
Description Logics

Structural Description Logics: FL−

Enrico Franconi

franconi@cs.man.ac.uk

http://www.cs.man.ac.uk/˜franconi

Department of Computer Science, University of Manchester

(1/24)

FL−

• In the following part of this lecture, we will concentrate ourself to the simplest

conceivable structural description logic: FL−.

• We will consider FL− as a logical language: speak about:

• Syntax

• Semantics

• Reasoning problems

• Decidability
• Complexity

• Reasoning procedures

• Soundness
• Completeness
• Asymptotic complexity

(2/24)

The grammar

C, D → A | C u D | ∀R.C | ∃R

A ∈ atomic-concept

R ∈ atomic-role

C, D ∈ concept

concept ::= 〈atomic-concept〉 |

〈concept〉 u 〈concept〉 |

∃〈atomic-role〉 |

∀〈atomic-role〉.〈concept〉

(3/24)

Alternative grammar

concept ::= 〈atomic-concept〉 |

(: and 〈concept〉 . . . 〈concept〉) |

(: some 〈atomic-role〉) |

(: all 〈atomic-role〉 〈concept〉)

(4/24)

Intuitive semantics

Intuitively (as we already know):

• Concepts represent classes, i.e., sets of individuals.

• Roles represent relations between pairs of individuals.

• Atomic concepts are the names of primitive (undefined) concepts.

• :and constructions represent conjoined concepts, so, for example, (:and

Adult Male Person) would represent the concept of something that

is at the same time an adult, a male, and a person.

• This allows us to put several properties (i.e. super-concepts or attribute

restrictions) together in the definition of a concept.

(5/24)

Quantifiers

• The :all construct provides a concept restriction on the values of an

attribute (x is an (:all R C) if and only if each R of x is a C. Thus,

(:all CHILD Doctor) corresponds to the concept of something all of

whose children are doctors. It is a way to restrict the value of a slot at a frame.

• The :some operator guarantees that there will be at least one value for the

attribute named (x is a (:some R) if and only if x has at least one R. For

instance, (:and Person (:some CHILD)) would represent the

concept of a parent. This is a way to introduce a slot at a frame.

(6/24)

Formal Semantics

An interpretation I = (∆I , ·I) consists of:

• a nonempty set ∆I (the domain)

• a function ·I (the interpretation function)

that maps

• every concept to a subset of ∆I

• every role to a subset of ∆I × ∆I

(7/24)

Extension of concepts

An interpretation function ·I is an extension function iff:

(C u D)I = CI ∩ DI

(∀R.C)I = {x ∈ ∆ | ∀y. (x, y) ∈ RI ⇒

y ∈ CI}

(∃R)I = {x ∈ ∆ | ∃y. (x, y) ∈ RI}

Recall that CI is a set of all the individual in the extension of C : so, writing

x ∈ CI has the same truth value as C(x). Analogously, (x, y) ∈ RI is the

same as R(x, y).
(8/24)

Exercises

Choose a domain ∆I and an extension functions over ∆I ; compute the

extensions of the following concepts:

• (:and Adult Male)

• (:and Adult Male Rich)

• (:all CHILD (:and Adult Male))

• (:some CHILD)

• ∃CHILD u ∀CHILD.(∃CHILD u Adult)

(9/24)

The subsumption problem

Cv D

C is subsumed by D

iff

for any domain ∆I

and any extension function ·I over ∆I :

C
I ⊆ D

I

i.e.,

∀x. C(x) → D(x)

(10/24)

Simple examples

• (:and Adult Male)v Adult

• (:and Adult Male Rich)v

(:and Adult Male)

• (:all CHILD (:and Adult Male))v

(:all CHILD Adult)

• (:and (:all CHILD Adult)(:some CHILD))v

(:all CHILD Adult)

• (:all CHILD Adult) 6v (:some CHILD)

• (:some CHILD) 6v (:all CHILD Adult)

(11/24)

The universal quantifier

(∀R.C)I =

∆

(12/24)

Computational properties

Subsumption for FL− has the following computational properties, which will be

proved constructively:

• Decidable

• in P

(13/24)

The subsumption structural algorithm

• The algorithm for computing Subsumption is based on structural comparisons

between concept expressions.

• At the heart of structural comparison is the idea that if the two concept

expressions to be compared are made of subexpressions, one can compare

separately one subexpression of a concept with all those of the others.

(14/24)

The normal form

The algorithm works in two phases: first, concepts are rewritten in a normal form,

then their structures are compared.

Normal Form:

1. All nested conjunctions are flattened, i.e. A u (B u C) ; A u B u C .

2. All conjunctions of universal quantifications are factorized, i.e.

∀R.C u ∀R.D ; ∀R.(C u D).

The rewritten concepts are logically equivalent to the previous ones, hence

subsumption is preserved by this transformation.

(Exercise: prove it)

(15/24)

The core algorithm: SUBS?[C,D]

Let C = C1 u · · · u Cn and D = D1 u · · · u Dm

(in normal form).

Then SUBS?[C,D] returns TRUE if and only if for all Ci:

1. if Ci is either an atomic concept, or is a concept of the form ∃R, then there

exists a Dj such that Ci = Dj ;

2. if Ci is a concept of the form ∀R.C ′, then there exists a Dj of the form

∀R.D′ (same atomic role R) such that SUBS?[C ′,D′].

(16/24)

Simple exercises

Check the following subsumption using the structural algorithm:

• (:and Adult Male)v Adult

• (:and Adult Male Rich)v

(:and Adult Male)

• (:all CHILD (:and Adult Male))v

(:all CHILD Adult)

• (:and (:all CHILD Adult)(:some CHILD))v

(:all CHILD Adult)

• (:all CHILD Adult) 6v (:some CHILD)

• (:some CHILD) 6v (:all CHILD Adult)

(17/24)

Asymptotic complexity

• By induction on the nesting of ∀-quantifiers, one can prove that the complexity

of the above algorithm is O(|C| × |D|) (i.e., quadratic in the length of the

longest argument).

• If subexpressions of each concept are ordered (e.g. lexicographically), then it

can be shown that the complexity is only linear, so the dominant factor

becomes the complexity of ordering concepts.

(18/24)

Soundness

Remember: whenever a sound reasoning procedure claims to have found a

solution for a given instance of the problem, then this is actually a solution.

The structural subsumption algorithm is sound since, when it says that a concept

C subsumes a concept D – i.e., SUBS?[C, D] returns true – then it holds that

D
I ⊆ C

I for all interpretations.

Observation: the part of the algorithm computing the normal form does not

change the extension of the concepts for any interpretation; thus it does not affect

the soundness (and the completeness) of the algorithm.

(19/24)

Informal proof

• Suppose that SUBS?[C, D] returns TRUE and consider one of the conjuncts

of C – call it Ci.

• Either Ci is among the Dj , or it is of the form ∀R.C ′.

• In the latter case, there is a ∀R.D′ among the Dj , where SUBS?[C ′,D′].

• Then, by induction, any extension of D′ must be a subset of C ′, and so any

extension of Dj must be a subset of Ci’s.

• So, no matter what Ci is, the extension of D – which is the conjunction of all

the Dj ’s – must be a subset of Ci.

• Since this is true for every Ci, the extension of D must also be a subset of

the extension of C – which is the intersection of all the extensions of Ci.

• So, whenever SUBS?[C, D] returns TRUE, C subsumes D, i.e., DI ⊆ C
I .

(20/24)

Completeness

Remember: whenever an instance of the problem has a solution, a complete

reasoning procedure computes the solution for that instance.

The structural subsumption algorithm is complete since, whenever it holds that

C
I ⊆ D

I for all interpretations, then the algorithm says that C subsumes D.

Observation: The proof is done by showing that anytime SUBS?[C, D] returns

FALSE, there exists an interpretation assigning an element to D but not to C , i.e.,

in that interpretation the extension on C is not a superset of the extension of D.

(21/24)

Idea of the proof

• The proof is done by showing that anytime SUBS?[C, D] returns FALSE,

there exists an interpretation assigning an element to D but not to C , i.e., in

that interpretation the extension on C is not a superset of the extension of D.

• This shows a counter-example, i.e., anytime SUBS?[C, D] returns FALSE it is

not true that DI ⊆ C
I for that particular interpretation, and so C 6v D.

(22/24)

Idea of the proof (cont.)

• The proof relies on the fact that anytime SUBS?[C, D] returns FALSE it is

possible to find a conjunct Ci of C which has no correspondent conjunct in

D.

• It is shown that in this case there exists an interpretation which assigns an

object to any primitive concept, but not to the factorized one Ci.

• Thus, it is not possible that DI ⊆ C
I .

(23/24)

Structural algorithms (or normalize-and-compare)

What happens if we enrich the expressivity?

• CLASSIC

• BACK

• LOOM

These (old) systems have incomplete algorithms, due to the interactions between

constructors, which can not be taken into account by structural algorithms, which

is based on syntactical comparisons between subexpressions of the concepts.

Example: A t ¬A subsumes every concept, even if such a concept does not

mention at all the atomic concept A in its definition.

(24/24)

	@semtitle
	FLm
	The grammar
	Alternative grammar
	Intuitive semantics
	Quantifiers
	Formal Semantics
	Extension of concepts
	Exercises
	The subsumption problem
	Simple examples
	The universal quantifier
	Computational properties
	The subsumption {em structural} algorithm
	The normal form
	The core algorithm: SUBS?[C,D]
	Simple exercises
	Asymptotic complexity
	Soundness
	Informal proof
	Completeness
	Idea of the proof
	Idea of the proof {em (cont.)}
	Structural algorithms (or normalize-and-compare)

