
Overlap Interval Partition Join

Anton Dignös1 Michael H. Böhlen1 Johann Gamper2

1University of Zürich, Switzerland

2Free University of Bozen-Bolzano, Italy

SIGMOD 2014
June 22-27, 2014 - Snowbird, Utah, USA

Introduction

I Temporal relations: tuples have a time interval.

I Overlap join: join tuples with overlapping time intervals.

r
r1 r2 r3

s
s1 s3

s2

2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 2012-8 2012-9 2012-10 2012-11 2012-12 t

r ./ s

r1◦s2 r2◦s3

r2◦s2

r3◦s3

I Goal: Efficient and robust overlap join
I Alternative for query optimizer when other predicates are absent,

have poor selectivity (long histories), or need to be evaluated after
the join (on overlapping interval)

SIGMOD 2014 2/23 A. Dignös, M. H. Böhlen, J. Gamper

Introduction

I Temporal relations: tuples have a time interval.

I Overlap join: join tuples with overlapping time intervals.

r
r1 r2 r3

s
s1 s3

s2

2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 2012-8 2012-9 2012-10 2012-11 2012-12 t

r ./ s

r1◦s2 r2◦s3

r2◦s2

r3◦s3

I Goal: Efficient and robust overlap join
I Alternative for query optimizer when other predicates are absent,

have poor selectivity (long histories), or need to be evaluated after
the join (on overlapping interval)

SIGMOD 2014 2/23 A. Dignös, M. H. Böhlen, J. Gamper

Outline

I OIP: an efficient partitioning for interval data

I OIPJoin: a partition join based on OIP

I Determine the optimal OIP parameter k for OIPJoin

I Empirical evaluation

SIGMOD 2014 3/23 A. Dignös, M. H. Böhlen, J. Gamper

Idea of Overlap Interval Partitioning OIP

I Given input data with intervals

t

I Partition intervals according to position and duration

t

I Constant clustering guarantee: Difference in duration of tuple and
partition is upper-bounded by a constant.

SIGMOD 2014 4/23 A. Dignös, M. H. Böhlen, J. Gamper

Idea of Overlap Interval Partitioning OIP

I Given input data with intervals

t

I Partition intervals according to position and duration

t

I Constant clustering guarantee: Difference in duration of tuple and
partition is upper-bounded by a constant.

SIGMOD 2014 4/23 A. Dignös, M. H. Böhlen, J. Gamper

Overlap Interval Partitioning (OIP)

I Divide time range into k granules of equal duration

I Partitions are sequences of contiguous granules

I Partitions can overlap

k = 3: Q

2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 2012-8 2012-9 2012-10 2012-11 2012-12 t
granule 0 granule 1 granule 2

Low k ⇒ fewer partition accesses
(less overlapping boxes)

k = 4: Q

2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 2012-8 2012-9 2012-10 2012-11 2012-12 t
granule 0 granule 1 granule 2 granule 3

High k ⇒ more precise partitions
(better fitting boxes)

SIGMOD 2014 5/23 A. Dignös, M. H. Böhlen, J. Gamper

Overlap Interval Partitioning (OIP)

I Divide time range into k granules of equal duration

I Partitions are sequences of contiguous granules

I Partitions can overlap

k = 3: Q

2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 2012-8 2012-9 2012-10 2012-11 2012-12 t
granule 0 granule 1 granule 2

Low k ⇒ fewer partition accesses
(less overlapping boxes)

k = 4: Q

2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 2012-8 2012-9 2012-10 2012-11 2012-12 t
granule 0 granule 1 granule 2 granule 3

High k ⇒ more precise partitions
(better fitting boxes)

SIGMOD 2014 5/23 A. Dignös, M. H. Böhlen, J. Gamper

Overlap Interval Partitioning (OIP)

I Divide time range into k granules of equal duration

I Partitions are sequences of contiguous granules

I Partitions can overlap

k = 3: Q

2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 2012-8 2012-9 2012-10 2012-11 2012-12 t
granule 0 granule 1 granule 2

Low k ⇒ fewer partition accesses
(less overlapping boxes)

k = 4: Q

2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 2012-8 2012-9 2012-10 2012-11 2012-12 t
granule 0 granule 1 granule 2 granule 3

High k ⇒ more precise partitions
(better fitting boxes)

SIGMOD 2014 5/23 A. Dignös, M. H. Böhlen, J. Gamper

Overlap Interval Partitioning (OIP)

I Divide time range into k granules of equal duration

I Partitions are sequences of contiguous granules

I Partitions can overlap

k = 3: Q

2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 2012-8 2012-9 2012-10 2012-11 2012-12 t
granule 0 granule 1 granule 2

Low k ⇒ fewer partition accesses
(less overlapping boxes)

k = 4: Q

2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 2012-8 2012-9 2012-10 2012-11 2012-12 t
granule 0 granule 1 granule 2 granule 3

High k ⇒ more precise partitions
(better fitting boxes)

SIGMOD 2014 5/23 A. Dignös, M. H. Böhlen, J. Gamper

The OIPJoin

1. Determine number of granules k

2. Partition both input relations using OIP
3. Join tuples within overlapping partitions

r
r1 r2 r3

s

s1 s2 s5

s4

s6

s7

s3

2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 2012-8 2012-9 2012-10 2012-11 2012-12 t

Properties:
I Only 11 tuple comparisons

I 9 result tuples
I 2 false hits (r1 ◦ s6 and r2 ◦ s5)

I Only 5 inner partitions scanned (5 partition accesses)

SIGMOD 2014 6/23 A. Dignös, M. H. Böhlen, J. Gamper

The OIPJoin

1. Determine number of granules k

2. Partition both input relations using OIP

3. Join tuples within overlapping partitions

r
r1 r2 r3

s

s1 s2 s5

s4

s6

s7

s3

2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 2012-8 2012-9 2012-10 2012-11 2012-12 t

Properties:
I Only 11 tuple comparisons

I 9 result tuples
I 2 false hits (r1 ◦ s6 and r2 ◦ s5)

I Only 5 inner partitions scanned (5 partition accesses)

SIGMOD 2014 6/23 A. Dignös, M. H. Böhlen, J. Gamper

The OIPJoin

1. Determine number of granules k

2. Partition both input relations using OIP
3. Join tuples within overlapping partitions

r
r1 r2 r3

s

s1 s2 s5

s4

s6

s7

s3

2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 2012-8 2012-9 2012-10 2012-11 2012-12 t

Properties:
I Only 11 tuple comparisons

I 9 result tuples
I 2 false hits (r1 ◦ s6 and r2 ◦ s5)

I Only 5 inner partitions scanned (5 partition accesses)

SIGMOD 2014 6/23 A. Dignös, M. H. Böhlen, J. Gamper

The OIPJoin

1. Determine number of granules k

2. Partition both input relations using OIP
3. Join tuples within overlapping partitions

r
r1 r2 r3

s

s1 s2 s5

s4

s6

s7

s3

2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 2012-8 2012-9 2012-10 2012-11 2012-12 t

Properties:
I Only 11 tuple comparisons

I 9 result tuples
I 2 false hits (r1 ◦ s6 and r2 ◦ s5)

I Only 5 inner partitions scanned (5 partition accesses)

SIGMOD 2014 6/23 A. Dignös, M. H. Böhlen, J. Gamper

Properties of OIP

I Constant clustering guarantee: The difference in duration
between a tuple and its partition is less than two granules.

I All tuples in a partition behave similarly
I Very few false hits

I Scans of partitions instead of random tuple access:
I High cache locality
I Much faster than index look-ups

SIGMOD 2014 7/23 A. Dignös, M. H. Böhlen, J. Gamper

How to Determine k?

Intuition: Find optimal k s.t. the number of false hits of OIP
justifies the number of partition accesses and vice versa.

SIGMOD 2014 8/23 A. Dignös, M. H. Böhlen, J. Gamper

Cost Dimensions

We consider CPU and IO costs

Cost CPU IO
False Hits Increase the number of CPU

operations (identifying and
discarding false hits).

Increase the number of
block transfers (more
data is fetched).

Partition
Accesses

Increase the number of CPU
operations (search in the ac-
cess structure).

Increase the number of
block transfers (more
partially filled blocks)

What does that mean for k?

I High k ⇒ few false hits, many partition accesses

I Low k ⇒ many false hits, few partition accesses

SIGMOD 2014 9/23 A. Dignös, M. H. Böhlen, J. Gamper

Cost Dimensions

We consider CPU and IO costs

Cost CPU IO
False Hits Increase the number of CPU

operations (identifying and
discarding false hits).

Increase the number of
block transfers (more
data is fetched).

Partition
Accesses

Increase the number of CPU
operations (search in the ac-
cess structure).

Increase the number of
block transfers (more
partially filled blocks)

What does that mean for k?

I High k ⇒ few false hits, many partition accesses

I Low k ⇒ many false hits, few partition accesses

SIGMOD 2014 9/23 A. Dignös, M. H. Böhlen, J. Gamper

Determining k for the OIPJoin

1. Quantify false hits on average: AFR ≤ 1
k

(Probability that a tuple is a false hit)

2. Quantify partition accesses on average: APA = k2+k+1
3

(Number of partitions accessed by a query interval)

3. Define the cost function for the overhead due to AFR and APA
using CPU and IO cost

4. Minimize the cost function w.r.t. k

SIGMOD 2014 10/23 A. Dignös, M. H. Böhlen, J. Gamper

Overhead Cost for Partition Accesses

I For each of the |pr | outer partitions
I APA inner partition accesses (scans)

|pr | · APA · (c io + 2 · c cpu) part. accesses

partially filled blocks
(1 trailing block per partition)

search in access structure
(2 comparisons in access list)

I Average number of Partition Accesses APA = k2+k+1
3

SIGMOD 2014 11/23 A. Dignös, M. H. Böhlen, J. Gamper

Overhead Cost for False Hits

I For each of the |pr | outer partitions
I AFR · ns false hits (inner) fetched

I Each outer tuple
I Is compared with AFR · ns false hits (inner)
I Is AFR · ns times a false hits

|pr | · ns · AFR · c io

b
+ 2 · ns · nr · AFR · 2 · c cpu) false hits

more data is fetched
(1 false hit within a block)

identifying and discarding
(2 comparisons per false hit)

I Average False hit Ratio AFR ≤ 1
k

SIGMOD 2014 12/23 A. Dignös, M. H. Böhlen, J. Gamper

The Overhead Cost Function

cost(k) = |pr | · APA · (c io + 2 · c cpu) + part. accesses

|pr | · ns · AFR · (c io

b
+ 2 · nr

|pr |
· 2 · c cpu) false hits

partially filled blocks
(1 trailing block per partition)

search in access structure
(2 comparisons in access list)

more data is fetched
(1 false hit within a block)

identifying and discarding
(2 comparisons per false hit)

SIGMOD 2014 13/23 A. Dignös, M. H. Böhlen, J. Gamper

Determining k for the OIPJoin

I By minimizing cost(k) we get:

k = f (nr , ns , c cpu, c io, b)

Example:

I nr = 10M tuples

I nr = 100M tuples

I c cpu = 0.5

I c io = 10

I b = 15 tuples on average in storage block

k = f (10M, 100M, 0.5, 10, 15) = 16, 521

SIGMOD 2014 14/23 A. Dignös, M. H. Böhlen, J. Gamper

Related Work /1

I Overlap join based on space partitioning approaches, such as
quadtree1 and loose quadtree2

I Divide time range recursively into two sub-ranges
I Join cells of outer relation with all relevant of inner relation

I Properties
I Long-lived tuples reside high up in hierarchy (many FH)
I Cells grow with a factor of two (too much, many FH)
I Parent cells are required for children (many possibly empty partitions)

I OIPJoin does not deteriorate in performance with long-lived
tuples, partitions grow by a constant factor.

1R. A. Finkel and J. L. Bentley. Quad trees: A data structure for retrieval on composite
keys. Acta Inf., 4:1-9, 1974.

2T. Ulrich. Loose octrees. In Game Programming Gems, pages 444-453. Charles River
Media, 2000.
SIGMOD 2014 15/23 A. Dignös, M. H. Böhlen, J. Gamper

Related Work /2

I Overlap join based on indexing approaches, such as interval tree,
relational interval tree3, segment tree

I Associate intervals with index node(s)
I Join index nodes or tuples of outer relation with all relevant of inner

I Properties
I Long-Lived tuples reside high up in hierarchy (∼ many partitions)
I Requires many node joins (∼ many partitions)
I No physical clustering possible (2 indices) (∼ FH in storage)

I OIPJoin carefully balances the cost due to the access structure
and groups tuple into partitions (cache locality)

3H.-P. Kriegel, M. Ptke, and T. Seidl. Managing intervals efficiently in object-relational
databases. In VLDB, pages 407418, 2000.
J. Enderle, M. Hampel, and T. Seidl. Joining interval data in relational databases. In
SIGMOD, pages 683694, 2004.
SIGMOD 2014 16/23 A. Dignös, M. H. Böhlen, J. Gamper

Empirical Evaluation

1. Cost function compared with runtime

2. k adapts to CPU and IO cost

3. Comparison with state-of-the-art approaches

I Clustering guarantee is highly relevant for long-lived tuples

I CPU cost is also relevant for disk resident data

SIGMOD 2014 17/23 A. Dignös, M. H. Böhlen, J. Gamper

Cost function Compared with Runtime

I OIPJoin between 10M and 100M tuples

I Data in main memory

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30

C
o
st

 [
se

c
 x

 1
0
0
0
]

k [# x 1000]

 1

 10

 100

 1000

 0 5 10 15 20 25 30

R
u
n
ti

m
e
 [

se
c
 x

 1
0
0
0
]

k [# x 1000]

Cost Function Runtime

I Minimum of the cost function matches minimum of the runtime.

SIGMOD 2014 18/23 A. Dignös, M. H. Böhlen, J. Gamper

k Adapts to CPU and IO Cost

 4

 8

 12

 16

 20

 0.001 0.01 0.1 1 10 100

k
 [

#
 x

 1
0
0
0
]

CPU cost / IO cost

 0.004

 0.008

 0.012

 0.016

 0.02

 0.001 0.01 0.1 1 10 100

A
F

R

[%

]

CPU cost / IO cost

 0

 40

 80

 120

 0.001 0.01 0.1 1 10 100

A
P

A
 [

#
 x

 1
0
0
0
]

CPU cost / IO cost

 0

 500

 1000

 1500

 2000

 2500

 0.001 0.01 0.1 1 10 100

IO
 [

M
]

CPU cost / IO cost

I Cost for access structure and false hits depends on CPU and IO cost.

SIGMOD 2014 19/23 A. Dignös, M. H. Böhlen, J. Gamper

Varying Duration of Tuples

I Outer and inner relation 10M tuples

I Data in main memory

 0

 50

 100

 150

 0 2 4 6 8 10R
u
n
ti

m
e

[s
ec

 x
 1

0
0
0
]

Max. Tuple Duration [%]

sgt
rit
lqt

smj
oip

 0

 1

 2

 3

 4

 0 2 4 6 8 10

A
F

R

[%

]

Max. Tuple Duration [%]

smj
lqt

oip

I Clustering guarantee is important for long-lived tuples

I Partition scans more efficient than random memory access

SIGMOD 2014 20/23 A. Dignös, M. H. Böhlen, J. Gamper

Real World Datasets

I Personnel data I File changes

 0
 5

 10
 15
 20
 25
 30
 35

 0 25 50 75 100

R
u
n
ti

m
e

[s
ec

]

of Outer Tuples [%]

sgt
smj

rit

lqt
oip

 0
 1
 2
 3
 4
 5
 6

 0 25 50 75 100R
u
n
ti

m
e

[s
ec

 x
 1

0
0
0
]

of Outer Tuples [%]

sgt
rit

smj

lqt
oip

I Real world data contain a mix of short and long tuples

SIGMOD 2014 21/23 A. Dignös, M. H. Böhlen, J. Gamper

Varying Number of Tuples on Disk

I Outer relation 1% of inner relation

I Tuple durations up to 0.1%

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 500 1000 1500

IO
 [

M
]

of Inner Tuples [M]

sgt
rit

smj

oip
lqt

 0

 100

 200

 300

 400

 0 500 1000 1500R
u
n
ti

m
e

[s
ec

 x
 1

0
0
0
]

of Inner Tuples [M]

sgt
rit
lqt

smj
oip

I Minimizing IOs is not enough

I Also on disk the CPU cost of access structure and false hits is
important.

SIGMOD 2014 22/23 A. Dignös, M. H. Böhlen, J. Gamper

Conclusion

Summary

I OIP offers a constant clustering guarantee

I OIPJoin is self-adjusting

I OIPJoin outperforms state-of-the-art approaches

Future Work

I Advanced statistics to calculate the number of empty partitions for
APA, e.g., using histograms.

I Study the maintenance of OIP.

I Refinement of cost function for different buffer replacement
strategies.

Thank you for your attention!

SIGMOD 2014 23/23 A. Dignös, M. H. Böhlen, J. Gamper

Conclusion

Summary

I OIP offers a constant clustering guarantee

I OIPJoin is self-adjusting

I OIPJoin outperforms state-of-the-art approaches

Future Work

I Advanced statistics to calculate the number of empty partitions for
APA, e.g., using histograms.

I Study the maintenance of OIP.

I Refinement of cost function for different buffer replacement
strategies.

Thank you for your attention!

SIGMOD 2014 23/23 A. Dignös, M. H. Böhlen, J. Gamper

