,y) ⊃ Φ(x,y)) (Guarded Fragment)

for atoms P , vectors of variables x and y, and (first) guarded fragment formulae Φ
with free variables in y and x (resp. in y). The loosely guarded fragment further
allows for a restricted form of conjunction as guards.

Obviously, the translation (∃y.R(x, y)∧ ϕ(y))(x) of the K formula 3ϕ (or of the
ALC concept ∃R.Cϕ) is a formula in the first guarded fragment since the quantified
variable y is “guarded” by R. A more complex guarded fragment formula is

∃z1, z2.(parents(x, z1, z2) ∧ (married(z1, z2) ∧ (∀y.parents(y, z1, z2) ⊃ rich(z1))))

in one free variable x, a guard atom parents, and describing all those persons that
have married parents and whose siblings (including herself) are rich.

All guarded fragments were shown to be decidable [Andréka et al., 1996].
Grädel [1999] proves that satisfiability of the guarded fragment is in ExpTime—
provided that the arity of the predicates is bounded—and 2ExpTime-complete for
unbounded signatures. Interestingly, the guarded fragment was shown to remain
2ExpTime when extended with fixpoints [Grädel and Walukiewicz, 1999]. These
“nice” properties together with their close relationship to modal/description logics
suggest that they are a good starting point for the development of a Description
Logic with n-ary predicates [Grädel, 1998]: in [Lutz et al., 1999], a restriction of
the guarded fragment was proven to be PSpace-complete, where the restriction
concerns the way in which variables are used in guard atoms. Roughly spoken, each
predicate A comes with a two-fold arity (i, j) and, when A is used as a guard, either
all first i variables are quantified and none of the last j are or, symmetrically, all
last j variables are quantified and none of the first i are. Hence one might think of
the predicates as having two-fold “groupings”. A similar logic, the so-called action-
guarded fragment AGF is proposed in [Gonçalvès and Grädel, 2000]: it comes with
a similar grouping of variables in predicates (which is, when extended with “inverse
actions”, the same as the grouping in [Lutz et al., 1999]) and, additionally, it divides
predicates into those allowed as guards and those allowed in the body of formulae.
From a Description Logic perspective, this should not be too severe a restriction
since it parallels the distinction between role and concept names. Interestingly, the
extension of AGF with counting quantifiers (the first order counterpart of number
restrictions), inverse actions, and fixpoints yields an ExpTime logic—provided that
1 Atoms are formulae P (x1, . . . , xk) where P is a k-ary predicate symbol and xi are variables.

166 U. Sattler, D. Calvanese, R. Molitor

the arity of the predicates is bounded and that numbers in counting quantifiers are
coded unarily [Gonçalvès and Grädel, 2000]. This result is even more interesting
when noting that the guarded fragment, when extended with number restrictions,
functional restrictions, or transitivity (i.e., statements saying that certain binary
relations are to be interpreted as transitive relations) becomes undecidable [Grädel,
1999].

To the best of our knowledge, the only other n-ary Description Logics with sound
and complete inference algorithms are DLR [Calvanese et al., 1998a] and DLRµ
[Calvanese et al., 1999c], which seem to be orthogonal to the guarded fragment. An
exact description of the relationship between DLR (resp. DLRµ) and the guarded
fragment (resp. its extension with fixpoints) is missing so far.

4.3 Database models

In this section we will describe the relationship between Description Logics and
data models used in databases. We will consider both traditional data models used
in the conceptual modeling of an application domain, such as semantic and object-
oriented data models, and more recently introduced formalisms for representing
semistructured data and data on the web. We will concentrate on the relationship
between the formalisms and refer to Chapter 16 for a more detailed discussion on
the use of Description Logics in data management [Borgida, 1995].

4.3.1 Semantic data models

Semantic data models were introduced primarily as formalisms for database
schema design [Abrial, 1974; Chen, 1976], and are currently adopted in most
of the database and information system design methodologies and Computer
Aided Software Engineering (CASE) tools [Hull and King, 1987; Batini et al.,
1992]. In semantic data models, classes provide an explicit representation of
objects with their attributes and the relationships to other objects, and sub-
type/supertype relationships are used to specify the inheritance of properties. Here,
we concentrate on the Entity-Relationship (ER) model [Chen, 1976; Teorey, 1989;
Batini et al., 1992; Thalheim, 1993], which is one of the most widespread semantic
data models. However, the considerations we make hold also for other formalisms
for conceptual modeling, such as UML class diagrams [Rumbaugh et al., 1998;
Jacobson et al., 1998]

4.3.1.1 Formalization

The basic elements of the ER model are entities, relationships, and attributes, which
are used to model the domain of interest by means of an ER schema.

Relationships with other Formalisms 167

RegistrationCustomer

Business
Customer

Private
Customer

Location

Service

Supply

serv

servcust

loc

com

(1,1)

(1,∞) (0,∞)

(0,20)

code/Integer

SSN/String
city/String

street/String

(0,∞)

(exclusive, complete)

field/String Department

name/String

name/String

Fig. 4.8. An Entity-Relationship schema.

Figure 4.8 shows a simple ER schema representing the registration of customers
for (telephone) services provided by departments (e.g., of a telephone company).
The schema is drawn using the standard graphical ER notation, in which entities
are represented as boxes, and relationships as diamonds. An attribute is shown as a
circle attached to the entity for which it is defined. An entity type (or simply entity)
denotes a set of objects, called its instances, with common properties. Elementary
properties are modeled through attributes, whose values belong to one of several
predefined domains, such as Integer, String, Boolean, etc. Relationships between
instances of different entities are modeled through relationship types (or simply
relationships). A relationship denotes a set of tuples, each one representing an
association among a combination of instances of the entities that participate in the
relationship. The participation of an entity in a relationship is called an ER-role and
has a unique name. It is depicted by connecting the relationship to the participating
entity. The number of ER-roles for a relationship is called its arity.

Cardinality constraints can be attached to an ER-role in order to restrict the min-
imum or maximum number of times an instance of an entity may participate via
that ER-role in instances of the relationship [Abrial, 1974; Grant and Minker, 1984;
Lenzerini and Nobili, 1990; Ferg, 1991; Ye et al., 1994; Thalheim, 1992; Calvanese
and Lenzerini, 1994b]. Minimal and maximal cardinality constraints can be arbi-
trary non-negative integers. However, typical values for minimal cardinality con-
straints are 0, denoting no constraint, and 1, denoting mandatory participation of
the entity in the relationship; typical values for maximal cardinality constraints
are 1, denoting functionality, and ∞, denoting no constraint. In Figure 4.8, cardi-
nality constraints are used to impose that each customer must be registered for at
least one service. Also, each service is provided by exactly one department, which
in turn may not provide more than 20 different services.

To represent inclusions between the sets of instances of two entities or two rela-
tionships, so called IS-A relations are used. An IS-A relation states the inheritance

168 U. Sattler, D. Calvanese, R. Molitor

of properties from a more general entity (resp. relationship) to a more specific one.
A generalization is a set of IS-A relations which share the more general entity
(resp. relationship). Multiple generalizations can be combined in a generalization
hierarchy. A generalisation can be mutually exclusive, meaning that all the specific
entities (resp. relationships) are mutually disjoint, or complete, meaning that the
union of the more specific entities (resp. relationships) completely covers the more
general entity (resp. relationship). In Figure 4.8, a mutually exclusive and com-
plete generalisation is used to represent the fact that customers are partitioned into
private and business customers.

Additionally, keys are used to represent the fact that an instance of an entity is
uniquely identified by a certain set of attributes, or that an instance of a relation-
ship is uniquely identified by a set of instances of the entities participating in the
relationship.

Although we do not provide a formal definition here, the semantics of an ER
schema can be given by specifying which database states are consistent with the
information structure represented by the schema; for details see e.g., [Calvanese et
al., 1999e].

Traditionally, the ER model has been used in the design phase of commercial
applications, and modern CASE tools usually provide sophisticated schema editing
facilities and automatic generation of code for the interaction with the database
management system. However, these tools do not provide any support for dealing
with the complexity of schemata that goes beyond the graphical user interface. In
particular, the designer is responsible for checking schemata for important proper-
ties such as consistency and redundancy. This may be a complex and time consum-
ing task if performed by hand. By translating an ER schema into a Description
Logic knowledge base in such a way that the verification of schema properties cor-
responds to traditional Description Logic reasoning tasks, the reasoning facilities
of a Description Logic system can be profitably exploited to support conceptual
database design.

4.3.1.2 Correspondence with Description Logics

Both in Description Logics and in the ER model, the domain of interest is mod-
eled through classes and relationships, and various proposals have been made for
establishing a correspondence between the two formalisms. Bergamaschi and Sar-
tori [1992] provide a translation of ER schemas into acyclic ALN knowledge bases.
However, due to the limited expressiveness of the target language, several features
of the ER model and desired reasoning tasks could not fully be captured by the
proposed translation. Indeed, when relating the ER model to Description Logics,
one has to take into account the following aspects:

Relationships with other Formalisms 169

Registration v ∀custRegistration.Customer u=1 custRegistration u
∀locRegistration.Location u=1 locRegistration u
∀servRegistration.Service u=1 servRegistration

Supply v ∀servSupply.Service u=1 servSupply u
∀comSupply.Customer u=1 comSupply

Customer v ∀custRegistration−.Registration u> 1 custRegistration−

Location v ∀locRegistration−.Registration
Service v ∀servRegistration−.Registration u

∀servSupply−.Supply u=1 servSupply−

Department v ∀comSupply−.Supply u6 20 comSupply−

Customer v BusinessCustomer t PrivateCustomer
BusinessCustomer v Customer
PrivateCustomer v Customer u ¬BusinessCustomer

Customer v ∀name.String u=1 name

Fig. 4.9. Part of the knowledge base corresponding to the
Entity-Relationship schema in Figure 4.8.

(i) The ER model allows for relations of arbitrary arity, while in traditional
Description Logics only unary and binary relations are considered.

(ii) The assumption of acyclicity is unrealistic in an ER shema, while it is com-
mon in Description Logics knowledge bases.

(iii) Database states are considered to be finite structures, while no assumption
on finiteness is usually made on the interpretation domain of a Description
Logic knowledge base.

Before discussing these issues in more detail, we show in Figure 4.9 part of the
ALUNI knowledge base corresponding to the ER schema in Figure 4.8, derived
according to the translation proposed by Calvanese et al. [1994; 1999e]. We have
omitted the part corresponding to the translation of most attributes, showing as an
example only the translation of the attribute name of the entity Customer.

Due to point (i), when translating ER schemas into knowledge bases of a tradi-
tional Description Logic, it becomes necessary to reify relationships, i.e., to translate
each relationship into a concept whose instances represent the tuples of the relation-
ship. Each entity is translated also into a concept, while each ER-role is translated
into a Description Logic role. Then, using functional roles, one can enforce that
each instance of the atomic concept C corresponding to a relationship R represents
a tuple of R, i.e., for each role representing an ER-role of R, the instance of C is
connected to exactly one instance of the entity associated to the ER-role.

170 U. Sattler, D. Calvanese, R. Molitor

There is, however, one condition, which is implicit in the semantics of the ER
model, but which does not necessarily hold once relationships are reified, and which
can also not be enforced in Description Logics on the models of a knowledge base:
The condition is that the extension of a relationship R does not contain some tuple
twice. After reification this corresponds to the fact that there are no two instances
of the concept corresponding to R that are connected through all roles of R exactly
to the same instances of the entities associated to the roles. However, it can be
shown that, when reasoning on a knowledge base corresponding to an ER schema,
nothing is lost by ignoring this condition. Indeed, given an arbitrary model of such
a knowledge base, one can always find a model in which the condition holds, and
thus one that corresponds directly to a legal database state [Calvanese et al., 1994;
De Giacomo, 1995; Calvanese et al., 1999e].

Cardinality constraints are translated using number restrictions on the inverse
of the roles connecting relationships to entities. To avoid the need for qualified
number restrictions, in the translation in Figure 4.9 we have disambiguated the
roles by appending to their name the name of the relationship they belong to.
An alternative would be to allow the same role to appear in several places, and
use qualified number restrictions instead of unqualified ones. While considerably
complicating the language, this makes it possible to translate also IS-A relations
between relationships, which cannot be captured using the translation proposed by
Calvanese et al. [1999e]. Also more general forms of cardinality constraints have
been proposed for the ER model [Thalheim, 1992], allowing e.g., to limit the number
of locations a customer may be registered for, independently of the service. To the
best of our knowledge, such types of cardinality constraints cannot be captured in
Description Logics in general. Borgida and Weddell [1997] have studied reasoning in
Description Logics in the presence of functional dependencies that are more general
than unary ones, and which allow one to represent keys of relations. Decidability
of reasoning in a very expressive Description Logic augmented with non-unary key
constraints has been shown by Calvanese et al. [2000b], and Calvanese et al. [2001a]
have shown that also general functional dependencies can be added without losing
ExpTime-completeness.

IS-A relations are simply translated using concept inclusion assertions. General-
isation hierarchies additionally require negation, if they are mutually disjoint, and
union, if they are complete.

With respect to point (ii), we observe that the translation of an ER schema
containing cycles obviously gives rise to a cyclic Description Logic knowledge base.
However, due to the necessity of properly relating a relationship via an ER-role
to an entity, even when translating an acyclic ER schema, the resulting knowledge
base contains cycles. On the other hand, it is sufficient to use inclusion assertions

Relationships with other Formalisms 171

rather than equivalence, since the former naturally correspond to the semantics of
ER schemata.

With respect to point (iii), we observe that one cannot simply ignore it and
adopt algorithms that reason with respect to arbitary models. Indeed, the
ER model itself does not have the finite model property [Cosmadakis et al.,
1990; Calvanese and Lenzerini, 1994b], which states that, if a knowledge base
(resp. schema) has an arbitrary, possibly infinite model (resp. database state),
then it also has a finite one (see also Chapter 5 for more details). A further
confirmation comes from the fact that, for correctly capturing ER schemas in
Description Logics, possibly cyclic knowledge bases expressed in a Description
Logic including functional restrictions and inverse roles are required, and such
knowledge bases do not have the finite model property [Calvanese et al., 1994;
1999e]. Therefore one must resort to techniques for finite model reasoning. Cal-
vanese et al. [1994] show that reasoning w.r.t. finite models in ALUNI knowl-
edge bases containing only inclusion assertions is ExpTime-complete, and Cal-
vanese [1996a] presents a 2ExpTime algorithm for reasoning in ALCQI knowledge
bases with general inclusion assertions.

4.3.1.3 Applications of the correspondence

The study of the correspondence between Description Logics and semantic data
models has led to significant advantages in both fields. On the one hand, the
richness of constructs that is typical of Description Logics makes it possible to add
them to semantic data models and take them fully into account when reasoning on
a schema [Calvanese et al., 1998g]. Notable examples are:

• the ability to specify not only IS-A and generalisation hierarchies, but also arbi-
trary Boolean combinations of entities or relationships, which can correspond to
forms of negative and incomplete knowledge [Di Battista and Lenzerini, 1993];

• the ability to refine properties along an IS-A hierarchy, such as restricting the
numeric range for cardinality constraints, or refining the participation in rela-
tionships using universal quantification over roles;

• the ability to define classes by means of equality assertions, and not only to state
necessary properties for them.

The correspondence between semantic data models and Description Logics has been
recently exploited to add such advanced capabilities to CASE tools. A notable
example is the i•com tool [Franconi and Ng, 2000] for conceptual modeling, which
combines a user-friendly graphical interface with the ability to automatically infer
properties of a schema (e.g., inconsistency of a class, or implicit IS-A relations) by
invoking the Fact Description Logic reasoner [Horrocks, 1998a; 1999].

172 U. Sattler, D. Calvanese, R. Molitor

On the other hand, the basic ideas behind the translation of semantic data mod-
els into Description Logics, namely reification and the fact that one can restrict
the attention to models in which distinct instances of a reified relation correspond
to distinct tuples, have led to the development of Description Logics in which re-
lations of arbitrary arity are first class citizens [De Giacomo and Lenzerini, 1994c;
Calvanese et al., 1997; 1998a]. Using such Description Logics, the translation of
an ER schema is immediate, since now also relationships of arbitrary arity have
their direct counterpart. For example, using DLR [Calvanese et al., 1998a], the
part of the schema in Figure 4.8 relative to the ternary relation Registration can be
translated as follows:

Registration v ($1: Customer) u ($2: Location) u ($3: Service)

Customer v ∃[$1]Registration

We refer to Chapter 16, Section 16.2.2 for the details of the translation.
Description Logics could also be considered as expressive variants of semantic

data models with incorporated reasoning facilities. This is of particular importance
in the context of information integration, where a high expressiveness is required
to capture in the best possible way the complex relationships that hold between
data in different information sources [Levy et al., 1995; Calvanese et al., 1998d;
1998e].

4.3.2 Object-oriented data models

Object-oriented data models have been proposed recently with the goal of devis-
ing database formalisms that could be integrated with object-oriented program-
ming systems [Abiteboul and Kanellakis, 1989; Kim, 1990; Cattell and Barry, 1997;
Rumbaugh et al., 1998]. Object-oriented data models rely on the notion of object
identifier at the extensional level (as opposed to traditional data models which are
value-oriented) and on the notion of class at the intensional level. The structure
of the classes is specified by means of typing and inheritance. Since we aim at dis-
cussing the relationship with Description Logics, which are well suited to describe
structural rather than dynamic properties, we restrict our attention to the structural
component of object-oriented models. Hence we do not consider all those aspects
that are related to the specification of the behaviour and evolution of objects, which
nevertheless constitute an important part of these data models. Although in our
discussion we do not refer to any specific formalism, the model we use is inspired
by the one presented by Abiteboul and Kanellakis [1989], and embodies the basic
features of the static part of the ODMG standard [Cattell and Barry, 1997]

Relationships with other Formalisms 173

class Customer type-is
union BusinessCustomer, PrivateCustomer
end

class PrivateCustomer is-a Customer type-is
record

SSN: String
end

class Service type-is
record

code: Integer,
suppliedBy: Department

end

class Registration type-is
record

cust: Customer,
regis: set-of record

serv: Service
loc: Location

end
end

Fig. 4.10. An object-oriented schema.

4.3.2.1 Formalization

An object-oriented schema is a finite set of class declarations, which impose con-
straints on the instances of the classes that are used to model the application do-
main. A class declaration for a class C has the form

class C is-a C1, . . . , Ck type-is T,

where the is-a part, which is optional, specifies inclusions between the sets of in-
stances of the involved classes, while the type-is part specifies through the type
expression T the structure assigned to the objects that are instances of the class.
We consider union, set, and record types, built according to the following syntax,
where the letter A is used to denote attributes:

T −→ C |
union T1, . . . , Tk end |
set-of T |
record A1: T1, . . . , Ak:Tk end.

Figure 4.10 shows part of an object-oriented schema modeling the same reality
as the Entity-Relationship schema of Figure 4.8. Notice that now registrations are
represented as a class and grouped according to the customer, since all registrations
related to one customer are collected in the set-valued attribute regis.

The meaning of an object-oriented schema is given by specifying the characteris-
tics of a database state for the schema. The definition of a database state makes use
of the notions of object identifier and value. Starting from a finite set OJ of object
identifiers, the set of complex values over OJ is built inductively by grouping values
into finite sets and records. A database state J for a schema is constituted by the

174 U. Sattler, D. Calvanese, R. Molitor

set of object identifiers, a mapping πJ assigning to each class a subset of OJ , and
a mapping ρJ assigning to each object in OJ a value over OJ .

Notice that, although the set of values that can be constructed from a set OJ
of object identifiers is infinite, for a database state one only needs to consider the
finite subset VJ of values assigned by ρJ to the elements of OJ , including the values
that are not explicitly associated with object identifiers, but are used to form other
values.

The interpretation of type expressions in a database state J is defined through
an interpretation function ·J that assigns to each type expression T a set TJ of
values in VJ as follows:

• if T is a class C, then TJ = πJ (C);
• if T is a union type union T1, . . . , Tk end, then TJ = TJ1 ∪ · · · ∪ TJk ;
• it T is a record type (resp. set type), then TJ is the set of record values (resp. set

values) compatible with the structure of T . For records we are using an open
semantics, meaning that the records that are instances of a record type may
have more components than those explicitly specified in the type [Abiteboul and
Kanellakis, 1989].

A database state J for an object-oriented schema S is said to be legal (with
respect to S) if for each declaration

class C is-a C1, . . . , Cn type-is T

in S, it holds that (1) CJ ⊆ CJ
i for each i ∈ {1, . . . , n}, and (2) ρJ (CJ) ⊆

TJ . Therefore, for a legal database state, the type expressions that are present
in the schema determine the (finite) set of values that must be considered. The
construction of such values is limited by the depth of type expressions.

4.3.2.2 Correspondence with Description Logics

When establishing a correspondence between an object-oriented model as the one
presented above, and Description Logics, one must take into account that the in-
terpretation domain for a Description Logic knowledge base consists of atomic
objects, whereas each object of an object-oriented schema is assigned a possi-
bly structured value. Therefore one needs to explicitly represent in Description
Logics the type structure of classes [Calvanese et al., 1994; 1999e; Artale et al.,
1996a]. We describe now the translation proposed by Calvanese et al. [1994;
1999e], that overcomes this difficulty by introducing in the Description Logic knowl-
edge base concepts and roles with a specific meaning: the concepts AbstractClass,
RecType, and SetType are used to denote instances of classes, record values, and set
values, respectively. The associations between classes and types induced by the class
declarations, as well as the basic characteristics of types, are modeled by means of

Relationships with other Formalisms 175

specific roles: the functional role value models the association between classes and
types, and the role member is used for specifying the type of the elements of a set.
Moreover, the concepts representing types are assumed to be mutually disjoint, and
disjoint from the concepts representing classes. These constraints are expressed by
the following inclusion assertions, which are always part of the knowledge base that
is obtained from an object-oriented schema:

AbstractClass v =1 value

RecType v ∀value.⊥
SetType v ∀value.⊥ u ¬RecType

The translation from object-oriented schemas to Description Logic knowledge
bases is defined through a mapping Γ, which maps each type expression to a concept
expression as follows:

• Each class C is mapped to an atomic concept Γ(C).
• Each type expression union T1, . . . , Tk end is mapped to Γ(T1) t · · · t Γ(Tk).
• Each type expression set-of T is mapped to SetType u ∀member.Γ(T).
• Each attribute A is mapped to an atomic role Γ(A), and each type expression

record A1: T1, . . . , Ak:Tk end is mapped to

RecType u ∀Γ(A1).Γ(T1) u=1 Γ(A1) u · · · u
∀Γ(Ak).Γ(Tk) u=1Γ(Ak).

Then, the knowledge base Γ(S) corresponding to an object-oriented schema S is
obtained by taking for each class declaration

class C is-a C1, . . . , Cn type-is T

an inclusion assertion

Γ(C) v AbstractClass u Γ(C1) u · · · u Γ(Cn) u ∀value.Γ(T).

We show in Figure 4.11 the knowledge base resulting from the translation of the
fragment of object-oriented schema shown in Figure 4.10.

Analogously to the ER model, it is sufficient to use inclusion assertions instead
of equivalence assertions to capture the semantics of object-oriented schemas. A
translation to an acyclic knowledge base is possible under the assumption that no
class in the schema refers to itself, either directly in its type or indirectly via the
class declarations1 [Artale et al., 1996a]. However, since this assumption represents
a rather strong limitation in expressiveness, cycles are typically present in object-
oriented schemas, and in this case the resulting Description Logic knowledge base
1 Note that cyclic references cannot appear directly in a type, which is constructed inductively, but only

through the class declarations.

176 U. Sattler, D. Calvanese, R. Molitor

Customer v AbstractClass u ∀value.(BusinessCustomer t PrivateCustomer)
PrivateCustomer v AbstractClass u Customer u ∀value.(RecType u=1 SSN u ∀SSN.String)

Service v AbstractClass u
∀value.(RecType u=1 code u ∀code.Integer u

=1 suppliedBy u ∀suppliedBy.Department)

Customer v AbstractClass u
∀value.(RecType u=1 cust u ∀cust.Customer u

=1 regis u ∀regis.(SetType u
∀member.(RecType u

=1 serv u ∀serv.Service u
= 1 loc u ∀loc.Location)))

Fig. 4.11. The specific part of the knowledge base corre-
sponding to the object-oriented schema in Figure 4.10.

will contain cyclic assertions. No inverse roles are needed for the translation, since in
object-oriented models the inverse of an attribute is rarely considered. Furthermore,
the use of number restrictions is limited to functionality, since all attributes are
implicitly functional.

To establish the correctness of the transformation, and thus ensure that the rea-
soning tasks on an object-oriented schema can be reduced to reasoning tasks on its
translation in Description Logics, we would like to establish a one-to-one correspon-
dence between database states legal for the schema and models of the knowledge
base resulting from the translation. However, as for the ER model, the knowledge
base may have models that do not correspond directly to legal database states. In
this case, this is due to the fact that, while values have a treelike structure, the cor-
responding individuals in a model of the Description Logic knowledge base may be
part of cyclic substructures. One way of ruling out such cyclic substructures would
be to adopt a specific constructor that allows one to impose well-foundedness [Cal-
vanese et al., 1995], or even exploit general fixed points on concepts [Schild, 1994;
De Giacomo and Lenzerini, 1994a; 1997; Calvanese et al., 1999c]. However, it turns
out that, in this case, it is not necessary to explicitly enforce such a condition. In-
deed, due to the finite depth of nesting of types in a schema, it can be shown that
each model of the translation of the schema can be unfolded into one that directly
corresponds to a legal database state (more details are provided by Calvanese et
al. [1999e]).

4.3.2.3 Applications of the correspondence

Similarly to the ER model, the existence of property-preserving transformations
from object-oriented schemas into Description Logic knowledge bases makes it pos-
sible to exploit the reasoning capabilities of a Description Logic system for checking

Relationships with other Formalisms 177

relevant schema properties, such as consistency and redundancy [Bergamaschi and
Nebel, 1994; Artale et al., 1996a; Calvanese et al., 1998g]. Additionally, several
extensions of the object-oriented formalism that are useful for the purpose of con-
ceptual modeling can be considered:

• Not only IS-A, but also disjointness, and, more generally, Boolean combinations
of classes can be used.

• Class definitions can be used to specify not only necessary but also necessary and
sufficient properties for an object to be an instance of a class [Bergamaschi and
Nebel, 1994].

• Cardinality constraints and not only implicit functionality can be imposed on
attributes. Having attributes with multiple values could in some cases be a useful
alternative to set-valued attributes.

• By admitting also the use of inverse roles in the language, one gains the ability
to impose constraints using a relation in both directions, as it is customary in
semantic data models. The increase in expressiveness that one obtains this way
has indeed been recognized as extremely important by the database community
[Albano et al., 1991], and has been included in the recent ODMG standard [Cattell
and Barry, 1997].

The basic characteristics of object-oriented data models have also been included
in the structural part of the Unified Modeling Language (UML) [Rumbaugh et
al., 1998; Jacobson et al., 1998], which is becoming the standard language for the
analysis phase of software and information system development. Additionally, UML
allows for the definition of generic recursive data structures (both inductive and co-
inductive) such as lists and trees, and for their specialisation to specific types. In
order to capture also these aspects of UML in Description Logics and take them
fully into account when reasoning over a schema, the Description Logic must provide
the ability to represent and reason over data structures. In particular, to represent
UML schemas, it is necesary to resort to very expressive Description Logics including
number restrictions, inverse roles or n-ary relations, and fixed point constructs on
concepts [Calvanese et al., 1999c]. Also in this case, the reasoning services provided
by a Description Logic system can be integrated in CASE tools and profitably
exploited to support the designer in the analysis phase [Franconi and Ng, 2000].

4.3.3 Semistructured data models and XML

In recent application areas such as data integration, access to data on the web, and
digital libraries, the structure of the data is usually not rigid, as in conventional
databases, and thus it is difficult to describe it using traditional data models. There-
fore, so called semistructured data models have been proposed, which are graph-

178 U. Sattler, D. Calvanese, R. Molitor

based data models that provide flexible structuring mechanisms, and thus allow
one to represent data that is neither raw nor strictly typed [Abiteboul et al., 2000;
Abiteboul, 1997; Buneman et al., 1997; Mendelzon et al., 1997]. The Extensible
Markup Language (XML) [Bray et al., 1998; Abiteboul et al., 2000], which has been
introduced as a mechanism for representing structured documents on the web, can
in fact also be considered a model for semistructured data. Indeed, XML is by now
the way most popular model for data on the Web, and there is a tremendous effort
related to XML and the associated standards1, both in the research community and
in industry.

Description Logics have traditionally been used to describe and organize data
in a more flexible way than what is done in databases, basically using graph-like
structures. Hence it seems natural to adopt Description Logics and the associated
reasoning services also for representing and reasoning on semistructured data and
XML. In the following, we discuss the (rather few) proposals made in the literature.
What these proposals have in common is the necessity to resort to fixpoints, either
by adopting fixpoint semantics [Nebel, 1991; Baader, 1991], or by using reflexive
transitive closure or explicit fixpoint constructs [De Giacomo and Lenzerini, 1997]
(cf. also Chapter 5).

For the recent extensive work on the use of Description Logics to provide a se-
mantically richer representation of data on the web we refer to Chapter 14.

4.3.3.1 Relationship between semistructured data and Description Logics

Michaeli et al. [1997] propose to extend a semistructured data model that is an
abstraction of the OEM model [Abiteboul et al., 1997] with a layer of classes,
representing objects with common properties. Class expressions correspond to
Description Logic concepts and the properties for the classes are specified by a
set of classification rules, which provide sufficient conditions for class membership
and are interpreted under a least fixpoint semantics. By a reduction to reasoning
in a Description Logic with fixpoint operators [De Giacomo and Lenzerini, 1997;
Calvanese et al., 1999c], it is shown that determining class satisfiability and contain-
ment under a set of rules is ExpTime-decidable (and in fact ExpTime-complete).

In the following, we discuss in more detail the use of Description Logics to repre-
sent and reason on semistructured data, on the example of one typical representative
for semistructured data models. In semistructured data models, data is organized
in form of a graph, and information on both the values and the schema for the data
are attached to the edges of the graph. In the formalism proposed by Buneman et
al. [1997], the labels of edges in a schema are formulae of a complete first order the-
ory, and the conformance of a database to a schema is defined in terms of a special re-
lation, called simulation. The notion of simulation is less rigid than the usual notion
1 http://www.w3.org/

Relationships with other Formalisms 179

of satisfaction, and suitably reflects the need for dealing with less strict structures of
data. In order to capture in Description Logics the notion of simulation, it is neces-
sary on the one hand to express the local conditions that a node must satisfy, and on
the other hand to deal with the fact that the simulation relation is the greatest rela-
tion satisfying the local conditions. Since semistructured data schemas may contain
cycles, the local conditions may depend on each other in a cyclic way. Therefore,
while the local conditions can be encoded by means of suitable inclusion assertions
in ALU , the maximality condition on the simulation relation can only be captured
correctly by resorting to a greatest fixed point semantics [Calvanese et al., 1998c;
1998b]. Then, using a Description Logic with fixed point constructs, such as µALCQ
[De Giacomo and Lenzerini, 1994b; 1997] (see also Chapter 5), a so-called character-
istic concept for a semistructured data schema can be constructed, which captures
exactly the properties of the schema. Subsumption between two schemas, which
is the task of deciding whether every semistructured database conforming to one
schema also conforms to another schema [Buneman et al., 1997], can be decided by
checking subsumption between the characteristic concepts of the schemas [Calvanese
et al., 1998c].

The correspondence with Description Logics can again be exploited to enrich
semistructured data models, without losing the ability to check schema subsump-
tion. Indeed, the requirement already raised by Buneman et al. [1997], to extend
semistructured data models with several types of constraints, has been addressed
by Calvanese et al. [1998b], who propose several types of constraints, such as ex-
istence and cardinality constraints, which are naturally derived from Description
Logic constructs. Reasoning in the presence of constrains is done by encoding also
the constraints in the characteristic concept of a schema. Calvanese et al. deal also
with the presence of incomplete information in the theory describing the properties
of edge labels, by proposing the use of a theory expressed in µALCQ, instead of a
complete first order theory.

4.3.3.2 Relationship between XML and Description Logics

XML [Bray et al., 1998] is a formalism for representing documents that are struc-
tured by means of nested tags. Recently, XML has gained popularity also as a
formalism for representing (semistructured) data and exchanging it over the Web.
Figure 4.12 shows two example XML documents containing respectively data about
customers and their registration to services provided by various departments (e.g.,
of a telephone company). A part of an XML document consisting of a start tag
(e.g., <Customer>), the matching end tag (e.g., </Customer>), and everything in
between is called an element. Elements can be arbitrarily nested, and can have
associated attributes, specified by means of attribute-value pairs inside the start tag
(e.g., type="business"). Intuitively, each XML document can be viewed as a finite

180 U. Sattler, D. Calvanese, R. Molitor
<?xml version="1.0"?>
<!DOCTYPE Customers SYSTEM "services.dtd">

<Customers>
<Customer type="business">

<Name>FIAT</Name>
<Field>manufacturing</Field>
<Registered service="522">

<Location><City>Torino</City>
<Address>...</Address>

</Location>
<Location>...</Location>

</Registered>
<Registered service="612">

<Location>...</Location>
</Registered>

</Customer>

<Customer type="private">
<Name>...</Name>
<SSN>...</SSN>
<Registered service="214">

<Location>...</Location>
</Registered>

</Customer>
...

</Customers>

<?xml version="1.0"?>
<!DOCTYPE Services SYSTEM "services.dtd">

<Services>
<Department name="standard-services">
<Service code="522">

<Name>call-back when busy</Name>
<Cost>...</Cost>
...

</Service>
<Service code="214">

<Name>three-party call</Name>
</Service>

</Department>

<Department name="business-services">
<Service code="612">
<Name>conference call</Name>

</Service>
...

</Department>
</Services>

Fig. 4.12. Two XML documents specifying respectively cus-
tomers and services.

ordered unranked tree1, where each element represents a node, and the children of
an element are those elements directly contained in it. How XML documents are
viewed as trees is defined, together with an API for accessing and manipulating such
trees/XML-documents, by the Document Object Model2, which defines, besides el-
ement nodes, also other types of nodes, such as attributes, comments, etc.

In XML, it is possible to impose a structure on documents by means of a Doc-
ument Type Declaration (DTD) [Bray et al., 1998]. A DTD consists of a set of
declarations: For each element type used in the XML document, the DTD must
contain a declaration that specifies, by means of a regular expression, how elements
can be nested within elements of that type. The keyword #PCDATA is used to specify
that the element content (i.e., the part enclosed by the tags) is free text without
nested elements. For each attribute appearing in the XML document, the DTD
must contain a declaration specifying the name of the attribute, the type of the
elements it is associated to, and additional properties (e.g., the type and whether
the attribute is optional or mandatory). Figure 4.13 shows part of the DTD for
the XML documents in Figure 4.12. We refer to [Bray et al., 1998] for a precise
definition of the syntax and semantics of XML DTDs.

1 In an unranked tree each node can have an arbitrary finite number of child nodes. The tree is ordered
since the order among children of the same node matters.

2 http://www.w3.org/DOM/

Relationships with other Formalisms 181

<!-- File: services.dtd -->

<!ELEMENT Customers (Customer)+ >
<!ELEMENT Customer (Name, (Field|SSN), Registered+) >
<!ELEMENT Registered (Location)+ >
...
<!ELEMENT Services (Department)+ >
<!ELEMENT Department (Service)* >
<!ELEMENT Service (Name, Cost?, ...) >
<!ELEMENT Name #PCDATA >
...

<!ATTLIST Customer type (business|private) "private">
<!ATTLIST Registered service IDREF #REQUIRED>
<!ATTLIST Department name CDATA #REQUIRED>
<!ATTLIST Service code ID #REQUIRED>
...

Fig. 4.13. Part of the Document Type Declaration S for the
XML documents in Figure 4.12.

We illustrate the method for encoding XML DTDs into Description Logics knowl-
edge bases proposed in [Calvanese et al., 1999d]. For simplicity, we do not consider
XML attributes, although they can easily be dealt with by introducing suitable
roles. Due to the presence of regular expressions, to encode DTDs in Description
Logics, it is necessary to resort to a Description Logic equipped with constructs for
building regular expressions over roles (cf. Chapter 5). Notice that the encoding of
DTDs into Description Logic knowledge bases must allow for representing unranked
trees and at the same time for preserving the order of the children of a node. For
example, the DTD in Figure 4.13 enforces that the content of a Customer element
consists of a Name element, followed by (in DTDs, concatenation is denoted with
“,”) either a Field or an SSN element (alternative is denoted with “|”), followed
by an arbitrary number (but at least one) of Registered elements (transitive clo-
sure is denoted with “+”). To overcome these difficulties, Calvanese et al. [1999d]
propose to represent XML documents (i.e., ordered unranked trees) by means of
binary trees, and provide an encoding of DTDs in Description Logics that exploits
such a representation. Figure 4.14 shows the binary tree corresponding to one of
the XML documents in Figure 4.12.

Figure 4.15 shows part of the axioms encoding the DTD in Figure 4.13. The two
roles f and r are used to encode binary trees, and such roles are globally functional
(axiom (4.1)). Moreover, the well-founded construct (cf. Chapter 5) wf (f t r) is
used to express that there can be no infinite chain of objects, each one connected to
the next by means of f t r. Such a condition turns out to be necessary to correctly
capture the fact that XML documents correspond to trees that are finite. For each

182 U. Sattler, D. Calvanese, R. Molitor

<Customer>
f

f

f

r

r<Name>

</Name>FIAT
f

f

f

r

r<Field>

</Field>manufacturing

f

f
r

r

r

</Customer>

f
r

r

r

f

f

f

r

r<Customer>

</Customer> f

r

r

</Customers>

f r

r

<Customers>

Fig. 4.14. The binary tree corresponding to the XML docu-
ment on the left hand side of Figure 4.12.

element type E, the atomic concepts StartE and EndE represent respectively the
start tags (4.2) and end tags (4.3) for E, and such tags are leaves of the tree (4.4).
The remaining leaves of the tree are free text, represented by the atomic concept
PCDATA (4.5). Using such concepts and roles, one can introduce for each element
type E appearing in a DTD D an atomic concept ED, and encode the regular
expression specifying the structure of elements of type E in a suitable complex
role, exploiting constructs for regular expressions over roles (including the id(·)

> ≡ 6 1 f u6 1 r u wf (f t r) (4.1)
StartE v Tag for each element type E (4.2)
EndE v Tag for each element type E (4.3)

Tag v ∀(f t r).⊥ (4.4)
PCDATA v ∀(f t r).⊥ u ¬Tag (4.5)

CustomersS ≡ ∃f.StartCustomers u ∃(r ◦ (id(∃f.CustomerS) ◦ r)+).EndCustomers
CustomerS ≡ ∃f.StartCustomers u ∃(r ◦ id(∃f.NameS) ◦ r

◦ (id(∃f.FieldS) t id(∃f.SSNS)) ◦ r
◦ (id(∃f.RegisteredS) ◦ r)+).EndCustomer

NameS ≡ ∃f.StartName u ∃(r ◦ id(∃f.PCDATA) ◦ r).EndName
...

Fig. 4.15. Part of the encoding of the DTD S in Figure 4.13
into a Description Logics knowledge base.

Relationships with other Formalisms 183

construct). This is illustrated in Figure 4.15 for part of the element types of the
DTD in Figure 4.13. We refer to [Calvanese et al., 1999d] for the precise definition
of the encoding.

The encoding of DTDs into Description Logics can be exploited to verify different
kinds of properties on DTDs, namely inclusion, equivalence, and disjointness be-
tween the sets of documents conforming respectively to two DTDs. Such reasoning
tasks come in different forms. For strong inclusion (resp. equivalence, disjointness)
both the document structure and the actual tag names are of importance when com-
paring documents, while for structural inclusion (resp. equivalence, disjointness) one
abstracts away from the actual tag names, and considers only the document struc-
ture [Wood, 1995]. Parametric inclusion (resp. equivalence, disjointness) generalizes
both notions, by considering an equivalence relation between tag names, and com-
paring documents modulo such an equivalence relation. By exploiting the encoding
of DTDs into Description Logics presented above, all forms of inference on DTDs
can be carried out in deterministic exponential time [Calvanese et al., 1999d].

