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Goal and Approach
• Efficient interval partitioning for the overlap join in valid-time databases

– Find all pairs of tuples with overlapping intervals

• Partition intervals according to position and duration

• Self-adjusting: automatically determine the optimal number of partitions

Challenges
• Determine partition parameter as a trade-

off between number of false hits and num-
ber of partition accesses

• Efficient access structure that allows to
omit empty partitions

Cost Dimensions
False hits: Overhead for tuples that are fetched
for Q, but are not part of the result.

• CPU cost: identifying and discarding
• IO cost: more data is fetched

Partition accesses: Overhead for fetching and
accessing partitions for Q.

• CPU cost: search in the access structure
• IO cost: more partially filled blocks

False hits and partition accesses are inversely
related.

Overlap Interval Partitioning - OIP
• Time range is divided into k granules of equal duration
• Partitions are any sequence of contiguous granules

k = 3 k = 4Q
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High k ) more precise partitions
(better fitting boxes)

Constant clustering guarantee: Duration of tuple and partition differs by less than two granules.

OIPJoin
Algorithm

1. Determine parameter k for OIP
2. Partition both input relations using k

3. Join tuples within overlapping partitions
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Determining Parameter k for the OIPJoin
Approach: Find k by minimize the overhead cost function cost(k) w.r.t. k:

cost(k) = |pr| · APA · (c_io+ 2 · c_cpu) + cost for partition accesses

|pr| · ns · AFR · ( c_io

b

+ 2 · nr

|pr|
· 2 · c_cpu) cost for false hits

partially filled blocks
(1 trailing block per partition)

search in access structure
(2 comparisons in access list)

more data is fetched
(1 false hit within a block)

identifying and discarding
(2 comparisons per false hit)

Result: k = f(CPU cost, IO cost, relation sizes)

Empirical Experiments
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Impact of long tuples
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Personnel and file change data
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Summary
Summary

• OIP partitions intervals according to po-
sition and duration.

• Long tuples in the datasets do not deteri-
orate the performance of OIP.

• OIPJoin is self-adjusting: k is determined
by minimizing the total cost for false hits
and partition accesses.

• OIPJoin is robust for long tuples.

Future Work

• Advanced statistics to calculate the num-
ber of empty partitions and the reduced
average number of partition accesses APA,
for instance using histograms.

• Study the maintenance of OIP.

• Refinement of cost function for different
buffer replacement strategies.


