Description Logics

Structural Description Logics

Enrico Franconi

franconildcs.man.ac.uk

http://www.cs.man.ac.uk/ franconi

Department of Computer Science, University of Manchester

(1/34)

Description Logics

A logical reconstruction and unifying formalism for the representation tools
Frame-based systems
Semantic Networks
Object-Oriented representations
Semantic data models

Ontology languages

A structured fragment of predicate logic

Provide theories and systems for expressing structured information and for

accessing and reasoning with it in a principled way.

(2/34)

Applications

Description logics based systems are currently in use in many applications.
Configuration
Conceptual Modeling
Query Optimization and View Maintenance
Natural Language Semantics
I3 (Intelligent Integration of Information)
Information Access and Intelligent Interfaces
Terminologies and Ontologies
Software Management

Planning

(3/34)

A formalism

Description Logics formalize many Object-Oriented representation

approaches.

As such, their purpose is to disambiguate many imprecise representations.

(4/34)

Frames or Objects

Identifier
Class
Instance

Slot (attribute)

Value

|dentifier
Default

Value restriction
Type
Concrete Domain
Cardinality

Encapsulated method

(5/34)

Ambiguities: classes and instances

Person : AGE : Number,
SEX: M, F,
HEIGHT : Number,
WIFE : Person.

john : AGE : 29,
SEX : M,
HEIGHT : 76,
WIFE : mary.

(6/34)

Ambiguities: incomplete information

29" er : AGE : 29,
SEX : M,
HEIGHT : Number,
WIFE : Person.

john : AGE : 29,
SEX : M,
HEIGHT : Number,
WIFE : Person.

(7/34)

Ambiguities: is-a

Sub-class:

Person : AGE : Number,
SEX: M, F,
HEIGHT : Number,
WIFE : Person.
Male : AGE : Number,
SEX : M,

HEIGHT : Number,
WIFE : Female.

(8/34)

Ambiguities: is-a

Instance-of:

Male : AGE : Number,
SEX : M.,
HEIGHT : Number,
WIFE : Female.
john : AGE : 35,
SEX : M,
HEIGHT : 76,
WIFE : mary.

(9/34)

Ambiguities: is-a

Instance-of:

29" er : AGE : 29,
SEX : M.,
HEIGHT : Number,
WIFE : Person.

H

john : AGE : 29,
SEX : M,
HEIGHT : Number,
WIFE : Person.

(10/34)

Ambiguities: relations

Implicit relation:

john : AGE : 35,
SEX : M,
HEIGHT : 76,
WIFE : mary.

mary : AGE : 32,
SEX : F',
HEIGHT : 59,
HUSBAND : j0hn.

(11/34)

Ambiguities: relations

Explicit relation:

john : AGE : 35,
SEX : M,
HEIGHT : 76.

mary : AGE : 32,
SEX : F,
HEIGHT : 59.

m-j-family : WIFE : mary,
HUSBAND : john.

(12/34)

Ambiguities: relations

Special relation:

HAS—-PART
Car Engine
HAS—-PART
Engine = Valve
—
HAS—-PART
Car = Valve

(13/34)

Ambiguities: relations

Normal relation:

HAS-CHILD
John »| Ronald

HAS—-CHILD
Ronald > Bill

AN

HAS—-CHILD
John > Bill

(14/34)

Ambiguities: default

The Nixon diamond:

President

/N

Quaker Republican

NS

nixon

Quakers are pacifist, Republicans are not pacifist.

—> Is Nixon pacifist or not pacifist?

(15/34)

Ambiguities: quantification

What is the exact meaning of:

HAS—-COLOR
Frog » Green

(16/34)

Ambiguities: quantification

What is the exact meaning of:

HAS—-COLOR
Frog » Green

* Every frog is just green

(16/34)

Ambiguities: quantification

What is the exact meaning of:

HAS—-COLOR
Frog » Green

* Every frog is just green

* Every frog is also green

(16/34)

Ambiguities: quantification

What is the exact meaning of:

HAS—-COLOR
Frog » Green

Every frog is just green
Every frog is also green

Every frog is of some green

(16/34)

Ambiguities: quantification

What is the exact meaning of:

HAS-COLOR

Frog >

Every frog is just green
Every frog is also green

Every frog is of some green

Green

There is a frog, which is just green

(16/34)

Ambiguities: quantification

What is the exact meaning of:

HAS-COLOR

Frog >

Every frog is just green
Every frog is also green

Every frog is of some green

Green

There is a frog, which is just green

Frogs are typically green, but there may be exceptions

(16/34)

False friends

The meaning of object-oriented representations is logically very ambiguous.

The appeal of the graphical nature of object-oriented representation tools has
led to forms of reasoning that do not fall into standard logical categories, and
are not yet very well understood.

It is unfortunately much easier to develop some algorithm that appears to
reason over structures of a certain kind, than to justify its reasoning by

explaining what the structures are saying about the domain.

(17/34)

A structured logic

Any (basic) Description Logic is a fragment of FOL.

The representation is at the predicate level.: no variables are present in the

formalism.

A Description Logic theory is divided in two parts:
the definition of predicates (TBox)

the assertion over constants (ABox)

Any (basic) Description Logic is a subset of L3, i.e. the function-free FOL

using only at most three variable names.

(18/34)

Why not FOL

If FOL is directly used without additional restrictions then

the structure of the knowledge is destroyed, and it can not be exploited for

driving the inference;

the expressive power is too high for obtaining decidable and efficient

inference problems;

the inference power may be too low for expressing interesting, but still

decidable theories.

(19/34)

Structured Inheritance Networks: KL-ONE

Structured Descriptions
corresponding to the complex relational structure of objects,

built using a restricted set of epistemologically adequate constructs

distinction between conceptual (terminological) and instance (assertional)

knowledge;

central role of automatic classification for determining the subsumption —i.e.,

universal implication — lattice;

strict reasoning, no defaults.

(20/34)

Types of the TBox Language

Concepts — denote entities

(unary predicates, classes)

Example: Student, Married

{x | Student(z)},
{r | Married(z)}

Roles— denote properties

(binary predicates, relations)

Example: FRIEND, LOVES

{{z,y) | FRIEND(z,y)},
{{z,y) | LOVES(z,y)}

(21/34)

Concept Expressions

Description Logics organize the information in classes — concepts — gathering
homogeneous data, according to the relevant common properties among a

collection of instances.

Example:

Student ' JFRIEND.Married

{x | Student(x) A
dy. FRIEND(z, y) A Married(y)}

(22/34)

A note on \’s

In general, A is an explicit way of forming names of functions:

Azx. f(x)|is the function that, given input x, returns the value f(x)

The A-conversion rule says that:

Thus,

. (22 + 3x — 1)

(Az. f(z))(a) = f(a)

is the function that applied to 2 gives 9:

(Az. (22 +32—1))(2) =9

We can give a name to this function, so that:

f231 = A\Z. (1'2 —+ 3r — 1)

f231(2) =9

(23/34)

A to define predicates

Predicates are special case of functions: they are truth functions. So, if we think
of a formula P(x) as denoting a truth value which may vary as the value of x

varies, we have:

Ax. P(x) denotes a function from domain individuals to truth values.

In this way, as we have learned from FOL, P denotes exactly the set of individuals
for which it is true. So, P(a) means that the individual @ makes the predicate P

true, or, in other words, that a is in the extension of P.

(24/34)

For example, we can write for the unary predicate Person:
Person = \x. Person(x)
which is equivalent to say that Per son denotes the set of persons:

Person ~» {x | Person(zx)}

Person? = {x | Person(z)}

Person(john) IFF john’ € Person?

In the same way for the binary predicate FRIEND:

FRIEND = Ax,y. FRIEND(z,y)
FRIEND? = {(x,y) | FRIEND(x,y)}

(25/34)

The functions we are defining with the A operator may be parametric:

Student [Worker = Ax. (Student(z) A Worker(z))
(Student MWorker)? = {x | (Student(x) A Worker(z)}

(Student MWorker)? = Student? N Worker?®

(Verify as exercise)

(26/34)

Concept Expressions

(Student M IFRIEND.Married)*

(Student)? N (JFRIEND.Married)”

{x | Student(x)}N
{x | Jy.FRIEND(z,y) A Married(y)}

{z | Student(z) A
dy. FRIEND(z, y) A Married(y)}

(27/34)

Objects: classes

Student

Person

name: [String]

address: [String]

enrolled: [Course]

{x | Student(x)} = {z | Person(x) A
(Jy. NAME(z,y) A String(y)) A
(Jz. ADDRESS(x, 2) A String(z)) A
(Jw. ENROLLED(x, w) A Course(w)) }

Student = Person [
INAME.String I
JADDRESS.String [
JENROLLED.Course

(28/34)

Objects: instances

s1: Student

name: “John”
address: “Abbey Road. . .”

enrolled: cs415

Student(s1)A

NAME(s1, “john”) A String(“john”)A

ADDRESS(s1, “abbey-road”) A String(“abbey-road”)A
ENROLLED(s1, cs415) A Course(cs415)

(29/34)

V.

V.

V.

Semantic Networks

enrolled teaches

[Student) ;(Course >< (Professor)

(Working-student)

Student(z) — Student T JENROLLED.Course

Jy. ENROLLED(w,y)/\Course(y) Professor C JTEACHES.Course

Professor(zr) — Working-student T Student

Jy. TEACHES(z,y) A Course(y) Working-student L Professor

Working-student(z) —
Student(x) A Professor(r)

(30/34)

Quantification

HAS-COLOR
Frog » Green

Frog T dJHAS—COLOR.Green:

Every frog is also green

Frog C VHAS—COLOR.Green:

Every frog is just green

Frog C VHAS—COLOR.Green
Frog(x), HAS—COLOR(z, y):

There is a frog, which is just green

(31/34)

Quantification: existential

HAS-COLOR
Frog » Green

Every frog is also green

Frog T JHAS—COLOR.Green

Vx. Frog(x) —
Jdy. (HAS—COLOR(z,y) A Green(y))

Exercise: is this a model?
Frog(oscar), Green(green),
HAS—-COLOR(oscar,green),
Red(red),
HAS—COLOR(oscar,red).

(32/34)

Quantification: universal

HAS-COLOR
Frog » Green

Every frog is only green

Frog C VHAS—COLOR.Green

Vx. Frog(z) —
Vy. (HAS—COLOR(x,y) — Green(y))

Exercise: is this a model? and this?
Frog(oscar), Green(green), Frog(sing),
HAS—-COLOR(oscar,green), AGENT(sing,oscar).
Red(red),

HAS—COLOR(oscar,red).

(33/34)

Analytic reasoning (intuition)

Person

subsumes

(Person with every male friend is a doctor)
subsumes

(Person with every friend is a

(Doctor with a specialty is surgery))

(34/34)

Analytic reasoning (intuition)

Person

subsumes

(Person with every male friend is a doctor)
subsumes

(Person with every friend is a

(Doctor with a specialty is surgery))

(Person with > 2 children)
subsumes

(Person with > 3 male children)

(34/34)

Analytic reasoning (intuition)

Person

subsumes

(Person with every male friend is a doctor)
subsumes

(Person with every friend is a

(Doctor with a specialty is surgery))

(Person with > 2 children)
subsumes

(Person with > 3 male children)

(Person with > 3 young children)
disjoint

(Person with < 2 children)

(34/34)

	@semtitle
	Description Logics
	Applications
	A formalism
	Frames or Objects
	Ambiguities: classes and instances
	Ambiguities: incomplete information
	Ambiguities: is-a
	Ambiguities: is-a
	Ambiguities: is-a
	Ambiguities: relations
	Ambiguities: relations
	Ambiguities: relations
	Ambiguities: relations
	Ambiguities: default
	Ambiguities: quantification
	False friends
	A structured logic
	Why not FOL
	Structured Inheritance Networks: Klone
	Types of the TBox Language
	Concept Expressions
	A note on $lambda $'s
	$lambda $ to define predicates
	
	
	Concept Expressions
	Objects: classes
	Objects: instances
	Semantic Networks
	Quantification
	Quantification: existential
	Quantification: universal
	Analytic reasoning (intuition)

