Efficient Computation of All-Window Length

 Correlations

 Correlations}

Adam Charane, Matteo Ceccarello, Anton Dignös, Johann Gamper

Free University of Bozen-Bolzano

Wednesday $6^{\text {th }}$ July, 2022
Supported by the European Regional Development Fund - Investment for Growth and Jobs Programme 2014-2020. Project PREMISE (FESR1164).

Südtirol • Alto Adige Europäischer Fonds für regionale Entwicklung

Motivation and Contributions

Motivation

1. At which time the behavior between the two time series changes ?
2. For how long does this new behavior lasts ?

Contributions

Our contributions can be summarized as:

1. Providing correlations over all possible subsequences for analysts to analyze.
2. Providing a visual summarization of all the correlations.
3. Efficiently computing the correlations by caching overlapping computations.
4. Speeding up computations by exploiting cache memory and parallelization.

Definitions \& Use Case Examples

Definitions

Definition (Time Series)

A Time series T is an ordered sequence of measurements from a process: $T=t_{1}, t_{2}, \ldots, t_{n}$

Definition (Time Series Subsequences)

A subsequence $T_{i, w}$ is a consecutive subset from T starting at i and having w measurements: $T_{i, w}=t_{i}, t_{i+1}, \ldots, t_{i+w-1}$

Definition (Pearson correlation)

The Pearson correlation coefficient of two vectors T and S is defined as: $\rho_{T, S}=\frac{\mathbb{E}\left[\left(T-\mu_{T}\right)\left(S-\mu_{S}\right)\right]}{\sigma_{T} \sigma_{S}}$

Problem Definition

Definition (All-Window Length Correlations Set)

Given two time series T and S of equal length n, the all-window length correlations set is defined as
$\left\{\rho_{T_{i, w}, S_{i, w}} \mid i \in[1 \ldots n-1] \wedge w \in[2 \ldots n] \wedge i+w \leq n\right\}$

Example

Figure: Three time series over a period of a month and a half

In the above example, we have:

- The correlation between tt101 and tt103 is 0.2 .
- If we ignore the of 8 January, the correlation becomes 0.93.

Heatmap Example

Figure: Heatmap of correlation between tt 101 and tt 103.

Heatmap Example

Raw data Z-normalized Min-Max normalizer

Figure: Heatmap in interactive mode.

Computation of All-Window Length Correlation Set

Incremental Computation

By rewriting Pearson coefficient between subsequences as follows ${ }^{1}$:

$$
\begin{align*}
\rho_{T_{i, w}, S_{i, w}} & =\frac{\mathbb{E}\left[\left(T_{i, w}-\mu_{T_{i, w}}\right)\left(S_{i, w}-\mu S_{i, w}\right)\right]}{\sigma_{T_{i, w}} \sigma_{S_{i, w}}} \\
& =\frac{n \sum_{j=i}^{i+w-1} T_{j} S_{j}-\sum_{j=i}^{i+w-1} T_{j} \sum_{j=i}^{i+w-1} S_{j}}{\sqrt{n \sum_{j=i}^{i+w-1} T_{j}^{2}-\left(\sum_{j=i}^{i+w-1} T_{j}\right)^{2}} \sqrt{n \sum_{j=i}^{i+w-1} S_{j}^{2}-\left(\sum_{j=1}^{i+w-1} S_{j}\right)^{2}}} \tag{2}
\end{align*}
$$

We can do the computation in an incremental fashion.

Incremental Computation

Let's define the quantities:

- $T_{\Sigma}^{(i, w)}=\sum_{j=i}^{i+w-1} T_{j}$
- $S_{\Sigma}^{(i, w)}=\sum_{j=i}^{i+w-1} S_{j}$
- $T_{\Sigma^{2}}^{(i, w)}=\sum_{j=i}^{i+w-1} T_{j}^{2}$
- $S_{\Sigma^{2}}^{(i, w)}=\sum_{j=i}^{i+w-1} S_{j}^{2}$
- $T S_{\Sigma}^{(w,)}=\sum_{j=i}^{i+w-1} T_{j} S_{j}$

Then Pearson correlation can be expressed as:

$$
\begin{equation*}
\rho_{T_{i, w}, S_{i, w}}=\frac{n \cdot T S_{\Sigma}^{(i, w)}-T_{\Sigma}^{(i, w)} \cdot S_{\Sigma}^{(i, w)}}{\sqrt{n T_{\Sigma^{2}}^{(i, w)}} \cdot \sqrt{n S_{\Sigma^{2}}^{(i, w)}}} \tag{3}
\end{equation*}
$$

Memory Layout

In order to save space and exploit cache memory, we store the correlations in an array, and we propose three different memory layouts:

(a) Anti-Diagonal

(b) Horizontal

(c) Vertical

Figure: Linearization of the matrix for the different memory layouts for two time series of dimension 8.

Speed-ups

Based on the following three remarks:
\Rightarrow Each two consecutive anti-diagonals are also consecutive in the array.
\Rightarrow Each two consecutive values in a diagonal are represented as consecutive values in the array.
\Rightarrow Each value depends on its previous one (update rule).

Speed-ups

We can conclude:
\Rightarrow Computation using the update rule is cache friendly.
\Rightarrow Each number of consecutive diagonals can be computed in parallel.

Experimental Evaluation

Scalability

Figure: Scalability of Naive approach vs our method.

Parallelism

Improvement w.r.t \# threads

Figure: The effect of number of threads on the computation.

Conclusions

Conclusions

\Rightarrow We find all phenomenons between two time series.
\Rightarrow We provide an efficient method to compute correlations.
\Rightarrow We provide a visual summary to easily identify interesting phenomenons.

Thank you!

References

BRAID: Stream Mining through Group Lag Correlations

Incremental computation - Update Rule

Assume we have $T_{\Sigma}^{(i, w)}$. Then, we can compute in constant time both $T_{\Sigma}^{(i+1, w)}$ and $T_{\Sigma}^{(i, w+1)}$:

$$
\begin{align*}
& T_{\Sigma}^{(i, w+1)}=T_{\Sigma}^{(i, w)}+T_{i+w} \tag{4}\\
& T_{\Sigma}^{(i+1, w)}=T_{\Sigma}^{(i, w)}+T_{i+w}-T_{i} \tag{5}
\end{align*}
$$

By applying the same update to the other quantities, we can compute the all-window correlation set in $\mathcal{O}\left(n^{2}\right)$

