
OverlapIntervalPartitionJoin
Anton Dignös, Michael H. Böhlen, and Johann Gamper

{adignoes, boehlen}@ifi.uzh.ch, gamper@inf.unibz.it

Goal and Approach Key Points

Example

SummaryImplementation
Published in: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, Snowbird, Utah, USA, June 2014.

OverlapIntervalPartitionJoin
Anton Dignös, Michael H. Böhlen, and Johann Gamper

{adignoes, boehlen}@ifi.uzh.ch, gamper@inf.unibz.it

Goal and Approach
• Efficient interval partitioning for the overlap join in valid-time databases

– Find all pairs of tuples with overlapping intervals

• Partition intervals according to position and duration

• Self-adjusting: automatically determine the optimal number of partitions

Challenges
• Determine partition parameter as a trade-

off between number of false hits and num-
ber of partition accesses

• Efficient access structure that allows to
omit empty partitions

Cost Dimensions
False hits: Overhead for tuples that are fetched
for Q, but are not part of the result.

• CPU cost: identifying and discarding
• IO cost: more data is fetched

Partition accesses: Overhead for fetching and
accessing partitions for Q.

• CPU cost: search in the access structure
• IO cost: more partially filled blocks

False hits and partition accesses are inversely
related.

Overlap Interval Partitioning - OIP
• Time range is divided into k granules of equal duration
• Partitions are any sequence of contiguous granules

k = 3 k = 4Q

2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 2012-8 2012-9 2012-10 2012-11 2012-12
t

granule 0 granule 1 granule 2

Low k) fewer partition accesses
(less overlapping boxes)

Q

2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 2012-8 2012-9 2012-10 2012-11 2012-12
t

granule 0 granule 1 granule 2 granule 3

High k) more precise partitions
(better fitting boxes)

Constant clustering guarantee: Duration of tuple and partition differs by less than two granules.

OIPJoin
Algorithm

1. Determine parameter k for OIP
2. Partition both input relations using k

3. Join tuples within overlapping partitions

r r1
r2 r3

s

s1
s2 s5

s4

s6

s7

s3

2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 2012-8 2012-9 2012-10 2012-11 2012-12
t

Determining Parameter k for the OIPJoin
Approach: Find k by minimize the overhead cost function cost(k) w.r.t. k:

cost(k) = |pr| · APA · (c_io+ 2 · c_cpu) + cost for partition accesses

|pr| · ns · AFR · (c_io

b

+ 2 · nr

|pr|
· 2 · c_cpu) cost for false hits

partially filled blocks
(1 trailing block per partition)

search in access structure
(2 comparisons in access list)

more data is fetched
(1 false hit within a block)

identifying and discarding
(2 comparisons per false hit)

Result: k = f(CPU cost, IO cost, relation sizes)

Empirical Experiments

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30

C
o
st

 [
se

c
x
 1

0
0
0
]

k [# x 1000]

 1

 10

 100

 1000

 0 5 10 15 20 25 30

R
u
n
ti

m
e

[s
ec

 x
 1

0
0
0
]

k [# x 1000]

Cost function compared to Runtime

 4

 8

 12

 16

 20

 0.001 0.01 0.1 1 10 100

k
 [

#
 x

 1
0
0
0
]

CPU cost / IO cost

 0.004

 0.008

 0.012

 0.016

 0.02

 0.001 0.01 0.1 1 10 100

A
F

R

[%

]

CPU cost / IO cost

 0

 500

 1000

 1500

 2000

 2500

 0.001 0.01 0.1 1 10 100

IO
 [

M
]

CPU cost / IO cost

 6

 7

 8

 9

 0.001 0.01 0.1 1 10 100

R
u
n
ti

m
e

[s
ec

 x
 1

0
0
0
]

CPU cost / IO cost

k adapting to CPU and IO cost

 0

 50

 100

 150

 0 2 4 6 8 10R
u
n
ti

m
e

[s
ec

 x
 1

0
0
0
]

Max. Tuple Duration [%]

sgt
rit
lqt

smj
oip

 0

 1

 2

 3

 4

 0 2 4 6 8 10

A
F

R

[%

]

Max. Tuple Duration [%]

smj
lqt

oip

Impact of long tuples

 0
 5

 10
 15
 20
 25
 30
 35

 0 25 50 75 100

R
u
n
ti

m
e

[s
ec

]

of Outer Tuples [%]

sgt
smj

rit

lqt
oip

 0
 1
 2
 3
 4
 5
 6

 0 25 50 75 100R
u
n
ti

m
e

[s
ec

 x
 1

0
0
0
]

of Outer Tuples [%]

sgt
rit

smj

lqt
oip

Personnel and file change data

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 500 1000 1500

IO
 [

M
]

of Inner Tuples [M]

sgt
rit

smj

oip
lqt

 0

 100

 200

 300

 400

 0 500 1000 1500R
u
n
ti

m
e

[s
ec

 x
 1

0
0
0
]

of Inner Tuples [M]

sgt
rit
lqt

smj
oip

Disk Resident Data

Published in: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, Snowbird, Utah, USA, June 2014.

Summary
Summary

• OIP partitions intervals according to po-
sition and duration.

• Long tuples in the datasets do not deteri-
orate the performance of OIP.

• OIPJoin is self-adjusting: k is determined
by minimizing the total cost for false hits
and partition accesses.

• OIPJoin is robust for long tuples.

Future Work

• Advanced statistics to calculate the num-
ber of empty partitions and the reduced
average number of partition accesses APA,
for instance using histograms.

• Study the maintenance of OIP.

• Refinement of cost function for different
buffer replacement strategies.

