
3

Complexity of Reasoning
Francesco M. Donini

Abstract

We present lower bounds on the computational complexity of satisfiability and sub-
sumption in several description logics. We interpret these lower bounds as coming
from different “sources of complexity”, which we isolate one by one. We consider
both reasoning with simple concept expressions and with an underlying TBox. We
discuss also complexity of instance check in simple ABoxes. We tried to enhance
clarity and ease of presentation, sometimes sacrificing exhaustiveness for lack of
space.

3.1 Introduction

Complexity of reasoning has been one of the major issues in the development of
Description Logics (DL). This is because such logics are conceived [Brachman and
Levesque, 1984] as the formal specification of subsystems for representing knowl-
edge, to be used in larger knowledge-based systems. Since using knowledge means
also to derive implicit facts from the told ones, the implementation of derivation
procedures should take into account the optimality of reasoning algorithms. The
study of optimal algorithms starts from the elicitation of the computational com-
plexity of the problem the algorithm should solve. Initially, studies about the com-
plexity of reasoning problems in DLs were more focused on polynomial-time versus
intractable (np- or conp-hard) problems. The idea was that a Knowledge Repre-
sentation system based on a DL with polynomial-time inference problems would
guarantee timely answers to the rest of the system. However, once very expres-
sive DLs with exponential-time reasoning problems were implemented [Horrocks,
1998b], it was recognized that knowledge bases of realistic size could be processed
in reasonable time. This shifted most of the complexity analysis to DLs whose
reasoning problems are ExpTime-hard, or worse.

This chapter presents some lower bounds on the complexity of basic reasoning

101

102 F. M. Donini

tasks in simple DLs. The reasoning services taken into account are: first, satis-
fiability and subsumption of concept expressions alone (no TBox), then the same
reasoning services considering a TBox also, and in the last part of the chapter,
instance checking w.r.t. an ABox.

We show in detail some reductions from problems that are hard for complexity
classes np, conp, PSpace, ExpTime, and from semidecidable problems to satisfi-
ability/subsumption in various DLs. Then, we show how these reductions can be
adapted to other DLs as well.

In several reductions, we use tableaux expansions to prove the correctness of the
reduction. Thus, a secondary aim in this chapter is to show how tableaux are useful
not only to devise reasoning algorithms and complexity upper bounds—as seen in
Chapter 2—but also in finding complexity lower bounds. This is because tableaux
untangle two different aspects of the computational complexity of reasoning in DLs:

• The first aspect is the structure of possible models of a concept. Such a structure
is—in many DLs—a tree of individual names, linked by arcs labeled by roles.
We consider such a tree an AND-tree, in the sense that all branches must be
followed to obtain a candidate model. Following [Schmidt-Schauß and Smolka,
1991], we call trace each branch of such a tree. Readers familiar with tableaux
terminology should observe that traces are not tableaux branches; in fact, they
form a structure inside a single tableau branch.

• The second aspect is the structure of proofs or refutations. Clearly, if a trace
contains an inconsistency—a clash in the terminology set up in Chapter 2, the
candidate models containing this trace can be discarded. When all candidate
models are discarded this way, we obtain a proof of subsumption, or unsatisfia-
bility. Hence, the structure of refutations is often best viewed as an OR-tree of
traces containing clashes.

Here we chose to mark the nodes with AND, OR, considering a satisfiability prob-
lem; if either unsatisfiability or subsumption are considered, AND-OR labels should
be exchanged. Before starting with the various results, we elaborate more on this
subject in the next paragraph.

3.1.1 Intuition: sources of complexity

The deterministic version of the calculus for ALCN in Chapter 2 can be seen as
exploring an AND-OR tree, where an AND-branching corresponds to the (indepen-
dent) check of all successors of an individual, while an OR-branching corresponds
to the different choices of application of a nondeterministic rule.

Realizing that, one can see that the exponential-time behavior of the calculus

Complexity of Reasoning 103

is due to two independent origins: The AND-branching, responsible for the ex-
ponential size of a single candidate model, and the OR-branching, responsible for
the exponential number of different candidate models. We call these two different
combinatorial explosions sources of complexity.

3.1.1.1 OR-branching

The OR-branching is due to the presence of disjunctive constructors, which make a
concept satisfiable by more than one model. The obvious disjunctive constructor is
t, hence ALU is a good sublanguage to see this source of complexity. Recall that
ALU allows one to form concepts using negation of concept names, conjunction u,
disjunction t, universal role quantification ∀R.C, and unqualified existential role
quantification ∃. This source of complexity is the same that makes propositional
satisfiability np-hard: in fact, satisfiability in ALU can be trivially proved np-
hard by rewriting propositional letters as atomic concepts, ∧ as u, and ∨ as t.
Many proofs of conp-hardness of subsumption were found exploiting this source of
complexity ([Levesque and Brachman, 1987; Nebel, 1988]), by reducing an np-hard
problem to non-subsumption. In Section 3.2.1, we show how disjunction can be
introduced also by combining role restrictions and universal quantification, and in
Section 3.2.2 by combining number restrictions and role intersection.

3.1.1.2 AND-branching

The AND-branching is more subtle. Its exponential behaviour is due to the inter-
play of qualified existential and universal quantifiers, hence ALE is now a minimal
sublanguage of ALCN with these features. As mentioned in Chapter 2 one can see
the effects of this source of complexity by expanding the tableau {D(x)}, when D
is the following concept (whose pattern appears in many papers, from [Schmidt-
Schauß and Smolka, 1991], to [Hemaspaandra, 1999])—see Chapter 2 for its general
form:

∃P1.∀P2.∀P3.C11 u
∃P1.∀P2.∀P3.C12 u
∀P1.(∃P2.∀P3.C21 u

∃P2.∀P3.C22 u
∀P2.(∃P3.C31 u

∃P3.C32))

For each level l of nested quantifiers, we use a different role Pl (but using the same
role R would produce the same results). The structure of the tableau for {D(x)},
which is the candidate model for D, is a binary tree of height 3: the nodes are the
individual names, the arcs are given by the Pl-successor relation, and the branches
are the traces in the tableau.

104 F. M. Donini

Each trace ends with an individual that belongs to C1i, C2j , C3k, for i, j, k ∈ {1, 2}.
Hence, a clash may be found independently in each trace, i.e., in each branch of the
tree. To verify that this structure is indeed a model, one has to check every AND-
branch of it; and branches can be exponentially many in the nesting of quantifiers.

This source of complexity causes an exponential number of possible refutations
to be searched through (each refutation being a trace containing a clash).

This second source of complexity is not evident in propositional calculus, but a
similar problem appears in predicate calculus—where the interplay of existential
and universal quantifiers may lead to large models—and in Quantified Boolean
Formulae.

Remark 3.1 For DLs that are not closed under negation, a source of complexity
might appear in subsumption, while it may not in satisfiability. This is because C
is subsumed by D iff Cu¬D is unsatisfiable, where ¬D may not belong to the same
DL of C and D.

3.1.2 Overview of the chapter

We first present separately the effect of each source of complexity. In the next
section, we discuss intractability results stemming from disjunction (OR-branching),
which lead to conp-hard lower bounds. We discuss both the case of plain logical
disjunction (as the description logic FL), and the case of disjunction arising from
alternative identification of individuals (ALEN). Then in Section 3.3 we present an
np lower bound stemming from AND-branching, namely a DL in which concepts
have one candidate model of exponential size.

A PSpace lower bound combining the two sources of complexity is presented in
Section 3.4, and then in Section 3.5 we show how axioms can combine in a succinct
way the sources of complexity, leading to ExpTime-hardness of satisfiability.

In Section 3.6 we examine one of the first undecidability results found for a DL,
using the powerful construct of role-value-maps—now recognized very expressive,
because of this result.

Finally, we analyze intractability arising from reasoning with individuals in
ABoxes (Section 3.7), and add a final discussion about the significance of these
results—beyond the initial study of theoretical complexity of reasoning—also for
benchmark testing of implemented procedures.

An appendix with a (hopefully complete) list of complexity results for satisfiability
and subsumption closes the chapter.

Complexity of Reasoning 105

Table 3.1. Syntax and semantics of the description logic FL. For FL−, omit role
restriction.

concept expressions semantics

concept name A ⊆ ∆I

concept intersection C uD CI ∩DI

limited exist. quant. ∃R {x ∈ ∆I | ∃y. (x, y) ∈ RI}

value restriction ∀R.C {x ∈ ∆I | ∀y. (x, y) ∈ RI → y ∈ CI}

role expressions semantics

role name P ⊆ ∆I ×∆I

role restriction R|C {(x, y) ∈ ∆I ×∆I | (x, y) ∈ RI ∧ y ∈ CI}

3.2 OR-branching: finding a model

When the number of candidate models is exponential in the size of the concepts
involved, a combinatorial problem is finding the right candidate model to check. In
DLs, this may lead to np-hardness of satisfiability, and conp-hardness of subsump-
tion.

3.2.1 Intractability in FL
Brachman and Levesque [1984];[Levesque and Brachman, 1987] were the first to
point out that a slight increase in the expressiveness of a DL may result in a drastic
change in the complexity of reasoning. They called this effect a “computational
cliff” of structured knowledge representation languages. They considered the lan-
guage FL, which admits concept conjunction, universal role quantification, unqual-
ified existential quantification, and role restriction. For readability, the syntax and
semantics of FL are recalled in Table 3.1.

Role restriction allows one to construct a subrole of a role R, i.e., a role whose
extension is a subset of the extension of R. For example, the role child|male may
be used for the “son-of” relation. Observe two properties of role restriction, whose
proofs easily follow from the semantics in Table 3.1:

(i) for every role R, the role R|> is equivalent to R;
(ii) for every role R, and concepts A,C,D, the concept (∀(R|C).A)u (∀(R|D).A)

is equivalent to ∀(R|(CtD)).A.

The second property highlights that disjunction—although not explicitly present in
the syntax of the language—arises from semantics.

106 F. M. Donini

Brachman and Levesque defined also the language FL−, derived from FL by
omitting role restriction. They first showed that for FL−, subsumption can be
decided by a structural algorithm, with polynomial time complexity, similar to the
one shown in Chapter 2. Then they showed that subsumption in FL is conp-hard,
exhibiting the first “computational cliff” in description logics.

Since the original proof of conp-hardness is somehow complex, we give here a
simpler proof, found by Calvanese [1990]. The proof is based on the observation
that if C1 t · · · t Cn ≡ >, then, given a role R and a concept A, it is

(∀(R|C1).A) u · · · u (∀(R|Cn).A) ≡ (from (ii)) (3.1)

∀R|(C1t···tCn).A ≡ (3.2)

∀R|>.A ≡ (from (i)) (3.3)

∀R.A (3.4)

Moreover, observe that, for every role Q and every concept C, the disjunction
∃Q t ∀Q.C is equivalent to the concept >. Hence ∀(R|∃Q).A u ∀(R|∀Q.C).A is
equivalent to ∀R.A. These observations are the key to the reduction from tautology
check of propositional 3DNF formulae to subsumption in FL.

Theorem 3.2 Subsumption in FL is conp-hard.

Proof Given an alphabet of propositional variables L = {p1, . . . , pk}, define a
propositional formula F = G1 ∨ · · · ∨ Gn in 3DNF over L, where each disjunct
Gi is made of three literals l1i ∧ l2i ∧ l3i , and for every i ∈ {1, . . . , n}, and j ∈ {1, 2, 3},
each literal lji is either a variable p ∈ L, or its negation p.

Given a set of role names {R, P1, . . . , Pn} (one role Pi for each variable pi) and a
concept name A, define the concept CF = (∀R|C1 .A) u · · · u (∀R|Cn .A) where, for
each i ∈ {1, . . . , n}, Ci is the conjunction of three concepts D1

i uD2
i uD3

i , and each
Dj

i is

Dj
i =

{

∀Ph.A, if lji = ph

∃Ph, if lji = ph
for j ∈ {1, 2, 3}, i ∈ {1, . . . , n}

Then the claim follows from the following lemma.

Lemma 3.3 F is a tautology if and only if CF ≡ ∀R.A.

Proof The proof of the claim is straightforward; however, since it does not appear
elsewhere but Calvanese’s Master thesis (in italian), we present it here in full.

Only-if If F is a tautology, then C1 t · · · t Cn ≡ >. This can be shown by
contradiction: suppose C1 t · · · t Cn is not equivalent to >. Then, there exists an
interpretation I in which there is an element x 6∈ CI

i , for every i ∈ {1, . . . , n}. Since

Complexity of Reasoning 107

each Ci = D1
i uD2

i uD3
i , it follows that for each i there is a j ∈ {1, 2, 3} such that

x 6∈ Dj
i . Define a truth assignment τ to L as follows. For each h ∈ {1, . . . , k},

• τ(ph) = false iff lji = ph, and x 6∈ Dj
i

• τ(ph) = true iff lji = ph, and x 6∈ Dj
i

Observe that it cannot be both τ(ph) = false and τ(ph) = true at the same time,
since this would imply both x 6∈ ∃Ph, and x 6∈ ∀Ph.A, which is impossible since
∃Ph t∀Ph.A ≡ >. Evidently, τ assigns false to at least one literal for each disjunct
of F , contradicting the hypothesis that F is a tautology. Therefore C1t· · ·tCn ≡ >.

The claim is now implied by equivalences (3.1)–(3.4).
If Suppose F is not a tautology. Then, there exists a truth assignment τ such

that for each i ∈ {1, . . . , n}, there exists a j ∈ {1, 2, 3} such that τ(lji) = false.
Define an interpretation (∆I , ·I), with ∆I containing three elements x, y, z, such

that P I
h = (y, z) if τ(ph) = false, and P I

h = ∅ otherwise. Moreover, let AI = ∅, and
RI = {x, y}.

Observe that in this way, y ∈ (∃Ph)I iff τ(ph) = false, and y ∈ (∀Ph.A)I iff
τ(ph) = true. This implies that x 6∈ (∀R.A)I . To prove the claim, we now show
that x ∈ CI

F .
Observe that, for each i ∈ {1, . . . , n}, there exists a j ∈ {1, 2, 3} such that τ(lji) =

false. For such j, we show by case analysis that y 6∈ (Dj
i)
I :

• if lji = ph then Dj
i = ∀Ph.A, and in this case, τ(ph) = false, hence y 6∈

(∀Ph.A)I ;
• if lji = ph then Dj

i = ∃Ph, and in this case, τ(ph) = true, hence y 6∈ (∃Ph)I .

Therefore, for every i ∈ {1, . . . , n} it is y 6∈ CI
i . This implies that (x, y) 6∈

R|I(C1t···tCn), hence x ∈ (∀R|(C1t···tCn).A)I , which is a concept equivalent to CF .

The above proof shows only that subsumption in FL is conp-hard. However, role
restrictions could be used also to obtain qualified existential quantification, since
∃R.C = ∃R|C . Hence, FL contains also the AND-branching source of complexity.
Combining the two sources of complexity, Donini et al. [1997a] proved a PSpace
lower bound for subsumption in FL, matching the upper bound found by Schmidt-
Schauß and Smolka [1991].

3.2.2 Intractability in FL− plus qualified existential quantification and
number restrictions

As shown in Chapter 2, disjunction arises also from qualified existential quantifica-
tion and number restrictions. This can be easily seen examining the construction

108 F. M. Donini

of the tableau checking the satisfiability of the concept

(∃R.A) u (∃R.(¬A u ¬B)) u (∃R.B) u6 2 R

in which, once three objects are introduced to satisfy the existentials, one has to
choose between three non-equivalent identifications of pairs of objects, where only
one identification leads to a consistent tableau.

Remark 3.4 When a DL includes number restrictions, also negation of concept
names is included for free, at least from a computational viewpoint. In fact, a
concept name A and its negation ¬A can be coded as, say, > 4RA and 6 3RA

where RA is a new role name introduced for A. Now these two concepts obey the
same axioms of A and ¬A—namely, their conjunction is ⊥ and their union is >.
Hence, everything we say about computational properties of DLs including FL−
plus number restrictions holds also for AL plus number restrictions.

We now present a proof of intractability based on this property. The reduction
was first published by Nebel [1988], who reduced the np-complete problem of set
splitting [Garey and Johnson, 1979, p. 221], to non-subsumption in the DL of the
Back system, which included the basic FL− plus intersection of roles, and number
restrictions. set splitting is the following problem:

Definition 3.5 (set splitting) Given a collection C of subsets of a basic set S,
decide if there exists a partition of S into two subsets S1 and S2 such that no subset
of C is entirely contained in either S1 or S2.

We simplify the original reduction. We start from a variant of set splitting
(still np-complete) in which all c ∈ C have exactly three elements, and reduce it to
satisfiability in FL− plus qualified existential role quantification and number restric-
tions1. Since role intersection can simulate qualified existential role quantification
(see next Section 3.2.2.1) this result implies the original one.

Theorem 3.6 Satisfiability in FL−EN is np-hard.

Proof Let S = {1, . . . , n}, and let c1, . . . , ck be the subsets of S. There exists a
splitting of S iff the concept D1 u D2 u D3 is satisfiable, where D1, D2, D3 are
defined as follows:

D1 = ∃R.B1 u · · · u ∃R.Bn (3.5)

D2 = ∀R.(6 2 Q1 u · · · u6 2 Qk) (3.6)

D3 = 6 2 R (3.7)
1 From Remark 3.4, this DL has the same computational properties of ALEN [Donini et al., 1997a].

Complexity of Reasoning 109

y1 yn

yi

Qj1 Qjk

· · ·

zijkzij1 zij2

Qj2

R

x

R · · ·

· · ·

Fig. 3.1. The AND-tree structure of the tableau obtained by
applying rules for u and ∃R.C to D1uD2uD3(x). Applying
rule for 6 2 R(x) would lead to several OR-branches (as many
as the possible identifications of y′s).

where each concept Bi codes which subsets element i appears in, as follows:

Bi = uj | i∈Cj∃Qj .Ai

and concepts A1, . . . , An are defined in such a way that they are pairwise disjoint—
say, for i ∈ {1, . . . , n} let Ai = > i Ru6 i R. Intuitively, when tableaux rules dealing
with u and qualified existential quantification are applied to D1 u D2 u D3(x),
one obtains a tableau whose tree structure of individual names can be visualized
as in Figure 3.1. The rest of the proof strictly follows the original one [Nebel,
1988], hence we do not present it here. The intuition is that D3 forces to identify
all y’s generated by D1 into two successors of the root individual name x. Such
identifications correspond to the sets S1 and S2. Then D2 forces the split of each
3-subset, since it makes sure that neither of these successors has more than two
Qj-successors, and thus both have at least one Qj-successor (since there are three
of them).

We clarify the construction and show its relevant properties on an example.

Example 3.7 Suppose S = {1, 2, 3, 4}, and let c1 = {1, 2, 4}, c2 = {2, 3, 4}, c3 =
{1, 3, 4}. Applying the tableau rules of Chapter 2 to D1, one obtains the following

110 F. M. Donini

tree of individual names (definitions of each Bi are expanded):

D1(x)

R(x, y1) B1(y1)
{

Q1(y1, z11) A1(z11)
Q3(y1, z13) A1(z13)

R(x, y2) B1(y1)
{

Q1(y2, z21) A2(z21)
Q2(y2, z22) A2(z22)

R(x, y3) B1(y1)
{

Q2(y3, z32) A3(z32)
Q3(y3, z33) A3(z33)

R(x, y4) B1(y1)

Q1(y4, z41) A4(z41)
Q2(y4, z42) A4(z42)
Q3(y4, z43) A4(z43)

where the individual names y1, . . . , y4 stand for the four elements of S, and each zij

codes the fact that element i appears in subset cj . Because of assertions Ai(zij), no
two z’s disagreeing on the first index—e.g., z32 and z42—can be safely identified,
since they must satisfy assertions on incompatible A’s. This is the same as if the
constraints zij 6= zhj , for all i, h ∈ {1, . . . , |S|} with i 6= h, and all j ∈ {1, . . . , |C|}
were present.

Now D3 states that y1, . . . , y4 must be identified into only two individual names.
Observe that identifying y2, y3, y4 leads to an individual name (say, y2) having
among others, three unidentifiable Q2-fillers z22, z32, z42. But D2 states that all
R-fillers of x, including y2, have no more than 2 fillers for Q2. This rules out the
identification of y2, y3, y4 in the tableau. Observe that this identification corresponds
to a partition of S in {1} and {2, 3, 4} which is not a solution of set splitting
because the subset c2 is not split. Following the same line of reasoning, one could
prove that the only identifications of all R-fillers into two individual names, leading
to a satisfiable tableau, are one-one with solutions of set splitting.

The same reduction works for non-subsumption, since D1 uD2 uD3 is satisfiable
iff D1uD2 is not subsumed by ¬D3 ≡ > 3R. This type of reduction was also applied
(see [Donini et al., 1999]) to prove that subsumption in ALNI is conp-hard, where
ALNI is the DL including AL, number restrictions and inverse roles.

Observe that also FL−EN contains the AND-branching source of complexity,
since qualified existential restriction is present. With a more complex reduction
from Quantified Boolean Formulae, combining the two sources of complexity, sat-
isfiability and non-subsumption in ALEN has been proved PSpace-complete by
Hemaspaandra [1999].

Note that in the above proof of intractability, pairwise disjointness of A1, . . . , An

could be also expressed by conjoining log n concept names and their negations in
all possible ways. Hence, the proof needs only the concept 6 2R, and when quali-

Complexity of Reasoning 111

fied existentials are simulated by subroles, only > 1 R is used. This shows that the
above proof of intractability is quite sharp: intractability raises independently of
the size of the numbers involved. The computational cliff is evident if one moves
to having 0 and 1 only in number restrictions, that leads to so-called functional
roles—since the assertion 6 1R(x) forces R to be a partial function from x. In that
case, the tractability of a DL can be usually established, e.g., the DL of the system
Classic [Borgida and Patel-Schneider, 1994]. The intuitive reason for tractability
of functional roles can be found in the corresponding tableau rules, which for num-
ber restrictions of the form 6 1R(x) become deterministic: there is no choice in
identifying individuals names y1, . . . , yk which are all R-fillers for x, but to collapse
them all into one individual.

3.2.2.1 Simulating ∃R.C with role conjunction

Donini et al. [1997a] showed that a concept D containing qualified existential role
quantifications ∃R.C is satisfiable iff the concept ˜D is satisfiable, where in ˜D each
occurrence of a concept ∃R.C is replaced by the concept ∃(RuQC)u∀(RuQC).C,
adding QC as a new role name (a different QC for each occurrence of ∃R.C, to be
used nowhere else). We call ˜D an u-simulation of D in the rest of the chapter.

The proof that the simulation is correct can be easily given by referring to
tableaux.

Example 3.8 Considering the concept D below on the left, and simulating qual-
ified existential quantifications in D by role intersections, one obtains the concept
˜D on the right,

D =

∃R.A u
∃R.B u
∀R.C

˜D =

∃(R uQA) u ∀(R uQA).A u
∃(R uQB) u ∀(R uQB).B u
∀R.C

where subscripts on new role names help identifying which existential they simulate.
Applying tableaux rules of Chapter 2 to ˜D(x), one obtains the model

R(x, y) A(y)
QA(x, y) C(y)
R(x, z) B(z)

QB(x, z) C(z)

which satisfies both concepts.

Proposition 3.9 A concept D is satisfiable iff ˜D is satisfiable.

Proof The proof of the proposition follows the example. Namely, an open tableau

112 F. M. Donini

branch for ˜D is also an open tableau branch for D (ignoring assertions on new role
names), and an open tableau branch for D can be transformed to an open tableau
branch for ˜D just by adding the assertions about new role names.

As observed by Nebel [1990a], an acyclic role hierarchy in a description logic can
be always simulated by conjunctions of existing roles and new role names. In the
above example, using two role names QA, QB and the inclusions QA v R, QB v R
yields the same simulation.

Applying u-simulation, one could obtain from the reduction in Theorem 3.6 the
original reduction by Nebel, proving that satisfiability (and non-subsumption) in
ALN (u) is np-hard. Using a more complex reduction, Donini et al. [1997a] proved
that satisfiability in ALN (u) is in fact PSpace-complete.

3.3 AND-branching: finding a clash

When candidate models of a concept have exponential size—as for the ALE-concept
of Section 3.1.1.2—models cannot be guessed and checked in polynomial time. In
this case, a combinatorial problem is finding the clash—if any—in the candidate
model. This leads to np-hardness of unsatisfiability and subsumption. However,
for many DLs the AND-tree structure of a model is such that its traces (branches
of the AND-tree) have polynomial size. A concept C is satisfiable iff there is no
trace containing a clash, hence it is sufficient to guess such a trace to show that C is
unsatisfiable. From this argument, Schmidt-Schauß and Smolka [1991] proved that
satisfiability in ALE is in conp.

3.3.1 Intractability of satisfiability in ALE
We now report a proof that satisfiability in ALE is conp-complete. The original
proof was based on a polynomial-time reduction from a variant of the np-complete
problem one-in-three 3sat [Garey and Johnson, 1979, p. 259]. Here we present a
proof based on the same idea, but with a slightly different construction, relying on a
reduction from the np-complete problem exact cover (xc) [Garey and Johnson,
1979, p. 221]. Such a problem is defined as follows.

Definition 3.10 (Exact cover xc) Let U = {u1, . . . , un} be a finite set, and let
M be a family M1, . . . , Mm of subsets of U . Decide if there are q mutually disjoint
subsets Mi1 , . . . , Miq such that their union equals U , i.e., Mih ∩Mik = ∅ for 1 ≤
h < k ≤ q, and

⋃q
k=1 Mik = U .

The reduction consists in associating every instance of xc with an ALE-concept
CM, such that M has an exact cover if and only if CM is unsatisfiable. It is

Complexity of Reasoning 113

important to note that, differently from the previous sections, here a solution of
the np-complete source problem is related to a proof of the absence of a model.
In fact, exact covers of M are related to those traces of {CM(x)} that contain a
clash, hence the certificate of a solution of an np-complete problem is related to a
refutation in the target DL.

In the following we assume R to be a role name. We translate M into the concept

CM = C1
1 u · · · u Cm

1 uD1

where each concept Cj
1 represents a subset Mj , and is inductively defined as

Cj
l =

{

∃R.Cj
l+1, if either l ≤ n, ul ∈ Mj or l > n, ul−n ∈ Mj

∀R.Cj
l+1, if either l ≤ n, ul 6∈ Mj or l > n, ul−n 6∈ Mj

for l ∈ {1, . . . , 2n}

and by the base case Cj
2n+1 = >. The concept D1 is defined by

D1 = ∀R. · · · ∀R.
︸ ︷︷ ︸

2n

⊥

and each one of D2, D3, . . . have one universal quantifier less than the previous one.
Intuitively, for every element ul in U there are two corresponding levels l, l + n

in the concepts Cj
1 ’s, where “level” refers to the nesting of quantifiers. The element

ul is present in Mj if and only if there is an existential quantifier in the concept Cj
1

at level l + n—which implies by construction that ∃ is also at level l. The concept
D1 is designed in such a way that a clash for {CM(x)} can only occur in a trace
containing at least 2n + 1 individual names.

Example 3.11 Consider the following instance of xc: let U = {u1, . . . , u3}, and

M = {M1 = {u1, u2},M2 = {u2, u3},M3 = {u3}}

The corresponding ALE-concept CM is given by the conjunction of C1
1 , C2

1 , C3
1 and

D1, defined as follows.

u1 u2 u3 u1 u2 u3

M1 ↔ C1
1 = ∃R.∃R.∀R.∃R.∃R.∀R.>

M2 ↔ C2
1 = ∀R.∃R.∃R.∀R.∃R.∃R.>

M3 ↔ C3
1 = ∀R.∀R.∃R.∀R.∀R.∃R.>

D1 = ∀R.∀R.∀R.∀R.∀R.∀R.⊥

where on the left we put the subset Mj corresponding to each Cj
1 , and above the

elements of U corresponding to each level of the concepts. Observe that the elements
of U appear twice.

114 F. M. Donini

The conjunction of the above concepts is unsatisfiable if and only if the interplay
of the various existential and universal quantifiers, represented by a trace, forces an
individual name in the tableau for {CM(x)} to belong to the extension of ⊥. This
reduction creates a correspondence between such a trace and an exact cover of U .

In order to formally characterize such a correspondence, we define the activeness
of a concept in a trace. Let T be a trace and C be a concept. We say that C is
active in T if C is of the form ∃R.D and there are individual names y, z such that
T contains C(y), R(y, z), and D(z). Therefore, an existentially quantified concept
∃R.D is active in T if the →∃-rule has been applied to the assertion ∃R.D(y) in T .
Intuitively, if Cj

k is active in a trace of {CM(x)} containing a clash, then uk belongs
to an exact cover of M.

Lemma 3.12 ([Donini et al., 1992a, Lemma 3.1]) Let T be a trace of
{CM(x)}.

(i) Suppose Cj
k is active in T . Then for all l ∈ {1, . . . , k} if the concept Cj

l is of
the form ∃R.Cj

l+1, then it is active in T .
(ii) If T contains a clash, then for every l ∈ {1, . . . , 2n} there exists exactly one

j such that Cj
l is active in T .

Example 3.13 The reader can gain an insight on the importance of the above
properties by constructing the tableau for the concept

(∃R.∀R.∃R.A) u
(∃R.∀R.∃R.B) u
(∀R.∃R.>)

and verifying that the trace reaching the concept A has both existentials in the
first line active (and no existential of the second line), and vice versa for the trace
reaching B.

Example 3.14 (Example 3.11 continued) Note that in Example 3.11 the two
subsets M1 and M2 form a (non-exact) cover of U , and indeed, the tableau for
{C1

1 u C1
2 u D1(x)} is satisfiable. Moreover, observe the importance of the two

levels. If concepts were formed by just one level, the following concepts would be
unsatisfiable (choose highlighted existentials):

C1
1 = ∃R.∃R.∀R.>

C1
2 = ∀R.∃R.∃R.>

D1 = ∀R.∀R.∀R.⊥

corresponding to a cover by M1 and M2 which is non-exact. The second level ensures

Complexity of Reasoning 115

that once an existential is chosen, all nested existentials must be chosen too to form
a trace.

Theorem 3.15 Unsatisfiability in ALE is np-hard.

Proof We show that an instance (U,M) of xc has an exact cover if and only
if CM is unsatisfiable. Let M = {M1, . . . , Mm} be a set of subsets from U and
CM = C1

1 u . . . u Cm
1 u D1 be the corresponding concept. Since this proof is the

base for three other ones in the chapter, we present it with some detail.
Only-if Let Mi1 , . . . , Miq be an exact cover of U . Let T be a trace of {CM(x1)}

defined inductively as follows:

T1 = {Cj
1(x1) | j ∈ {1, . . . , m}} ∪ {D1(x1)}

Tl+1 = Tl ∪ {R(xl, xl+1)} ∪ {Cj
l+1(xl+1) | ul+1 ∈ Mj} ∪ {Dl+1(xl+1)}

Obviously, T = T2n+1 contains a clash, because D2n+1 = ⊥. For each level l there
is exactly one j such that Cj

l = ∃R.Cj
l+1. Using this fact, one can easily show that

T is a trace by induction on l.
If If CM is unsatisfiable, then there exists a trace T of {CM(x)} such that T

contains a clash. We show that the subsets in

{Mj | ∃l ∈ {1, . . . , n} : Cj
n+l is active in T}

form an exact cover of U . First of all, since T is a trace, for every level l ∈ {1, . . . , 2n}
there exists a j such that Cj

l is active in T (second point of Lemma 3.12). Hence
the union of these subsets cover U .

We now prove that no two subsets overlap: in fact, suppose there are i, j such
that Mi, Mj intersect non-trivially in element ul. Here we exploit the two-layered
construction of CM. By definition, there are h, k such that Ci

n+h and Cj
n+k are active

in T . Since ul is in both Mi and Mj , by construction of CM we have Ci
l = ∃R.Ci

l+1

and Cj
l = ∃R.Cj

l+1. From first point in Lemma 3.12, we know that Ci
l and Cj

l are
both active in T . Hence i = j from second point of Lemma 3.12.

The above reduction works also for the special case of xc in which every subset
has at most three elements, which corresponds to at most six nested existential
quantifications in each concept Cj

1 . Hence, bounding by a constant k ≥ 6 the
number of nested existential quantifications does not yield tractability. The original
reduction from one-in-three 3sat shows that also bounding by a constant k ≥ 3
the number of existentials in each level, does not yield tractability.

Simulating qualified existential quantifications in CM by role intersection (see
Section 3.2.2.1), we conclude that unsatisfiability of concepts in AL(u)—AL plus
role conjunction—is np-hard, too.

116 F. M. Donini

Theorem 3.16 Satisfiability and subsumption of concepts are np-hard in AL(u).

We note that this source of intractability is not due to the presence of the concept
⊥, but to the interplay of universal and existential quantification. In fact, the above
reduction works also for the description logic FL−E , which is FL− plus qualified
existential quantification.

Theorem 3.17 Subsumption is np-hard in FL−E.

Proof The proof is based on the reduction given for ALE . The ALE-concept
CM = C1

1u. . .uCm
1 uD1 in that reduction, is unsatisfiable if and only if C1

1u. . .uCm
1

is subsumed by ¬D1. Now C1
1 u . . . u Cm

1 is a concept in FL−E and ¬D1 can be
rewritten to the equivalent concept E, defined as

E = ∃R. · · · ∃R.
︸ ︷︷ ︸

2n

>

i.e., a chain of 2n qualified existential quantifications terminating with the concept
>. Obviously, E is in FL−E , hence subsumption in FL−E is np-hard.

We now use the above construction to show that in three other DLs—extending
FL− with each pair of role constructs for role conjunction, role inverse, and role
chain—subsumption is np-hard. The fact that reductions can be easily reused is a
characteristic of DLs. It depends on the compositional semantics of constructs—
hardness proofs obviously carry over to more general DLs—but also on the exten-
sional semantics, that allows one to simulate a construct with others.

3.3.2 FL− plus role conjunction and role inverse

We abbreviate this description logic as FL−(u,−). We prove that FL−(u,−) is
hard for np with an argument similar to that for FL−E . One may be tempted
to use u-simulation, defined in Section 3.2.2.1, which substitutes qualified existen-
tial quantifications with role intersections. However, a direct u-simulation of the
concepts used in the reduction for FL−E does not work. In fact, u-simulation pre-
serves satisfiability, not subsumption; e.g., while ∃R.C uD is subsumed by ∃R.C,
its u-simulation ∃(R uQ1) u ∀Q1.C uD is not subsumed by ∃(R uQ2) u ∀Q2.C.

To carry over the proof, it is useful a tableaux rule for role inverse:

Condition: T contains R(x, y),
where R is either a role name P or its inverse P−;

Action: T ′ = T ∪ {R−(y, x)},
where if R = P−, then R− = P .

Complexity of Reasoning 117

Theorem 3.18 Subsumption in FL−(u,−) is np-hard.

Proof We refer to the concept CM defined in the reduction given for ALE . Let n
be the cardinality of U in xc. First define the concept F as follows:

F = ∀R. · · · ∀R.
︸ ︷︷ ︸

2n

∀(R−). · · · ∀(R−).
︸ ︷︷ ︸

2n

A

where A is a concept name (remind that CM does not contain any concept name,
but > and ⊥). F is a concept of FL−(u,−).

Observe now that the ALE-concept CM = C1
1 u . . . u Cm

1 uD1 is unsatisfiable if
and only if ˜C1

1 u . . .u ˜Cm
1 uF is subsumed by A (where ˜C is the u-simulation of C).

In fact, the subsumption holds if and only if the complete tableau for { ˜C1
1 u . . . u

˜Cm
1 u F (x),¬A(x)} contains the only possible clash {A(x),¬A(x)}. This tableau

contains a clash if and only if there is a trace of length 2n in the tableau, and such a
trace is in one-one correspondence with the exact covers of the problem xc. Hence
subsumption in FL−(u,−) is np-hard.

3.3.3 FL− plus role conjunction and role chain

We abbreviate this description logic as FL−(u, ◦).

Theorem 3.19 Subsumption in FL−(u, ◦) is np-hard.

Proof Again, we refer to the concept CM defined in the reduction given for ALE .
Observe that the ALE-concept CM = C1

1 u . . . u Cm
1 u D1 is unsatisfiable if and

only if ˜C1
1 u . . .u ˜Cm

1 is subsumed by ¬D1 (again, ˜C is the u-simulation of C). The
claim holds, since ˜C1

1 u . . . u ˜Cm
1 is in FL−(u) and ¬D1 can be expressed as the

equivalent concept E, defined as follows:

G = ∃ (R ◦ · · · ◦R)
︸ ︷︷ ︸

2m

(3.8)

Obviously, G is in FL−(◦), hence subsumption in FL−(u, ◦) is np-hard.

We note that in the above reduction, subsumption is proved intractable by using
only role conjunction in the subsumee (to simulate existential quantification), and
only role chain in the subsumer. We exploit this fact in the following section.

3.3.4 FL− plus role chain and role inverse

We abbreviate this description logic as FL−(◦,−). We first show that, similarly to
Section 3.2.2.1, qualified existential quantifications in a concept D can be replaced

118 F. M. Donini

by a combination of role chains and role inverses, obtaining a new concept ̂D that
is satisfiable iff D does.

3.3.4.1 Simulating ∃R.C via role chains and role inverses

Donini et al. [1991b; 1999] showed that a concept D containing qualified existential
role quantifications ∃R.C is satisfiable iff the concept ̂D is satisfiable, where in ̂D
each occurrence of a concept ∃R.C is replaced by the concept ∃(R ◦ QC) u ∀(R ◦
QC ◦ Q−

C).C, adding QC as a new role name (a different Q for each occurrence of
∃R.C, to be used nowhere else). We say that ̂C is a ◦-simulation of C.

Also this simulation can be explained by referring to tableaux, through an exam-
ple concept.

Example 3.20 Consider the concept D below on the left, and its ◦-simulation ̂D
on the right:

D =

∃R.A u
∃R.B u
∀R.C

̂D =

∃(R ◦QA) u ∀(R ◦QA ◦Q−
A).A u

∃(R ◦QB) u ∀(R ◦QB ◦Q−
B).B u

∀R.C

where subscripts on new role names help identifying which existential they simulate.
Applying tableau rules of Chapter 2 to ̂D(x), one obtains the model

R(x, y) A(y) QA(y, uy)
C(y)

R(x, z) B(z) QB(z, uz)
C(z)

where subscripts on individuals uy, uz highlight that there is a new individual name
for each individual name used to satisfy an existential quantification. That is, the
number of individual names in the tableau for ̂D are at most twice those in the
tableau for D.

Lemma 3.21 Let C be an ALE-concept and ̂C its ◦-simulation. Then C is satis-
fiable if and only if ̂C is satisfiable.

Proof The proof extends the above example. In one direction, an open tableau for
̂D is also an open tableau for D (ignoring assertions on new role names). In the
other direction, an open tableau for D can be transformed to an open tableau for ˜D:
to every role assertion R(x, y)—added to satisfy an existential ∃R.C in D—chain
an assertion QC(y, uy).

If C is an ALE-concept, its ◦-simulation ̂C is a concept belonging to the language
AL(◦,−), that is, AL plus role inverses and role chains. Of course, ◦-simulations

Complexity of Reasoning 119

could be defined for concepts belonging to DLs more expressive than ALE . For
DLs in which every concept is satisfiable (like FL−(◦,−)) this simulation can be
interesting only in subsumptions.

We can now come back to subsumption in the DL FL− plus role inverses and
role chains.

Theorem 3.22 Subsumption in FL−(◦,−) is np-hard.

Proof For every ALE-concept C, one can compute in quadratic time an ◦-simulation
̂C. For a given instance (U,M) of xc, CM is unsatisfiable iff (by Lemma 3.21) ̂CM
is satisfiable iff ̂C1

1 u . . .u ̂Cm
1 is subsumed by ¬D1. Now the subsumee contains no

negated concept, hence it belongs to FL−(◦,−). The subsumer is equivalent to the
concept G in (3.8), which again is in FL−(◦,−).

3.4 Combining sources of complexity

In a DL containing both sources of complexity, one might expect to code any prob-
lem involving the exploration of polynomial-depth, rooted AND-OR graphs. The
computational analog of such graphs is the class APTime (problems solved in poly-
nomial time by an alternating Turing machine) which is equivalent to PSpace (e.g.,
see [Johnson, 1990, p. 98]). A well-known PSpace-complete problem is Validity of
Quantified Boolean Formulae:

Definition 3.23 (Quantified Boolean Formulae qbf) Decide whether it is
valid the (second-order logic) closed sentence

(Q1X1)(Q2X2) · · · (QnXn)[F (X1, . . . , Xn)]

where each Qi is a quantifier (either ∀ or ∃) and F (X1, . . . , Xn) is a Boolean formula
with Boolean variables X1, . . . , Xn.

The problem remains PSpace-complete if F is in 3CNF, i.e., conjunctive normal
form with at most three literals per clause. We call prefix of the quantified formula
the string of quantifiers, and matrix the 3CNF formula F .

This problem can be encoded in an AND-OR graph, using AND-nodes to encode
∀-quantifiers, and OR-nodes for ∃-quantifiers. In the leaves, there is the matrix F .
We use this analogy to illustrate the reduction, taken from [Schmidt-Schauß and
Smolka, 1991].

120 F. M. Donini

3.4.1 PSpace -hardness of satisfiability in ALC
Without loss of generality, we assume that each clause is non-tautological, i.e.,
a literal and its complement do not appear both in the same clause. Let F =
G1 ∧ · · · ∧ Gm. The QBF (Q1X1) · · · (QnXn)[G1 ∧ · · · ∧ Gm] is valid iff the ALC-
concept

C = D u C1
1 u . . . u Cn

1 (3.9)

is satisfiable, where in C all concepts are formed using the concept name A and the
atomic role name R. The concept D encodes the prefix, and is of the form D1 u
∀R.(D2 u ∀R.(. . . (Dn−1 u∀R.Dn) . . .) where for i ∈ {1, . . . , n} each Di corresponds
to a quantifier of the QBF in the following way:

Di =
{

(∃R.A) u (∃R.¬A), if Qi = ∀
∃R.>, if Qi = ∃

The concept Ci
1 is obtained from the clause Gi using the concept name A when a

Boolean variable occurs positively in Gi, ¬A when it occurs negatively, and nesting
l universal role quantifications to encode the variable Xl. In detail, let k be the max-
imum index of all Boolean variables appearing in Gi. Then, for l ∈ {1, . . . , (k−1)}
one defines

Ci
l =

∀R.(A t Ci
l+1), if Xl appears positively in Gi

∀R.(¬A t Ci
l+1), if Xl appears negatively in Gi

∀R.Ci
l+1, if Xl does not appear in Gi

and the last concept of the sequence is defined as

Ci
k =

{

∀R.A, if Xk appears positively in Gi

∀R.¬A, if Xk appears negatively in Gi

It can be shown that each trace in a tableau branch for D corresponds to a truth as-
signment to the Boolean variables, and that all traces of a tableau branch correspond
to a set of truth assignments consistent with the prefix. Therefore, Schmidt-Schauß
and Smolka conclude that satisfiability in ALC is PSpace-hard. Combining this re-
sult with the polynomial-space calculus given for ALCN in Chapter 2, one obtains
that satisfiability (and subsumption) in ALCN are PSpace-complete, and that
the exponential-time behavior of the calculus cannot be improved unless PSpace
=PTime. Satisfiability and subsumption are still in PSpace if role conjuctions are
added to ALCN [Donini et al., 1997a], or if inverse roles and transitive roles are
added to ALC [Horrocks et al., 2000b].

Using u-simulations, one can use the same reduction to prove that both satisfia-
bility and subsumption in ALU(u) are PSpace-hard (and thus PSpace-complete).
With a more complex reduction, Donini et al. [1991a] proved that also satisfiabil-
ity in ALN (u) is PSpace-hard. Hemaspaandra [1999] proved that satisfiability in

Complexity of Reasoning 121

ALEN is PSpace-hard using a reduction from qbf, where the prefix was coded with
a concept similar to D (more precisely, similar to the concept D in Section 3.1.1.2),
and the matrix was coded in a more complex way. Also FL was proved PSpace-
hard in [Donini et al., 1997a]. Observe that all these DLs contain both sources of
complexity.

3.4.2 A remark on reductions

Schild [1991] observed that ALC is a notational variant of multi-modal logic K,
whose satisfiability was proved PSpace-hard by Ladner [1977], using a different
reduction from qbf. This gives us the occasion to point out a characteristic of
reductions from a different, pretty experimental viewpoint.

The target modal formula in Ladner’s reduction has size quadratic w.r.t. the given
instance of qbf, while one can observe that the concept C in (3.9) has just linear
size. From a theoretical perspective of the PSpace reduction, this is irrelevant.
However, qbf has been studied also from an experimental point of view (e.g., [Cadoli
et al., 2000; Gent and Walsh, 1999]): trivial cases have been identified, easy-hard-
easy patterns have been found, and one can use ratios of clauses/variables for which
the probability that a random QBF is valid is around 0.5—which have been proved
experimentally to contain the “hard” instances. This experimental work can be
transferred in DLs, to compare the various algorithms and systems for reasoning in
ALC. This transfer yields the benefits that

• concepts which are trivially (un)satifiable do not need to be isolated again;
• the translation of “hard” QBFs can be used to test reasoning algorithms for ALC;
• the performance of algorithms for ALC can be compared with best known algo-

rithms for solving qbf(see [Cadoli et al., 2000; Rintanen, 1999; Giunchiglia et al.,
2001b]), and optimizations can be carried over.

However, using Ladner’s reduction to obtain “hard-to-reason” concepts, the
quadratic blow-up of the reduction makes the resulting concepts soon too big to
be significantly tested. Using Schmidt-Schauß and Smolka linear reduction, in-
stead, one can use a spectrum of “hard” concepts as wide as the original instances
of qbf. Thus, experimental analysis might make significant differences between
(theoretically equivalent) polynomial many-one transformations used in reductions
[Donini and Massacci, 2000].

3.5 Reasoning in the presence of axioms

In this section we consider the impact of axioms on reasoning. Intuitively, axioms
introduce new concept expressions in every individual generated in a tableau, hence

122 F. M. Donini

simple arguments on termination and complexity based on the nesting of operators
do not apply. We start with a comparison with Dynamic Logic, and then we show
how axioms can encode a succinct representation of AND-OR graphs, leading to an
ExpTime lower bound.

3.5.1 Results from Propositional Dynamic Logic

Propositional Dynamic Logic (pdl) [Harel et al., 2000] is a formalism able to express
propositional properties of programs. Instead of introducing yet another logical
syntax, we will talk about pdl in terms of DLs. A precise correspondence between
DLs and pdl can be found in Chapter 5.

The counterpart of pdl in DLs is ALCtrans [Baader, 1991], already defined in
Chapter 2. We recall that ALCtrans is ALC plus a rich set of role constructors:
union of roles, composition, and transitive closure. To be precise, pdl has also a role-
forming constructor which is role identity, and the closure of a role is the reflexive-
transitive one, denoted as R∗. Reflexive-transitive closure is defined similarly to
transitive closure, but considering also every pair (a, a) is in the interpretation of
R∗. However, Schild [1991] showed that these are minor differences, as far as we are
concerned with computational behavior only.

pdl and ALCtrans are relevant in this section about axioms, because using union
and transitive closure of roles, one can “internalize” axioms in a concept in the
following way [Baader, 1991; Schild, 1991]. Let C be an ALC concept, T a set of
axioms of the form Ci v Di, i ∈ {1, . . . ,m}. Observe that every axiom can also be
thought as a concept ¬C t D which every individual in a model must belong to.
Let R1, . . . , Rn be all the role names used in either C or T . Then C is satisfiable
w.r.t. T iff the following concept is satisfiable:

C u ∀(R1 t · · · tRn)∗.((¬C1 tD1) u · · · u (¬Cm tDm)) (3.10)

The key property that makes this reduction correct is the connected model property
[Streett, 1982]: if C has a model w.r.t. a set of axioms, then it has also a model in
which one element a ∈ ∆I is in CI , and for every other element b in the model,
there is a path of roles from a to b.

Concept (3.10) is just a syntactic variant of a pdl expression. Hence, every upper
bound on complexity of satisfiability for pdl applies also to concept satisfiability
in ALC w.r.t. axioms, including all role constructors of pdl. Namely, satisfiabil-
ity in pdl was proved to be decidable in deterministic exponential time, first by
Pratt [1979], and then by Vardi and Wolper [1986] using an embedding into tree
automata. This upper bound holds also for ALC plus axioms. It is interesting to
observe that the deterministic exponential time upper bound was nontrivial; simple
nondeterministic upper bounds were proved by Fischer and Ladner [1979] for pdl

Complexity of Reasoning 123

and by Buchheit et al. [1993a] for DLs, using tableaux. Only recently a tableaux
with lemmata providing a deterministic exponential upper bound has been found
[Donini and Massacci, 2000].

Regarding hardness, every lower bound on reasoning in ALC with axioms car-
ries over to pdl. However, lower bounds for pdl were already known. Fischer
and Ladner [1979] proved that pdl is ExpTime-hard using a reduction from Al-
ternating Turing Machines working in polynomial space (recall that the complexity
class Alternating Polynomial Space is the same as ExpTime [Johnson, 1990]). van
Emde Boas [1997] proved the same result using a reduction from alternating domino
games. However, both hardness proofs use a very small part of pdl, and in particu-
lar, transitive closure on roles appears only in one expression of the form (3.10), so
that proofs could be adapted to ALC concept satisfiability w.r.t. a set of inclusions,
in a very simple way. Moreover, the proofs use ∀R.C to code an AND-node, and
∃R.C to code an OR-node. Hence, they follow the same intuition presented in the
previous section, where we showed the correspondence between AND-OR-trees and
satisfiability of ALC without axioms.

Here, we want to present yet another proof, of a very different nature, that
highlights the fact that concept inclusions can express a large structure in a succinct
way.

3.5.2 Axioms and succinct representations of AND-OR-graphs

We now need more precise definitions about AND-OR-graphs. An AND-OR-graph
is a graph in which nodes are partitioned into AND-nodes, and OR-nodes. An
OR-node is reachable if one of its predecessors is reachable (as in ordinary graphs),
while an AND-node is reachable only if all its predecessors are reachable.

Definition 3.24 (AND-OR-Graph Accessibility Problem (agap)) Given
an AND-OR-graph, a set of source nodes S1, . . . , Sm, and a target node T , is T
reachable from S1, . . . , Sm?

Let n be the number of nodes of the graph, and d (a constant) the maximum
number of predecessors of a node. It is well known that agap can be solved in
time polynomial in n (e.g., it can be reduced to Monotone Circuit Value, which
is PTime-complete [Papadimitriou, 1994]). However, agap becomes ExpTime-
complete when one considers its succinct version [Balcazar, 1996]. Let the out-
degree of a node be bounded by a constant d. Let C be a Boolean circuit with log n
inputs, and with 1 + d log n outputs; when the input of C is the binary encoding of
a node N , its outputs are the encodings of the type of N (AND/OR) and of the d
predecessors of N (using a dummy node if the predecessors are less than d).

124 F. M. Donini

Definition 3.25 (Succinct AND-OR-Graph Accessibility Problem (s(agap)))
Given a circuit C representing an AND-OR-graph, a set of source nodes S1, . . . , Sm,
and a target node T , is T reachable from S1, . . . , Sm?

Now, s(agap) is ExpTime-complete [Balcazar, 1996]. The intuition for this ex-
ponential blow-up in complexity is that there are many circuits which can encode
graphs whose size is exponentially larger than the circuit size. This intuition ap-
plies to many other succinct representations of problems with circuits [Papadim-
itriou, 1994, p. 492] or with propositional formulae [Veith, 1997], yielding complete
problems for high complexity classes.

We reduce s(agap) for graphs with in-degree d = 2 to unsatisfiability of an ALC
concept C w.r.t. a set of inclusions T . Intuitively, the axioms can succinctly encode
either a proof of unsatisfiability for a concept, or a model for C w.r.t. T . We note
that, since we are coding reachability into unsatisfiability, we will use u to code OR-
nodes—a conjunction is unsatisfiable when at least one of its conjuncts does—and
t to code AND-nodes.

First of all, let A1, . . . , Alog n, be a set of concept names one-one with the inputs
of the circuit C. Each node N in the graph is then mapped into a conjunction of
As and their negations, denoted as concept(N), depending on the code of N : if the
i-th bit in the code of N is 1, use Ai, if it is 0, use ¬Ai. For example, if N has code
1101 then concept(N) is A1 uA2 u ¬A3 uA4.

Then, let B1
1 , . . . , B1

log n, and B2
1 , . . . , B2

log n be two sets of concept names one-one
with the outputs of C. Conjunctions of Bs with negations code predecessor nodes.

Moreover, let two concept names AND , OR, represent the type of a graph node.
If C has k internal gates, we use also k concept names W1, . . . , Wk. For each gate,
we use a concept equality that mimics the Boolean formula defining the gate. E.g.,
if C has a ∧-gate x1 ∧ x2 = x3, we use the equality X1 u X2 = X3, where the
X1, X2, X3 can be either concept names among W1, . . . , Wk denoting input/output
of internal gates, or they can be some of the As and Bs, denoting inputs/outputs
of the whole circuit.

For the output of C encoding the type of the node, we use directly the two concept
names AND , OR in the concept equality coding the output gate of C. Moreover,
to model the different interpretation of predecessors for the two type of nodes, we
use the inclusions:

AND v ∃R1.> t ∃R2.> (3.11)

OR v ∃R1.> u ∃R2.> (3.12)

where R1 and R2 are two role names (we use indexes 1,2 to parallel indexes of the
Bs). Observe that concept AND implies a disjunction t, and concept OR implies
a conjunction u. This is because we reduce reachability to unsatisfiability, as we

Complexity of Reasoning 125

said before. Moreover, observe that predecessors in the AND-OR-graph are coded
into role successors in the target DL.

For the output of C encoding the predecessors of a node, For i ∈ {1, . . . , log n},
we add the following inclusions:

B1
i v ∀R1.Ai (3.13)

¬B1
i v ∀R1.¬Ai (3.14)

B2
i v ∀R2.Ai (3.15)

¬B2
i v ∀R2.¬Ai (3.16)

We denote by TC the set of all of the above axioms.
We now give an example of what the axioms imply. Suppose C computes the

two predecessors 1011 and 0110 for node 1101. Then, equalities coding C force
concept(1101) = A1 u A2 u ¬A3 u A4 to be included in B1

1 , ¬B1
2 , B1

3 , B1
4 (first

predecessor) and ¬B2
1 , B2

2 , B2
3 , ¬B2

4 (second predecessor). Then inclusions (3.13)–
(3.16) tell that every R1-successor is included in A1, ¬A2, A3, A4—which conjoined,
make concept(1011)—and that every R2-successor is included in ¬A1, A2, A3, ¬A4

(concept(0110)). Moreover, if C computes an AND-type for node 1101, then ax-
iom (3.11) implies that the corresponding concept is included in AND , and this
implies that either an R1-successor, or an R2-successor exists. For OR-type nodes,
both successors exist.

Theorem 3.26 Let C be a circuit, T be the target node, and S1, . . . , Sm be the
source nodes in an instance of s(agap). Then T is reachable from S1, . . . , Sm

iff concept(T) is unsatisfiable in the TBox TC ∪ {concept(S1) v ⊥} ∪ · · · ∪
{concept(Sm) v ⊥}.

Proof Most of the rationale of the proof has been informally given above. We sketch
what is needed to complete the proof.

If Suppose T is unreachable from S1, . . . , Sm. We construct a model (I, ∆I)
for concept(T) satisfying the axioms as follows. Let ∆I be the set of all nodes in
the graph which are unreachable from S1, . . . , Sm. Then, (R1)I is the set of pairs
(a, b) of nodes in ∆I , such that b is the first predecessor of a, and similarly for
(R2)I (second predecessor). For i ∈ {1, . . . , log n}, (Ai)I is the set of nodes in ∆I

whose binary code has the i-th bit equal to 1. The interpretation of the Bs, W s,
AND , OR, concepts is according to the 1-value of the circuit: node a is in their
interpretation iff the output they correspond to is 1 when the code of a is the input
of the circuit.

Then, T ∈ (concept(T))I , and moreover (I, ∆I) satisfies by construction all ax-
ioms in TC; e.g., if an OR-node is unreachable, then both its predecessors are

126 F. M. Donini

unreachable, hence both predecessors are in ∆I , and axiom (3.12) is satisfied. Sim-
ilarly for an AND-node.

Only-if Let N be any node reachable from S1, . . . , Sm, and let d(N) be the depth
of the shortest hyperpath leading from S1, . . . , Sm to N . We show by induction on
d(N) that concept(N) is unsatisfiable in the TBox.

If d(N) = 0, the claim holds by construction. Let N be a reachable node, with
d(N) = k + 1. If N is an OR-node, at least one of its predecessors—let it be the
first predecessor, and call it M—is reachable with d(M) = k. Then concept(M) is
unsatisfiable by inductive hypothesis. But axiom (3.12) implies that concept(N) is
included in ∃R1.>u∃R2.>, while (3.13)–(3.16) imply that concept(N) is included in
∀R1.concept(M), that is, ∀R1.⊥. Hence, also concept(N) is unsatisfiable. A similar
proof holds in case N is an AND-node.

Then, the claim holds for N = T .

Observe that in the above proof we did not use qualified existential quantification,
hence, the proof works for the sublanguage of ALC called ALU . Now, axioms coding
the circuit can be propositionally rewritten without union. Moreover, the only other
axiom in which union is needed is (3.11), which could be rewritten equivalently as
∀R1.⊥ u ∀R2.⊥ v ¬OR, which is now in the language AL.

Theorem 3.27 Let C be a concept and T a set of inclusions in AL, with at least
two role names. Deciding whether C is unsatisfiable w.r.t. T is ExpTime-hard.

The above theorem sharpens a result by Calvanese [1996b], who proved ExpTime-
hardness for ALU . McAllester et al. [1996] proved ExpTime-hardness for a logic
that includes FL−E , and their proof can be rewritten to work with ALU .

We close the section with some discussion about the proof.

Remark 3.28 The above proof does not follow the correspondence used by Fischer
and Ladner [1979] between AND-nodes and ∀R.C concepts on one side, and OR-
nodes and ∃R.C concepts on the other side. Here, quantifications ∃R and ∀R.C were
used to code predecessors in the graph, node type was coded by u, t constructors,
while axioms were crucial to mimic the behavior of the circuit.

3.5.3 Syntax restrictions on axioms

In the proof, no restriction on axioms was imposed. A significant syntactic restric-
tion is to allow one to use only concept names on the left-hand side of axioms. In
this case, a dependency graph induced by the axioms of a TBox T can be con-
structed, whose nodes are labeled by concept names. A node A is connected to a
node B if the concept name B appears (also as a subconcept) in a concept C, and

Complexity of Reasoning 127

A v C is an axiom. Then, it makes sense to distinguish between cyclic axioms, in
which the dependency graph contains a cycle, and acyclic axioms.

Acyclicity is significant, because if only acyclic axioms are allowed, then reasoning
in ALC can be performed in PSpace by expanding axioms when needed [Baader
and Hollunder, 1991b; Calvanese, 1996b]. The only case for ALC (till now) in which
acyclic axioms make reasoning ExpTime-hard is when concrete domains are also
added [Lutz, 2001b].

Also sublanguages of ALC can be considered. With regard to acyclic axioms
in AL, Buchheit et al. [1998] proved that subsumption in acyclic AL TBoxes is
conp-hard, and in PSpace. Calvanese [1996b] proved that cyclic axioms in AL are
PSpace-complete, and other results for ALE and ALU .

A second possible restriction is to allow for axioms of the form A ≡ C, but in
which a concept name can appear only once on the left-hand side. For axioms of
this form in ALN , Küsters [1998] proved that reasoning is PSpace-complete when
the TBox is cyclic, and np-complete when it is acyclic.

3.6 Undecidability

One of the main reasons why satisfiability and subsumption in many DLs are
decidable—although highly complex—is that most of the concept constructors can
express only local properties about an element [Vardi, 1997; Libkin, 2000]. Let C
be a concept in ALC: recalling the tableaux methods in Chapter 2, an assertion
C(x) states properties about x, and about elements which are linked to x by a chain
of at most |C| role assertions. Intuitively, this implies that a constraint regarding
x will not “talk about” elements which are arbitrarily far (w.r.t. role links) from
x. This also means that in ALC, and in many DLs, an assertion on an individual
cannot state properties about a whole structure satisfying it. However, not every
DL satisfies locality.

3.6.1 Undecidability of role-value-maps

The first notable non-local DL is a subset of the language of the knowledge rep-
resentation system Kl-One, isolated by Schmidt-Schauß [1989], which we call
FL−(◦, =)1. It contains conjunction, universal quantification, role composition,
and equality role-value-maps R = Q. A role-value-map allows one to express con-
cepts like “persons whose co-workers coincide with their relatives”, as it could be,
e.g., a small family-based firm. Using two role names co-worker and relative, this
concept would be expressed as (co-worker = relative).

The DL proved undecidable by Schmidt-Schauß used equality role-value-maps.
1 In his paper, Schmidt-Schauß used the name ALR.

128 F. M. Donini

Table 3.2. Syntax and semantics of the description logic FL−(◦,⊆).

concept expressions semantics

concept name A ⊆ ∆I

value restriction ∀R.C {x ∈ ∆I | ∀y. (x, y) ∈ RI → y ∈ CI}

concept intersection C uD CI ∩DI

role-value-map R ⊆ Q {x ∈ ∆I | ∀y. (x, y) ∈ RI → (x, y) ∈ QI}

role expressions semantics

role name P ⊆ ∆I ×∆I

role composition R ◦Q {(x, y) ∈ ∆I ×∆I | ∃c. (x, z) ∈ RI , (z, y) ∈ QI}

Here we present a simpler proof for a DL using containment role-value-maps R ⊆ Q.
We call this DL FL−(◦,⊆). Clearly, FL−(◦,⊆) is (slightly) more expressive than
FL−(◦, =), since R = Q can be expressed by (R ⊆ Q) u (Q ⊆ R), but not vice
versa. Most of the original reduction is preserved, though.

Although all constructs of FL−(◦,⊆) have already been defined in different parts
of Chapter 2, we recall for convenience their syntax and semantics in the single
Table 3.2. Recall that R ⊆ Q is a concept; namely, the concept of all elements
whose set of fillers for role R is included in the set of fillers for role Q. To avoid
many parentheses, we assume ◦ has always precedence over ⊆.

Before giving the proof that subsumption in FL−(◦,⊆) is undecidable, let us
consider an example illustrating why FL−(◦,⊆) is not local.

Example 3.29 Let Q,R, S, U, V be role names. Consider whether the concept
C = ∀S.∀U.A u (R ◦ Q ⊆ S) u ∀R.(Q ◦ U ⊆ V) is subsumed by the concept
D = ∀R.∀Q.∀U.B.

The answer is no: in fact, a model satisfying C and not satisfying D is shown
in Fig. 3.2. This model can be obtained trying to satisfy ¬D = ∃R.∃Q.∃U.¬B
with individual x, y, z, w, and then adding role assertions satisfying C. Observe
that a model of C cannot be a tree because of concepts like (R ◦ Q ⊆ S). Hence,
any notion of “distance” between two individuals in a model, as number of role
links connecting them, is ambiguous when a DL has role-value-maps. Moreover,
the satisfaction of the assertions (R ◦ Q ⊆ S)(x) and ∀S.A(x) in an interpretation
depends on the satisfaction of the assertion A(z), for every individual z connected
to x via a path of role fillers that can be composed according to role-value-maps.
In fact, replacing B with A in D yields a concept D′ which now subsumes C—and
indeed, the previous model satisfies also D′.

Complexity of Reasoning 129

∀S.∀U.A(x)

(R ◦Q ⊆ S)(x)

∀R.(Q ◦ U ⊆ V)(x)

(Q ◦ U ⊆ V)(y)

∀U.A(z)

A(w)

¬B(w)
-R(x, y)

-Q(y, z)

-
S(x, z)

-V (y, w)

-U(z, w)

Fig. 3.2. A possible countermodel for C v D in Exam-
ple 3.29. Boxes group assertions about an individual; arrows
represent role assertions.

These properties are crucial for the reduction from ground rewriting systems to
subsumption in FL−(◦,⊆). For basics about rewriting systems, consult [Dershowitz
and Jouannaud, 1990].

Definition 3.30 (Ground Rewriting System) Let Σ be a finite alphabet
{a, b, . . .}. A term w on Σ is an element of Σ∗, i.e., a finite sequence of 0 or
more letters from Σ. If v, w are terms, their concatenation is a term, denoted as
vw. A ground rewriting system is a finite set of rewriting rules ρ = {si → ti}i=1,...,n,
where for every i ∈ {1, . . . , n} both si and ti are terms on Σ. The rewriting relation
∗→ induced by a set of rewriting rules ρ is the minimal relation which is reflexive,
transitive, and satisfies the following conditions:

(i) if s → t ∈ ρ then s ∗→ t;
(ii) for every letter a ∈ Σ, if p ∗→ q then both ap ∗→ aq and pa ∗→ qa.

The rewriting problem for ground rewriting systems is: Given a set of rewriting
rules ρ and two terms v, w, decide whether v ∗→ w.

Remark 3.31 In general, a single rewriting step of a term v consists in finding a
substring of v which coincides with the antecedent s of a rewriting rule s → t, and
then substitute t for s in v. Hence, v ∗→ w if there exist n terms u1, . . . , un such that
u1 = v, un = w, and for each i ∈ 1..n − 1 the two terms ui, ui+1 are such that for
some terms p and q, it is ui = psq, ui+1 = ptq, and s → t ∈ ρ. This proves that the
term problem is recursively enumerable. However, it is semidecidable (recursively
enumerable, but nonrecursive).

We reduce this problem to subsumption in FL−(◦,⊆) as follows. First of all,
observe that we can define the following one-to-one correspondence between terms
and role chains:

130 F. M. Donini

• for every letter a in Σ, let Pa be a role name;
• for every term w, let Rw be the composition of the role names corresponding to

the letters of w. For example, if w = aab, then Rw = Pa ◦ Pa ◦ Pb.

Now for each set of rewriting rules ρ, we define the concept Cρ as

Cρ = us→t∈ρ(Rs ⊆ Rt)

Let Q be a new atomic role: we define a concept CΣ as

CΣ = ua∈Σ(Q ◦ Pa ⊆ Q)

Intuitively, if a model I satisfies CΣ(x), then for every term w, if (Q ◦ Rw)(x, z)
holds in I, then Q(x, z) also holds, i.e., x is directly connected via Q to every other
element z to which it is indirectly connected via Q ◦Rw.

If also I |= ∀Q.Cρ(x), then Cρ(z) holds for every such z. This is a key property
of the reduction.

Remark 3.32 The two concepts ∀Q.Cρ and CΣ are a way to internalize simple
axioms in a concept. Consider a TBox T = {> v Cρ} which states that every
individual in a model must satisfy concept Cρ. One could prove that in FL−(◦,⊆)
a concept C is subsumed by a concept D w.r.t. T iff CΣu∀Q.Cρu∀Q.C is subsumed
by ∀Q.D, where the latter is plain subsumption between concept expressions.

Theorem 3.33 Subsumption in FL−(◦,⊆) is undecidable.

Let ρ be a set of rewriting rules, and v, w be two terms. Define the following two
concepts:

C = CΣ u ∀Q.Cρ (3.17)

D = ∀Q.(Rv ⊆ Rw) (3.18)

We divide the proof in two lemmata.

Lemma 3.34 If v ∗→ w then the concept C is subsumed by D.

Proof We first prove that the claim holds for the base case of the inductive definition
of ∗→ (Condition (i) in Definition 3.30). Then, we prove the claim for the two
inductive cases (Condition (ii)). Finally, we prove that the proof carries over the
closure conditions. In all cases, let s → t ∈ ρ.

Base case. The concept D is ∀Q.(Rs ⊆ Rt). Observe that the concept ∀Q.Cρ is
equivalent to us→t∈ρ∀Q.(Rs ⊆ Rt). Hence, C is subsumed by D because D is one
of the conjuncts of (an equivalent form of) C.

Inductive cases. For the first inductive case, let D = ∀Q.(Pa ◦Rp ⊆ Pa ◦Rq), and

Complexity of Reasoning 131

let the inductive hypothesis be that C is subsumed by ∀Q.Rp ⊆ Rq. By refutation,
suppose C is not subsumed by D: then, there is a model I in which both C(x) and
¬D(x) hold. The latter constraint implies that there is an element y such that

(i) I |= Q(x, y)
(ii) I |= (Pa ◦Rp)(y, z)
(iii) I 6|= (Pa ◦Rq)(y, z)

From (ii), there is an element y′ such that both Pa(y, y′) and Rs(y′, z) hold. Now
from CΣ(x), it must be I |= Q(x, y′), and from the inductive hypothesis this implies
(Rs ⊆ Rt)(y′). Then, I |= Rt(y′, z) holds, hence I |= (Pa ◦ Rt)(y, z), contradict-
ing (iii).

The second inductive case is simpler, since one does not need to consider CΣ(x).
The interested reader can use it as an exercise.

We conclude the proof by showing that the reduction carries over the reflexive
and transitive closure of ∗→.

First, from the semantics in Table 3.2 follows that Rw ⊆ Rw is equivalent to
>, which implies also that D ≡ >. Hence the claim holds also for w ∗→ w (i.e.,
reflexivity).

For transitivity, the induction is easy: suppose u ∗→ v and v ∗→ w: then by
induction C is subsumed by D1 and by D2, where D1 = ∀Q.(Ru ⊆ Rv) and D2 =
∀Q.(Rv ⊆ Rw). Then C is subsumed also by D1 u D2 which is equivalent to
∀Q.((Ru ⊆ Rv) u (Rv ⊆ Rw)). This concept is subsumed by ∀Q.(Ru ⊆ Rw), which
is the claim.

We now prove the other direction of the reduction.

Lemma 3.35 If v 6 ∗→ w, then the concept C is not subsumed by D.

Proof We give the rule to construct an infinite tableau branch T and show that
it defines a model that satisfies C, and does not satisfy D. The tableau is one-one
with an infinite automaton accepting the term v, and every other term v can be
rewritten into. Let v[1], . . . , v[n] denote the n letters of v (v[i] is the i-th letter of
v).

Let x, y, z be individual names. Start from the set of assertions

T0 = Pv[1](y, y1), . . . , Pv[i+1](yi, yi+1), . . . , Pv[n](yn−1, z)

Then add role assertions to T following the →⊆-rule:

Condition: there is a rewriting rule s → t ∈ ρ
where s = s[1] · · · s[h] and t = t[1] · · · t[k];
T contains h + 1 individuals y0, . . . , yh and h assertions
Ps[i](yi−1, yi) for i ∈ {1, . . . , h}

132 F. M. Donini

T does not contain all assertions Pt[1](y0, y′1), . . . , Pt[n](y′k−1, yh)
Action: T ′ = T ∪ {Pt[1](y0, y′1), . . . , Pt[n](y′k−1, yh)},

where y′1, . . . , y
′
k−1, are k − 1 individual names not occurring in T .

Intuitively, if there is in T a path of role assertions such that Rs(y0, yh) holds, the
→⊆-rule adds another path such that also Rt(y0, yh) holds. Of course, Tω can have
an infinite number of individuals and role assertions between them; this is reason-
able, since its role paths from y to z are one-one with the possible transformations on
v one can make using the rewriting rules. One can also think Tω as an infinite-state
automaton accepting v = {u | v ∗→ u}.

The →⊆-rule always adds new assertions to T , and its application given some
premises does not destroy other premises of application of the →⊆-rule itself, since
we keep in T all the rewritten terms. Therefore, the construction is monotonic over
the ⊆-lattice of all tableaux with a countable number of individuals, and role asser-
tions between individuals. In building Tω, however, a fair strategy must be adopted.
That is, if at a given stage Ti of the construction, the →⊆-rule is applicable for in-
dividuals y0, . . . , yh, then for some finite k, in Ti+k the →⊆-rule has been applied
for those premises—i.e., a possible rule application is not indefinitely deferred. This
could be achieved by, e.g., inserting possible rule applications in a queue.

Proposition 3.36 Let Tω be constructed using the →⊆-rule, and a fair strategy.
For every term u = u[1] · · ·u[k], v ∗→ u iff in Tω there are k − 1 individual names
y1, . . . , yk−1 and k assertions Pu[1](y, y1), . . . Pu[k](yk−1, z).

Proof If v ∗→ u, then there are a minimum finite number n of applications of
rewriting rules in ρ transforming v into u. By induction on such n, the premises of
the →⊆-rule are fulfilled, and since Tω is built adopting a fair strategy, from some
finite stage of its construction onwards, Ru(y, z) must hold. For the other direction,
if Ru(y, z) holds in Tω, then for each →⊆-rule application leading to Ru(y, z) one
can apply a rewriting rule to v, leading to u.

We can now define the model I satisfying C and not satisfying D. Let N be the
set of individual names of Tω. I has domain {x} ∪ N . Let I = Tω ∪ {Q(x, y)|y ∈
N}. Then I satisfies C(x) straightforwardly; moreover, it does not satisfy D from
Proposition 3.36.

To prove that subsumption in undecidable in the less expressive DL FL−(◦, =),
Schmidt-Schauß [1989] started from the word problem for groups. Starting from
the Post correspondence problem, with a more complex construction, also Patel-
Schneider [1989b] proved that subsumption is undecidable in the more expressive
DL FL−(◦,⊆) plus role inverses, functional roles, and role restrictions.

Complexity of Reasoning 133

Starting from the word problem—which is less general than the term rewrit-
ing problem, but still semidecidable—Baader [1998] showed that subsumption in
FL−(◦,⊆) is undecidable without referring to tableaux. We report here the second
part of his proof, (corresponding to Lemma 3.35) since it is quite short and elegant,
and shows a different way of proving the only-if direction, namely, giving a direct
definition of an infinite structure satisfying the concepts.

The word problem follows Definition 3.30, but considers the reflexive-symmetric-
transitive closure ∗↔ of rewriting rules. This is also known as the word problem for
semigroups, or Thue systems. In this case, ground term and word are synonyms.
Of course, ∗↔ is an equivalence relation on words; let [v] denote the ∗↔-equivalence
classes. Note that [u] = [v] iff u ∗↔ v. There is a natural multiplication on these
classes induced by concatenation: [u][v] = [uv] (since ∗↔ is even a congruence, this
is well-defined).

Taking the equivalence classes plus one distinguished element x as domain of the
model I, the roles can be interpreted as

QI = {(x, [u])|u ∈ Σ∗} (3.19)

(Pa)I = {([u], [ua])|a ∈ Σ, u ∈ Σ∗} (3.20)

Then, it can be shown that if v 6 ∗↔ w, then x belongs to CI , but not to DI as
follows.

(i) x belongs to CI : from (3.20), for every word u it is (x, [u]) ∈ QI and
([u], [ua]) ∈ (Pa)I ; but also from (3.19), (x, [ua]) ∈ QI , hence CΣ(x) is
satisfied by I. Regarding ∀Q.Cρ(x), suppose ([u], [w]) ∈ (Rs)I , where s →
t ∈ ρ. Then [w] = [us] by definition of (Pa)I . Moreover, from s → t ∈ ρ
it follows us ∗↔ ut, hence [us] = [ut]. Consequently, ([u], [w]) = ([u], [ut]) ∈
(Rt)I from (3.20).

(ii) x does not belong to DI : for the empty word ε, [ε] is a Q-filler of x, however
[ε] does not satisfy the concept Rv ⊆ Rw. In fact, ([ε], [v]) ∈ (Rv)I , but not
([ε], [v]) ∈ (Rw)I since [w] is the only Rw-filler of [ε], but [v] 6= [w] from the
assumption that v 6 ∗↔ w.

3.7 Reasoning about individuals in ABoxes

When an ABox is considered, the reasoning problem of instance check arises: Given
an ABox A, an individual a and a concept C, decide whether A |= C(a). For the
instance check problem, the size of the input is formed by the size of the concept
expression C plus the size of A. Since the size of one input may be much larger
than the other in real applications, it makes sense to distinguish the complexity

134 F. M. Donini

w.r.t. the two inputs—as it is usually done in databases with data complexity and
query complexity [Vardi, 1982].

A common intuition [Schmolze and Lipkis, 1983] about instance check was that
it could be performed via subsumption, using the so-called most specific concept
(msc) method.

Definition 3.37 (most specific concepts) Let A be an ABox in a given DL,
and let a be an individual in A. A concept C is the most specific concept of a in
A, written msc(A, a), if, for every concept D in the given DL, A |= D(a) implies
C v D.

Recall from Chapter 2 a slightly different definition of msc in the realization problem:
given an individual a and an ABox A, find the most specific concepts C (w.r.t.
subsumption) such that A |= C(a) [Nebel, 1990a, p. 104]. Since conjunction is
always available in every DL, the two definitions are equivalent (just conjoin all
specific concepts of realization in one msc).

Clearly, once msc(A, a) is known, to decide whether a is an instance of a concept
D it should be sufficient to check whether msc(A, a) is subsumed by D, turning
instance checking into subsumption. Moreover, when a TBox is present, off-line
classification of all msc’s in the TBox may provide a way to pre-compute many
instance checks, providing an on-line speed-up.

The intuition about how computing msc(A, a) was to gather the con-
cepts/properties explicitly stated for a in A. However, this approach is quite sensi-
tive to the DL chosen to express msc(A, a) and the queries. In fact, most specific
concepts can be easily computed for simple DLs, like AL. However, it may not be
possible when slightly more expressive languages are considered.

Example 3.38 A simple example (simplified from [Baader and Küsters, 1998]) is
the ABox made just by the assertion R(a, a). If FL− is used for most specific
concepts and queries, then msc({R(a, a)}, a) = ∃R. However, if qualified existen-
tial quantification is allowed for most specific concepts, then each of the concepts
∃R, ∃R.∃R, ∃R.∃R.∃R, . . . , is more specific than the previous one. Using this
argument, it is possible to prove that msc({R(a, a)}, a) has no finite representation,
unless also transitive closure on roles is allowed. Using the axiom A v ∃R.A in
an ad-hoc TBox, msc({R(a, a)}, a) = A for the simple ABox of this example—but
this does not simplify instance check. An alternative approach would be to raise
individuals in the language to express concepts, through the concept constructor
{. . .} that enumerates the individuals belonging to it (called “one-of” in Classic).
In that case, msc({R(a, a)}, a) = ∃R.{a} (see [Donini et al., 1990]). But this “solu-
tion” to instance check becomes now a problem for subsumption, which must take

Complexity of Reasoning 135

individuals into account (for a treatment of DLs with one-of, see [Schaerf, 1994a]).

The msc’s method makes an implicit assumption: to work well, the size of
msc(A, a) should be comparable with the size of the whole ABox, and in most
cases much shorter. However, consider the DL ALE , in which subsumption is in
np. Then, solving instance check by means of subsumption in polynomial space
and time would imply that in instance check was in np, too. However, suppose
that we prove that instance check was hard for conp. Then, solving instance check
by subsumption implies that either conp ⊆ np, or msc(A, a), if ever exists, has
superpolynomial size w.r.t. A. The former conclusion is unlikely to hold, while the
latter would make unfeasible the entire method of msc’s.

In general, this argument works whenever subsumption in a DL belongs to a
complexity class C, while instance check is proved hard for a different complexity
class C′, for which C′ ⊆ C is believed to be false. We present here a proof using this
argument, found by Schaerf [1993; 1994b; 1994a].

We first start with a simple example highlighting the construction.

Example 3.39 Let f, c1, c2, x, y, z be individuals, R, P, N be role names, and A a
concept name. Let A be the following ABox, whose structure we highlight using
some arrows between assertions:

f
↗
↘

R(f, c1)
↗ P (c1, x) A(x)
↘ N(c1, y)

R(f, c2)
↗ P (c2, y)
↘ N(c2, z) ¬A(z)

The query ∃R.(∃P.A u ∃N.¬A)(f) is entailed by A. That is, one among c1 and c2

has its P -filler in A and its N -filler in ¬A. This can be verified by case analysis
on y: in every model either A(y) or ¬A(y) must be true. For models in which
A(y) holds, c2 is the R-filler of f satisfying the query; for models in which ¬A(y)
holds, c1 is. Observe that if ALE is used to express most specific concepts, the best
approximation we can find for msc(A, f), by collecting assertions along the role
paths starting from f , is the concept C = ∃R.(∃P.A u ∃N) u ∃R.(∃P u ∃N.¬A), in
which the fact that the same individual y is both the N -filler of ∃N and the P -filler
of ∃P is lost. Indeed, C is not subsumed by the query, as one can see constructing
an open tableau for C u ¬∃R.(∃P.A u ∃N.¬A)(f).

The above example can be extended to a proof that decidingA |= C(a), where C is
an ALE-concept, is conp-hard. Observe that this is a different source of complexity
w.r.t. unsatisfiability inALE . In fact, a concept C is unsatisfiable iff {C(a)} |= ⊥(a).
This problem is np-complete when C is a concept in ALE (Section 3.3.1).

136 F. M. Donini

The source conp-complete problem is the complement of 2+2-sat, which is the
following problem.

Definition 3.40 (2+2-sat) Given a 4CNF propositional formula F , in which ev-
ery clause has exactly two positive literals and two negative ones, decide whether
F is satisfiable.

The problem 2+2-sat is a simple variant of the well-known 3-sat. Indeed, for
3-literal clauses mixing both positive and negative literals, add a fourth disjunct,
constantly false; e.g., X ∨Y ∨¬Z is transformed into the 2+2-clause X ∨Y ∨¬Z ∨
¬true. Unmixed clauses can be replaced by two mixed ones using a new variable
(see [Schaerf, 1994a, Theorem 4.2.6]).

Given an instance of 2+2-sat F = C1 ∧ C2 ∧ · · · ∧ Cn, where each clause Ci =
Li

1+ ∨ Li
2+ ∨ ¬Li

1− ∨ ¬Li
2−, we construct an ABox AF as follows. AF has one

individual l for each variable L in F , one individual ci for each clause Ci, one
individual f for the whole formula F , plus two individuals true and false for the
corresponding propositional constants.

The roles of AF are Cl (for Clause), P1, P2 (for positive literals), N1, N2 (for
negative literals), and the only concept name is A. Finally, AF is given by (we
group role assertions on first individual to ease reading):

Cl(f, c1)

P1(c1, l11+)
P2(c1, l12+)
N1(c1, l11−)
N2(c1, l12−)

...
...

Cl(f, cn)

P1(cn, ln1+)
P2(cn, ln2+)
N1(cn, ln1−)
N2(cn, ln2−)

A(true), ¬A(false)

Now let D be the following, fixed, query concept:

D = ∃Cl.((∃P1.¬A) u (∃P2.¬A) u (∃N1.A) u (∃N2.A))

Intuitively, an individual name l is in the extension of A or ¬A iff the propositional
variable L is assigned true or false, respectively. Then, checking whether AF |=
D(f) corresponds to checking that in every truth assignment for F there exists a
clause whose positive literals are interpreted as false, and whose negative literals
are interpreted as true—i.e., a clause that is not satisfied. If one applies the above
idea to translate the two clauses (having just two literals each one) false ∨ ¬Y ,
Y ∨ ¬true, one obtains exactly the ABox of Example 3.39.

Complexity of Reasoning 137

The correctness of this reduction was proved by Schaerf [1993; 1994a]. We report
here only the concluding lemma.

Lemma 3.41 A 2+2-CNF formula F is unsatisfiable if and only if AF |= D(f).

Hence, instance checking in ALE is conp-hard. This implies that instance check
in ALE cannot be efficiently solved by subsumption, unless conp ⊆ np. We remark
that only the size of AF depends on the source formula F , while D is fixed. Hence,
instance checking in ALE is conp-hard with respect to knowledge base complexity—
and it is also np-hard from Section 3.3.1. The upper bound for knowledge base
complexity of instance checking in ALE is in Πp

2, but it is still not known whether
the problem is Πp

2-complete. Regarding combined complexity—that is, neither the
size of the ABox nor that of the query is fixed—in [Schaerf, 1994a; Donini et al.,
1994b] it was proved that instance checking in ALE is PSpace-complete.

Since the above reduction makes use of negated concept names, it may seem that
conp-hardness arises from the interaction between qualified existential quantifica-
tion and negated concept names. However, all it is needed are two concepts whose
union covers all possible cases. We saw in Section 3.2.1 that also ∃R and ∀R.B have
this property. Therefore, if we replace A and ¬A in AF with ∃R and ∀R.B, respec-
tively, (where R is a new role name and B is a new concept name), we obtain a new
reduction for which Lemma 3.41 still holds. Hence, instance checking in FL−E (i.e.,
ALE without negation of concept names) is conp-hard too, thus confirming that
conp-hardness is originated by qualified existential quantification alone. In other
words, intractability arises from a query language containing both qualified existen-
tial quantification, and pairs of concepts whose union is equivalent to >. Hence, for
languages containing these constructs, the msc method is not effective.

Regarding the expressivity of the language for assertions in the ABox, conp-
hardness of instance checking arises already when assertions in the ABox involve
just concept and role names. However, note that a key point in the reduction is the
fact that two individuals in the ABox can be linked via different role paths, as f
and y were in Example 3.41.

3.8 Discussion

In this chapter we analyzed various lower bounds on the complexity of reasoning
about simple concept expressions in DLs. Our presentation appealed to the intuitive
notions of exploring AND-OR trees, in the special case when the tree comes out of
a tableau.

We remark that an alternative approach to reasoning is to reduce it to the empti-
ness test for automata (e.g., [Vardi, 1996]), which has been quite successfully ap-
plied to temporal logics, and propositional logics of programs. However, till now

138 F. M. Donini

such techniques were used to obtain upper bounds in reasoning, while in order ob-
taining lower bounds one would need a way to reduce problems on automata to
unsatisfiability/subsumption in DL. The only example of this reduction is [Nebel,
1990b], for a very simple DL, which we did not presented in this chapter for lack of
space.

We end the chapter with a perspective on the significance of the np, conp,
and PSpace complexity lower bounds we presented. Present reasoning sys-
tems in DLs (see chapter in this book) can now cope with reasonable size Ex-
pTime-complete problems. Hence the computational complexity of the prob-
lems now reachable is above PSpace. However, in our opinion, for imple-
mented systems the significance of a reduction lies not just in the theoretical
lower bound obtained, but also in the reduction itself. In fact, when exper-
imenting algorithms for subsumption, satisfiability, etc. [Baader et al., 1992a;
Hustadt and Schmidt, 1997] on an implemented system, one can exploit already
known “hard” cases of a source problem like 3-sat, 2+2-sat, set splitting,
or qbf validity to obtain “hard” instances for the algorithm under test. These
instances isolate the influence of each source of combinatorial explosion on the per-
formance of the overall reasoning system, and can be used to optimize reasoning
algorithms in a piecewise fashion [Horrocks and Patel-Schneider, 1999], separately
for the various sources of complexity. In this respect, the issue of finding “efficient”
reductions (w.r.t. the size of the resulting concepts) is still open, and can make the
difference when concepts to be tested scale up (see [Donini and Massacci, 2000]).

3.9 A list of complexity results for subsumption and satisfiability

A lot of names were invented for languages of different DLs, e.g., FL for Frame
Language, ALC for Attributive Descriptions Language with Complement, etc. Al-
though suggestive, these names are not very explicit about which constructs are
in the named language. This makes the huge mass of results about complexity of
reasoning in DLs often difficult to screen by non-experts in the field. To clarify
the constructs each language is equipped with, we use two lists of constructors: the
first one for concept constructors, and the second one for role constructors. For
example, the pair of lists (u, ∃R, ∀R.C) (u, ◦) denotes a language whose concept
constructors are conjunction u, unqualified existential quantification ∃R, universal
role quantification ∀R.C, and whose role constructors are conjunction u and compo-
sition ◦. Many combinations of concept constructors have been given a name which
is now commonly used. For instance, the first list of the above example is known
as FL−. In these cases, we follow a syntax first proposed in [Baader and Sattler,
1996b], and write just FL−(u, ◦)—that is, FL− augmented with role conjunction

Complexity of Reasoning 139

and composition—to make it immediately recognizable also by researchers in the
field.

3.9.1 Notation

In the following catalog, satisfiability and subsumption refer to the problems with
plain concept expressions. When satisfiability and subsumption are w.r.t. a set of
axioms, we state it explicitly. Moreover, when the constructs of the DL allows one
to reduce subsumption between C and D to satisfiability of C u ¬D, we mention
only satisfiability.

In the lists, we tried to use the symbol of the DL construct whenever possible.
We abbreviated some constructs, however: unqualified number restrictions >nR,
6nR are denoted as ≶ R, while qualified number restrictions >nR.C, 6n R.C
are ≶ R.C. When a construct is allowed only for names (either concept names in
the first list, or role names in the second one) we apply the construct to the word
name.

3.9.2 Subsumption in PTime

To the best of author’s knowledge, no proof of PTime-hardness was given for any
DL so far. Therefore the following results refer only to membership in PTime.

• (u, ∃R, ∀R.C) () known as FL− [Levesque and Brachman, 1987].
• (u, ∃R, ∀R.C,¬(name)) () known as AL [Schmidt-Schauß and Smolka, 1991]
• (u, ∃R, ∀R.C,≶ R) () known as ALN [Donini et al., 1997a]
• AL(◦),AL(−) [Donini et al., 1999]
• FL−(u) [Donini et al., 1991a]
• (u,∃R.C, {individual}) (u,−) known as ELIRO1 [Baader et al., 1998b]

3.9.3 np and conp

• (u,∃R.C,∀R.C,¬(name)) () (known as ALE) subsumption and unsatisfiability
are np-complete [Donini et al., 1992a] (see Section 3.3.1)

• AL(u), ALE(u), and (u, ∃R.C, ∀R.C) () (known as ALR, ALER and FL−E
respectively) subsumption and unsatisfiability np-complete [Donini et al., 1997a]
(see Theorems 3.16,3.17 for hardness, and [Donini et al., 1992a] for membership)

• (u,t, ∃R, ∀R.C,¬(name)) () (known as ALU) subsumption and unsatisfiability
conp-complete [Donini et al., 1997a] (see Section 3.1.1.1)

• ALN (−) subsumption is conp-complete, while satisfiability is decidable in poly-
nomial time [Donini et al., 1999]

140 F. M. Donini

• FL−(u,−), FL−(u, ◦), and FL−(◦,−) [Donini et al., 1999] (see Sec-
tions 3.3.2,3.3.3, and 3.3.4)

• AL(), satisfiability w.r.t. a set of acyclic axioms is conp-hard [Buchheit et al.,
1994a; Calvanese, 1996b; Buchheit et al., 1998] (conp-complete for ALE() [Cal-
vanese, 1996b]).

3.9.4 PSpace

• (u,t,¬, ∃R.C,∀R.C) () (known as ALC) [Schmidt-Schauß and Smolka, 1991] (see
Section 3.4.1)

• (u,¬(name), ∃R.C, ∀R.C,≶ R) () (known as ALEN) [Hemaspaandra, 1999]
• FL−(R|C) (known as FL), ALN (u), ALU(u), (u,∃R.C, ∀R.C,¬, ≶ R) (u)

(known as ALCNR) [Donini et al., 1997a]
• ALC(u,t, ◦) satisfiability [Massacci, 2001]. Membership is nontrivial.
• ALE() satisfiability w.r.t. a set of cyclic axioms is PSpace-complete [Calvanese,

1996b].
• ALN () satisfiability w.r.t. a set of cyclic axioms of the form A ≡ C, where each

concept name A can appear only once on the left-hand side, is PSpace-complete
[Küsters, 1998].

3.9.5 ExpTime

• AL w.r.t. a set of axioms (see Section 3.5 for hardness).
• (u,t,¬, ∃R.C,∀R.C) (t, ◦,∗ , id(),−) which includes ALCtrans [Baader, 1991;

Schild, 1991]. Membership is nontrivial, and was proved by Pratt [1979] without
inverse, and by Vardi and Wolper [1986] for converse-pdl reducing the problem
to emptiness of tree-automata.

• (u,t,¬,∃R.C,∀R.C,≶ name.C, ≶ name−.C) (t, ◦,∗ ,− , id()), known as
ALCQIreg (see Chapter 5). Membership is nontrivial.

• (u,t,¬, ∃R.C, ∀R.C, µx.C[x], {individual}) (−), where µx.C[x] denotes the least
fixpoint of x [Sattler and Vardi, 2001]. Membership is nontrivial.

3.9.6 NExpTime

• adding concrete domains (see [Baader and Hanschke, 1991a]), satisfiability in
ALC w.r.t. a set of acyclic axioms, and ALC(−) [Lutz, 2001a]

• ALC(u,t,¬) satisfiability [Lutz and Sattler, 2001]
• (u,t, ∃R.C, ∀R.C,¬, {individual}, ≶ R.C) () satisfiability [Tobies, 2001b]
• (u,t,¬,∃R.C, ∀R.C,≤≥ R) (u) (known as ALCNR) satisfiability w.r.t. a set of

axioms (only membership was proved) in [Buchheit et al., 1993a])

Complexity of Reasoning 141

3.9.7 Undecidability results

• FL−(◦, =), which is a subset of the language of the knowledge representation
system Kl-One [Schmidt-Schauß, 1989] (see Section 3.6.1 for undecidability of
FL−(◦,⊆))

• FL−(◦,⊆,− , functionality,R|C), which is a subset of the language of the knowl-
edge representation system Nikl [Patel-Schneider, 1989a]

• (), (u, ◦,¬) (known as U) [Schild, 1989]
• ALCN (◦,t,−), ALCN (◦,u) satisfiability w.r.t. a set of axioms [Baader and Sat-

tler, 1999]

Acknowledgements

I thank Franz Baader for useful and stimulating discussions on the proofs of Lem-
mata 3.34,3.35, and many other comments and help. I am indebted to Maurizio
Lenzerini, Daniele Nardi, Werner Nutt and Andrea Schaerf, co-authors of many
papers containing results presented in this chapter. I thank also Fabio Massacci
for involving me in the experimental evaluation of reasoning algorithms. Giuseppe
De Giacomo wasted some time discussing automata with me, and Diego Calvanese
promised to make helpful comments on an early draft; I thank them both.

The work has been supported by italian CNR (projets LAICO, DeMAnD,
“Metodi di Ragionamento Automatico nella modellazione ed analisi di dominio”),
and italian MURST (project MOSES).

