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Abstract. This paper presents a semantic foundation of temporal conceptual
models used to design temporal information systems. We consider a modeling
language able to express both timestamping and evolution constraints. We con-
duct a deeper investigation on evolution constraints, eventually devising a model-
theoretic semantics for a full-fledged model with both timestamping and evolu-
tion constraints. The proposed formalization is meant both to clarify the meaning
of the various temporal constructors appeared in the literature and to give a rigor-
ous definition to notions like satisfiability, subsumption and logical implication.
Furthermore, we also show how to express temporal constraints using a subset
of first-order temporal logic, i.e., DLRUS , the description logic DLR extended
with the temporal operators Since and Until. We show how DLRUS is able to
capture the various modeling constraints in a succinct way and to perform auto-
mated reasoning on temporal conceptual models.

1 Introduction

This paper is a contribution to improve modeling of temporal data, building on state of
the art know-how developed by the conceptual data modeling community. Analyses of
many proposals for temporal models (aiming in particular at helping designing temporal
databases) and a summary of results achieved in the area can be found in two good
surveys [15, 21]. The main temporal modeling features that we focus on in this paper
can be summarized as:

– Timestamping. The data model should obviously distinguish between temporal
and atemporal modeling constructors. This is usually realized by temporal mark-
ing of classes, relationships and attributes. In the database, these markings trans-
late into a timestamping mechanism, i.e., attaching lifecycle information to classes
and relationship instances, and time-varying values to attributes. In this work we
consider just validity time (rather than transaction time [20, 27]), thus lifecycle
information expresses when an object or a tuple belongs to a class or a relation-
ship, respectively. Time-varying attributes store values together with when
they hold.
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– Evolution Constraints. They apply both to classes (status and transition con-
straints) and relationships (generation and cross-time constraints). Status Classes
constraints [11] rule the permissible evolution of an object as member of a class
along its lifespan. For example, an object that is an active member of a class may
become an inactive member of the same class. Transition constraints [16] rule ob-
ject migration, i.e., the possibility for an object to change its class membership
from one class to another. For example, an object in the Student class may later
migrate to become an object of the Faculty class. Complementary aspects of evo-
lution are modeled through Generation Relationships [17] which describe the fact
that objects in a class are generated by other objects in another (possibly the same)
class. For example, in a company database, splitting of a department translates into
the fact that the original department generates two (or more) new departments. Ob-
jects participating to Cross-Time Relationships [23] may not coexist at the time the
relationship is asserted. For example, the grandfather-of relationship can involve a
dead grandfather with a leaving grandchild.

This paper presents a semantic foundation for temporal data models, as a possible
response to concerns stating: “[..] it is only by considering those conceptual models
as a mathematical object with a formal definition and semantics that they can become
useful tools for the design of databases schema and applications [..]” [12].

We present a deeper investigation on evolution constraints, eventually devising a
model-theoretic semantics for a full-fledged conceptual model with both timestamp-
ing and evolution constraints. While timestamping aspects have been extensively dis-
cussed [3, 4, 10, 14, 22, 26], a clear formalization of evolution constraints is still miss-
ing, despite the fact that in the literature such constraints have been advocated as useful
for modeling the behavior of temporal objects [4, 25, 17, 16, 23, 26, 24].

The formalization proposed here builds on previous efforts to formalize temporal
conceptual models. Namely, we rely on a previous work to define the ERV T model [4],
a temporal Extended Entity-Relationship (EER) model—i.e., the standard ER modeling
language enriched with ISA links, disjoint and covering constraints, and full cardinal-
ity constraints—equipped with both a linear and a graphical syntax and based on a
model-theoretic semantics. ERV T captures timestamping constructors along with tran-
sition constraints. This work extends ERV T with status classes, generation relation-
ships and cross-time relationships. Another closely related work is the one of Finger
and McBrien [12]. They propose a model-theoretic formalization for the ERT model,
an EER model with timestamping but just cross-time relationships (called H-marked
relationships by the authors and introduced in a previous paper by McBrien, Seltveit
and Wrangler [23]). Our proposal modifies the semantics of cross-time relationships as
presented in [12] to comply with a crucial modeling requirement, i.e snapshot reducibil-
ity [22].

The advantage of associating a set-theoretic semantics to a language is not only to
clarify the meaning of the language’s constructors but also to give a semantic definition
to relevant modeling notions. In our case, given an interpretation function to assign a
set-theoretic semantics to the (temporal) modeling constructors, we are able to give a
rigorous definition of the notions of: schema satisfiability when a schema admits a non
empty interpretation which guarantees that the constraints expressed by the schema are
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not contradictory (similarly we define the notions of class and relationships satisfiabil-
ity); subsumption between classes (relationships) when the interpretations of a class (re-
lationships) is a subset of the interpretation of another class (relationship) which allows
to check new ISA links; logical implication when a (temporal) constraint is implicitly
true in the current schema thus deriving new constraints. In particular, in this paper we
stress both the formalization of a constructor and the set of logical implications associ-
ated to such formalization. The obtained logical implications are generally in agreement
with those mentioned in the literature on temporal conceptual models. Thus, each con-
structor’s formalization (together with its associated logical implications) can be seen
as a set of precise rules on the allowed behavior of objects, in particular regarding their
evolution in time. Even if we do not address specific implementation issues, these rules
can be turned into explicit integrity constraints in the form of trigger rules to be added
to the schema specified by the database designer, thus enabling to check the validity of
user actions involving object evolution. Since the rules are the result of a formal char-
acterization we solve what is in our opinion a serious weakness of existing modeling
approaches, i.e., without a rigorous foundation there is no guarantee that the proposed
model leads to a sound system.

Finally, as a byproduct of the semantic formalization, we also show how (tempo-
ral) modeling constraints can be equivalently expressed by using a subset of first-order
temporal logic, i.e., the temporal description logic DLRUS [5]. DLRUS is a combi-
nation of the expressive and decidable description logic DLR (a description logic with
n-ary relationships) with the linear temporal logic with temporal operators Since (S)
and Until (U) which can be used in front of both concepts and relations. The choice
of extending DLR is motivated by its ability to give a logical reconstruction and an
extension of representational tools such as object-oriented and conceptual data models,
frame-based and web ontology languages [7, 8, 9, 19]. In this paper, we use DLRUS
both to capture the (temporal) modeling constructors in a succinct way, and to use rea-
soning techniques to check satisfiability, subsumption and logical implication. We show
how DLRUS axioms capture the above mentioned rules associated with each construc-
tor’s formal semantics while logical implications between DLRUS axioms is a way to
derive new rules. Even if full DLRUS is undecidable this paper addresses interesting
subsets of DLRUS where reasoning becomes a decidable problem.

The paper is organized as follows. Sections 2 and 4 recall the characteristics of the
DLRUS description logic and the ERV T temporal data model on which we build our
proposal. Section 3 shows the modeling requirements that lead us in elaborating the
rigorous definition of our evolution framework. Section 5 discusses the evolution con-
straints we address while Section 6 provides a formal characterization for them together
with a set of logical implications and the correspondent DLRUS axioms. Section 7
shows that reasoning on the full-fledged temporal setting is undecidable but provides
useful scenarios where reasoning becomes decidable. Section 8 concludes the paper.

2 The Temporal Description Logic

The temporal description logic DLRUS [5] combines the propositional temporal logic
with Since and Until and the (non-temporal) description logic DLR [7]. DLRUS can be
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C → � | ⊥ | CN | ¬C | C1 � C2 | ∃≶k[Uj ]R |
�+C | �−C | �+C | �−C | ⊕ C | � C | C1 U C2 | C1 S C2

R → �n | RN | ¬R | R1 � R2 | Ui/n : C |
�+R | �−R | �+R | �−R | ⊕ R | � R | R1 U R2 | R1 S R2

�I(t) = ∆I

⊥I(t) = ∅
CNI(t) ⊆ �I(t)

(¬C)I(t) = �I(t) \ CI(t)

(C1 � C2)I(t) = C
I(t)
1 ∩ C

I(t)
2

(∃≶k[Uj ]R)I(t) = { d ∈ �I(t) | �{〈d1, . . . , dn〉 ∈ RI(t) | dj = d} ≶ k}
(C1 U C2)I(t) = { d ∈ �I(t) | ∃v > t.(d ∈ C

I(v)
2 ∧ ∀w ∈ (t, v).d ∈ C

I(w)
1 )}

(C1 S C2)I(t) = { d ∈ �I(t) | ∃v < t.(d ∈ C
I(v)
2 ∧ ∀w ∈ (v, t).d ∈ C

I(w)
1 )}

(�n)I(t) ⊆ (∆I)n

RNI(t) ⊆ (�n)I(t)

(¬R)I(t) = (�n)I(t) \ RI(t)

(R1 � R2)I(t) = R
I(t)
1 ∩ R

I(t)
2

(Ui/n : C)I(t) = { 〈d1, . . . , dn〉 ∈ (�n)I(t) | di ∈ CI(t)}
(R1 U R2)I(t) = { 〈d1, . . . , dn〉 ∈ (�n)I(t) |

∃v > t.(〈d1, . . . , dn〉 ∈ R
I(v)
2 ∧ ∀w ∈ (t, v). 〈d1, . . . , dn〉 ∈ R

I(w)
1 )}

(R1 S R2)I(t) = { 〈d1, . . . , dn〉 ∈ (�n)I(t) |
∃v < t.(〈d1, . . . , dn〉 ∈ R

I(v)
2 ∧ ∀w ∈ (v, t). 〈d1, . . . , dn〉 ∈ R

I(w)
1 )}

(�+R)I(t) = {〈d1, . . . , dn〉 ∈ (�n)I(t) | ∃v > t. 〈d1, . . . , dn〉 ∈ RI(v)}
(⊕ R)I(t) = {〈d1, . . . , dn〉 ∈ (�n)I(t) | 〈d1, . . . , dn〉 ∈ RI(t+1)}
(�−R)I(t) = {〈d1, . . . , dn〉 ∈ (�n)I(t) | ∃v < t. 〈d1, . . . , dn〉 ∈ RI(v)}
(� R)I(t) = {〈d1, . . . , dn〉 ∈ (�n)I(t) | 〈d1, . . . , dn〉 ∈ RI(t−1)}

Fig. 1. Syntax and semantics of DLRUS

regarded as a rather expressive fragment of the first-order temporal logic L{since, until}

(cf. [10, 18]).
The basic syntactical types of DLRUS are classes (i.e., unary predicates, also known

as concepts) and n-ary relations of arity ≥ 2. Starting from a set of atomic classes (de-
noted by CN ), a set of atomic relations (denoted by RN ), and a set of role symbols (de-
noted by U ) we hereinafter define inductively (complex) class and relation expressions
as is shown in the upper part of Figure 1, where the binary constructors (�, �, U , S) are
applied to relations of the same arity, i, j, k, n are natural numbers, i ≤ n, and j does
not exceed the arity of R.

The non-temporal fragment of DLRUS coincides with DLR. For both class and re-
lation expressions all the Boolean constructors are available. The selection expression
Ui/n : C denotes an n-ary relation whose argument named Ui (i ≤ n) is of type C; if
it is clear from the context, we omit n and write (Ui : C). The projection expression
∃≶k[Uj ]R is a generalisation with cardinalities of the projection operator over the argu-
ment named Uj of the relation R; the plain classical projection is ∃≥1[Uj ]R. It is also
possible to use the pure argument position version of the model by replacing role sym-
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bols Ui with the corresponding position numbers i. To show the expressive power of
DLRUS we refer to the next Sections where DLRUS is used to capture various forms
of temporal constraints.

The model-theoretic semantics of DLRUS assumes a flow of time T = 〈Tp, <〉,
where Tp is a set of time points (or chronons) and < a binary precedence relation on
Tp, is assumed to be isomorphic to 〈Z, <〉. The language of DLRUS is interpreted in
temporal models over T , which are triples of the form I .= 〈T , ∆I , ·I(t)〉, where ∆I is
non-empty set of objects (the domain of I) and ·I(t) an interpretation function such that,
for every t ∈ T (in the following the notation t ∈ T is used as a shortcut for t ∈ Tp),
every class C, and every n-ary relation R, we have CI(t) ⊆ ∆I and RI(t) ⊆ (∆I)n.
The semantics of class and relation expressions is defined in the lower part of Fig. 1,
where (u, v) = {w ∈ T | u < w < v}. For classes, the temporal operators �+ (some
time in the future), ⊕ (at the next moment), and their past counterparts can be defined
via U and S: �+C ≡  U C, ⊕ C ≡ ⊥ U C, etc. The operators �+ (always in the
future) and �− (always in the past) are the duals of �+ (some time in the future) and
�− (some time in the past), respectively, i.e., �+C ≡ ¬�+¬C and �−C ≡ ¬�−¬C,
for both classes and relations. The operators �∗ (at some moment) and its dual �∗ (at
all moments) can be defined for both classes and relations as �∗C ≡ C ��+C ��−C
and �∗C ≡ C � �+C � �−C, respectively.

A knowledge base is a finite set Σ of DLRUS axioms of the form C1 � C2 and
R1 � R2, with R1 and R2 being relations of the same arity. An interpretation I sat-
isfies C1 � C2 (R1 � R2) if and only if the interpretation of C1 (R1) is included in
the interpretation of C2 (R2) at all time, i.e. C

I(t)
1 ⊆ C

I(t)
2 (RI(t)

1 ⊆ R
I(t)
2 ), for all

t ∈ T . Various reasoning services can be defined in DLRUS . A knowledge base, Σ,
is satisfiable if there is an interpretation that satisfies all the axioms in Σ (in symbols,
I |= Σ). A class C (or relation R) is satisfiable if there is I such that CI(t) �= ∅
(respectively, RI(t) �= ∅), for some time point t. A knowledge base, Σ, logically im-
plies an axiom, C1 � C2, and write Σ |= C1 � C2, if we have I |= C1 � C2
whenever I |= Σ. In this latter case, the concept C1 is said to be subsumed by the
concept C2 in the knowledge base Σ. A concept C is satisfiable, given a knowledge
base Σ, if there exists a model I of Σ such that CI(t) �= ∅ for some t ∈ T , i.e.
Σ �|= C � ⊥.

While DLR knowledge bases are fully able to capture atemporal EER schemas [7,
8]—i.e., given an EER schema there is an equi-satisfiable DLR knowledge base—in
the following Sections we show how DLRUS knowledge bases can capture temporal
EER schemas with both timestamping and evolution constraints.

3 Modeling Requirements

This Section briefly illustrates the requirements that are frequently advocated in the
literature on temporal data models.

– Orthogonality. Temporal constructors should be specified separately and indepen-
dently for classes, relationships, and attributes. Depending on application require-
ments, the temporal support must be decided by the designer.



Modeling the Evolution of Objects in Temporal Information Systems 27

– Upward Compatibility. This term denotes the capability of preserving the nontem-
poral semantics of conventional (legacy) conceptual schemas when embedded into
temporal schemas.

– Snapshot Reducibility. Snapshots of the database described by a temporal schema
are the same as the database described by the same schema, where all temporal
constructors are eliminated and the schema is interpreted atemporally. Indeed, this
property specifies that we should be able to fully rebuild a temporal database by
starting from the single snapshots.

Orthogonality affects mainly timestamping [25] and ERV T already satisfies this
principle by introducing temporal marks that could be used to specify the temporal
behavior of classes, relationships, and attributes in an independent way.

Upward compatibility and snapshot reducibility [22] are strictly related. Considered
together, they allow to preserve the meaning of atemporal constructors. In particular,
the meaning of classical constructors must be preserved in such a way that a designer
could either use them to model classical databases, or when used in a genuine temporal
setting their meaning must be preserved at each instant of time.

These requirements are not so obvious when dealing with evolving objects. In par-
ticular, snapshot reducibility is hard to preserve when dealing with both generation and
cross-time relationships where involved object may not coexist. The formalization car-
ried out in this paper provides a data model able to respect these requirements also in
presence of evolving objects.

4 The Temporal Conceptual Model ERV T

In this Section, the temporal EER model ERV T [3, 4] is briefly introduced. ERV T sup-
ports timestamping for classes, attributes, and relationships. ERV T is equipped with
both a linear and a graphical syntax along with a model-theoretic semantics as a tem-
poral extension of the EER semantics [9].

An ERV T schema is a tuple: Σ = (L, REL, ATT, CARD, ISA, DISJ, COVER, S, T,
KEY), such that: L is a finite alphabet partitioned into the sets: C (class symbols), A
(attribute symbols), R (relationship symbols), U (role symbols), and D (domain sym-
bols). ATT is a function that maps a class symbol in C to an A-labeled tuple over D,
ATT(E) = 〈A1 : D1, . . . , Ah : Dh〉. REL is a function that maps a relationship symbol
in R to an U-labeled tuple over C, REL(R) = 〈U1 : C1, . . . , Uk : Ck〉, and k is the arity
of R. CARD is a function C×R×U �→ N×(N∪{∞}) denoting cardinality constraints.
We denote with CMIN(C, R, U) and CMAX(C, R, U) the first and second component of
CARD. In Figure 2, CARD(TopManager, Manages, man) = (1, 1). ISA is a binary rela-
tionship ISA ⊆ (C×C)∪(R×R). ISA between relationships is restricted to relationships
with the same arity. ISA is visualized with a directed arrow, e.g. Manager ISAEmployee
in Figure 2. DISJ, COVER are binary relations over 2C × C, describing disjointness and
covering partitions, respectively. DISJ is visualized with a circled “d” and COVER with
a double directed arrow, e.g. Department, InterestGroup are both disjoint and they
cover OrganizationalUnit. The set C is partitioned into: a set CS of Snapshot classes
(the S-marked classes in Figure 2), a set CM of Mixed classes (the unmarked classes
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Department S InterestGroup

OrganizationalUnit S

d

Member S

(1,n)

org

mbr
Employee S

Name(String)

S

PaySlipNumber(Integer)

Salary(Integer)

T

Manager T

TopManagerAreaManager

Works-for T

(1,n)

act

emp

Project T

ProjectCode(String)

Manages
man

(1,1)

prj

(1,1)

Fig. 2. The company ERV T diagram

in Figure 2), and a set CT of Temporary classes (the T-marked classes in Figure 2). A
similar partition applies to the set R. S, T are binary relations over C ×A containing, re-
spectively, the snapshot and temporary attributes of a class (see S, T marked attributes
in Figure 2). KEY is a function that maps class symbols in C to their key attributes,
KEY(E) = A. Keys are visualized as underlined attributes.

The model-theoretic semantics associated with the ERV T modeling language adopts
the snapshot1 representation of abstract temporal databases and temporal conceptual
models [10]. Following this paradigm, the flow of time T = 〈Tp, <〉, where Tp is a set
of time points (or chronons) and < is a binary precedence relation on Tp, is assumed
to be isomorphic to either 〈Z, <〉 or 〈N, <〉. Thus, standard relational databases can
be regarded as the result of mapping a temporal database from time points in T to
atemporal constructors, with the same interpretation of constants and the same domain.

Definition 1 (ERV T Semantics). Let Σ be an ERV T schema. A temporal database
state for the schema Σ is a tuple B = (T , ∆B∪∆B

D, ·B(t)), such that: ∆B is a nonempty
set disjoint from ∆B

D; ∆B
D =

⋃
Di∈D ∆B

Di
is the set of basic domain values used in the

schema Σ; and ·B(t) is a function that for each t ∈ T maps:

– every domain symbol Di into a set D
B(t)
i = ∆B

Di
.

– Every class C to a set CB(t) ⊆ ∆B .
– Every relationship R to a set RB(t) of U-labeled tuples over ∆B—i.e., let R be an n-

ary relationship connecting the classes C1, . . . , Cn, REL(R) = 〈U1 : C1, . . . , Un :
Cn〉, then, r ∈ RB(t) → (r = 〈U1 : o1, . . . , Un : on〉 ∧ ∀i ∈ {1, . . . , n}.oi ∈
C

B(t)
i ). We adopt the convention: 〈U1 : o1, . . . , Un : on〉 ≡ 〈o1, . . . , on〉, when

U-labels are clear from the context.
– Every attribute A to a set AB(t) ⊆ ∆B × ∆B

D .

B is said a legal temporal database state if it satisfies all of the constraints expressed in
the schema (see [4] for full details).

1 The snapshot model represents the same class of temporal databases as the timestamp
model [21, 22] defined by adding temporal attributes to a relation [10].
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Given such a set-theoretic semantics we are able to rigorously define some relevant
modeling notions such as satisfiability, subsumption and derivation of new constraints
by means of logical implication.

Definition 2. Let Σ be a schema, C ∈ C a class, and R ∈ R a relationship. The
following modeling notions can be defined:

1. C (R) is satisfiable if there exists a legal temporal database state B for Σ such that
CB(t) �= ∅ (RB(t) �= ∅), for some t ∈ T ;

2. Σ is satisfiable if there exists a legal temporal database state B for Σ that satisfies
at least one class in Σ (B is said a model for Σ);

3. C1 (R1) is subsumed by C2 (R2) in Σ if every legal temporal database state for Σ
is also a legal temporal database state for C1 ISA C2 (R1 ISA R2);

4. A schema Σ′ is logically implied by a schema Σ over the same signature if every
legal temporal database state for Σ is also a legal temporal database state for Σ′.

In the following Subsection we will show how temporal database states, B, support
defining the semantics of timestamping.

4.1 Timestamping

ERV T is able to distinguish between snapshot constructors—i.e. constructors which
bear no explicit specification of a given lifespan [20], which we convey by as-
suming a global lifespan (see Section 6.1) associated to each of their instances—
temporary constructors—i.e. each of their instances has a limited lifespan—or mixed
constructors—i.e. their instances can have either a global or a temporary existence. In
the following, a class, relationship or attribute is called temporal if it is either temporary
or mixed. The two temporal marks, S (snapshot) and T (temporary), introduced at the
conceptual level, capture such temporal behavior. The semantics of timestamping can
now be defined as follows (we illustrate timestamping just for classes; similar ideas are
used in ERV T to associate timestamping to both relationships and attributes):

o∈CB(t) → ∀t′∈T .o∈CB(t′) Snapshot Class
o∈CB(t) → ∃t′ �= t.o �∈CB(t′) Temporary Class

The two cases are captured by the following DLRUS axioms, respectively:

C � (�+C) � (�−C) Snapshot Class
C � (�+¬C) � (�−¬C) Temporary Class

The distinction between snapshot, temporary and mixed constructors has been adop-
ted in ERV T to avoid overloading the meaning of un-marked constructors. Indeed, the
classical distinction between temporal (using a temporal mark) and atemporal (leav-
ing the constructor un-marked) constructors may be ambiguous in the meaning of un-
marked constructors. In this classical setting, un-marking is used to model both truly
atemporal constructors (i.e., snapshot classes whose instances lifespan is always equal
to the whole database lifespan), as well as legacy constructors (for upward compatibil-
ity) where the constructor is not marked as temporal because the original data model
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Fig. 3. The company diagram with deductions on timestamps

did not support the temporal dimension. The problem is that, due to the interaction be-
tween the various components of a temporal model, un-marked constructors can even
purposely represent temporary constructors. As an example, think of an ISA involving
a temporary entity (as superclass) and an un-marked entity (as a subclass). Since a de-
signer cannot forecast all the possible interactions between the (temporal) constraints
of a given conceptual schema, this ultimately means that in the classical approach atem-
porality cannot be guaranteed and this is true even for the upward compatibility.

ERV T explicitly introduces a snapshot mark to force both atemporality and upward
compatibility. As logical implication is formally defined in ERV T (see Definition 2),
missing specifications can be inferred and in particular a set of logical implications hold
in the case of timestamping. For instance, in Figure 2, as Manager is temporary both
AreaManager and TopManager are temporary, too. Because OrganizationalUnit
is snapshot and partitioned into two sub-classes, Department which is snapshot and
InterestGroup, the latter should be snapshot, too. As the temporary class
TopManager participates in the relationships Manages, then the latter must be tempo-
rary, too (see [4] for an exhaustive list of deductions involving timestamps). The result
of these deductions is given in Figure 3. Note that, when mapping ERV T into a rela-
tional schema both temporary and un-marked constructors are mapped into a relation
with added timestamp attributes, while snapshot constructors do not need any additional
time attribute (for full details on the ERV T relational mapping see [1]).

5 Evolution Constraints

Evolution constraints are intended to help in modeling the temporal behavior of an
object. This section briefly recalls the basic concepts that have been proposed in the
literature to deal with evolution, and their impact on the resulting conceptual language.

Status [25, 11] is a notion associated to temporal classes to describe the evolving
status of membership of each object in the class. In a generic temporal setting, objects
can be suspended and later resumed in their membership. Four different statuses can be
specified, together with precise transitions between them:



Modeling the Evolution of Objects in Temporal Information Systems 31

– Scheduled. An object is scheduled if its existence within the class is known but its
membership in the class will only become effective some time later. For example,
a new project is approved but will not start until a later date. Each scheduled object
will eventually become an active object.

– Active. The status of an object is active if the object is a full member of the class.
For example, a currently ongoing project is an active member, at time now, of the
Project class.

– Suspended. This status qualifies objects that exist as members of the class, but
are to be seen as temporarily inactive members of the class. Being inactive means
that the object cannot undergo some operations, e.g., it is not allowed to modify
the values of its properties (see [11] for more details). For example, an employee
taking a temporary leave of absence can be considered as a suspended employee.
A suspended object was in the past an active one.

– Disabled. It is used to model expired objects in a class. A disabled object was in
the past a member of the class. It can never again become a non-disabled member
of that class (e.g., an expired project cannot be reactivated).

Transitions [16, 25] have been introduced to model the phenomenon called object
migration. A transition records objects migrating from a source class to a target class.
At the schema level, it expresses that the instances of the source class may migrate into
the target class. Two types of transitions have been considered: dynamic evolution, when
objects cease to be instances of the source class, and dynamic extension, otherwise. For
example considering the company schema (Figure 3), if we want to record data about
the promotion of area managers into top managers we can specify a dynamic evolution
from the class AreaManager to the class TopManager. We can also record the fact that
a mere employee becomes a manager by defining a dynamic extension from the class
Employee to the class Manager (see Figure 5).

Generation relationships [25, 17, 24] express that (sets of) objects in a target class
may be generated from (sets of) objects in a source class. While transitions involve ob-
ject instances bearing the same oid, object instances linked by generation relationships
necessarily bear different oids. Depending whether the source objects are preserved (as
member of the source class) or disabled, we distinguish between a production and a
transformation, respectively. Cardinality constraints can be added to specify the car-
dinality of sets involved in a generation. For example (see Figures 3,6), if we want to
record the fact that (a group of) managers propose a new project a production relation-
ship between Manager and Project can be introduced. Let us now assume that the
structure of the departments of the company is dynamic, e.g., some departments may
either merge or split and be replaced by others, and that it is useful to record these
changes. One way would be to define a transformation relationship linking (a set of)
existing departments to (a set of) new departments.

Cross-Time relationships [26, 23, 25] describe relationships between objects that do
not coexist at the same time and possibly not at the time the relationship is asserted.
There are many examples of these relationships (see Figure 7). Consider, for example,
a relationship “biography” between an author and a famous person already dead, or the
relationship “grandparent” that holds even if the grandparent passed away before the
grandchild was born or the grandchild is not yet born. Still, considering the company
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schema (Figure 3), the relationship Works-for can be changed to cross-time whenever
one wants to assign an employee to a project before its official launching, or if some
employee keeps on working on a project after its official closure.

6 Formalizing Evolving Objects

The proposed formalization is based on a model-theoretic semantics and a correspon-
dent set of axioms expressed using the temporal description logic DLRUS . This will
give us both a formal characterization of the temporal conceptual modeling construc-
tors, and the possibility to use the reasoning capabilities of DLRUS to check satisfiabil-
ity, subsumption and logical implications over temporal schemas. The model-theoretic
semantics we illustrate here for the various evolution constraints is an extension of the
one developed for the model ERV T , introduced in Section 4. The validity of the pro-
posed formalization is justified by providing a set of logical implications which are in
agreement with the derivations mentioned in the literature on temporal data modeling.

6.1 Status Classes

The evolution in the membership of an object to a temporal class is reflected in the
changing values of the status of the object in the class. This evolution obeys some rules
that give rise to a set of constraints. This Subsection formally capture these constraints.

Let C be a temporal (i.e., temporary or mixed) class. We capture status transition
of membership in C by associating to C the following status classes: Scheduled-C,
Suspended-C, Disabled-C. In particular, status classes are represented by the hierar-
chy of Figure 4 (where C may also be mixed) that classifies C instances according to
their actual status. To preserve upward compatibility we do not explicitly introduce an
active class, but assume by default that the name of the class itself denotes the set of
active objects. i.e., Active-C ≡ C. We can assume that the status classes are created
automatically by the system each time a class is declared temporal. Thus, designers and
users are not forced neither to introduce nor to manipulate status classes. They only
have to be aware of the different statuses in the lifecycle of an object. Note that, since
membership of objects into snapshot classes is global, i.e. objects are always active, the
notion of status classes does not apply to snapshot classes.

To capture the intended meaning of status classes, we define ad-hoc constraints and
then prove that such constraints capture their evolving behavior as described in the
literature [25, 11]. First of all, disjointness and ISA constraints between statuses of a
class C can be described as illustrated in Figure 4, where Top is supposed to be snapshot
and represents the universe of discourse (i.e., TopB(t) ≡ ∆B). Other than hierarchical
constraints, the intended semantics of status classes induces the following rules that are
related to their temporal behavior:

(EXISTS) Existence persists until Disabled.
o ∈ Exists-CB(t) → ∀t′ > t.(o ∈ Exists-CB(t′) ∨ o ∈ Disabled-CB(t′))

(DISAB1) Disabled persists.
o ∈ Disabled-CB(t) → ∀t′ > t.o ∈ Disabled-CB(t′)

(DISAB2) Disabled was Active in the past.
o ∈ Disabled-CB(t) → ∃t′ < t.o ∈ CB(t′)
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(SUSP) Suspended was Active in the past.
o ∈ Suspended-CB(t) → ∃t′ < t.o ∈ CB(t′)

(SCH1) Scheduled will eventually become Active.
o ∈ Scheduled-CB(t) → ∃t′ > t.o ∈ CB(t′)

(SCH2) Scheduled can never follow Active.
o ∈ CB(t) → ∀t′ > t.o �∈ Scheduled-CB(t′)

DLRUS axioms are able to fully capture the hierarchical constraints of Figure 4 (see [4]
for more details). Moreover, the above semantic equations are captured by the following
DLRUS axioms:

(EXISTS) Exists-C � �+(Exists-C � Disabled-C)
(DISAB1) Disabled-C � �+Disabled-C
(DISAB2) Disabled-C � �−C
(SUSP) Suspended-C � �−C
(SCH1) Scheduled-C � �+C
(SCH2) C � �+¬Scheduled-C

As a consequence of the above formalization, scheduled and disabled status classes
can be true only over a single interval, while active and suspended can hold at set of
intervals (i.e., an object can move many times back and forth from active to suspended
status and viceversa). In particular, the following set of new rules can be derived.

Proposition 1 (Status Classes: Logical Implications). The following logical implica-
tions hold given the above formalization of status classes:

(SCH3) Scheduled persists until active: Scheduled-C � Scheduled-C U C.
Together with axiom (SCH2), we can conclude that Scheduled-C is true just on a
single interval.

(SCH4) Scheduled cannot evolve directly to Disabled: Scheduled-C �⊕¬Disbled-C.
(DISAB3) Disabled was active but it will never become active anymore:

Disabled-C � �−(C � �+¬C).
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In the following we show the adequacy of the semantics associated to status classes
to describe: a) the behavior of temporal classes involved in ISA relationships; b) the
notions of lifespan, birth and death of an object; c) the object migration between classes;
d) the relationships that involve objects existing at different times (both generation and
cross-time relationships).

Isa vs. status. When an ISA relationship is specified between two temporal classes, say
B ISA A, then the following constraints must hold between the respective status classes:

(ISA1) Objects active in B must be active in A. B � A
(ISA2) Objects suspended in B must be either suspended or active in A.

Suspended-B � Suspended-A � A
(ISA3) Objects disabled in B must be either disabled, suspended or active in A.

Disabled-B � Disabled-A � Suspended-A � A
(ISA4) Objects scheduled in B cannot be disabled in A.

Scheduled-B � ¬Disabled-A
(ISA5) Objects disabled in A, and active in B in the past, must be disabled in B.

Disabled-A � �−B � Disabled-B

The formalization of status classes provided above is not sufficient to guarantee prop-
erties (ISA1-5)2. We need to further assume that the system behaves under the temporal
ISA assumption: Each time an ISA between two temporal classes holds (B ISA A), then
an ISA between the respective existence status classes (Exists-B ISA Exists-A) is au-
tomatically added by the system. Now, we are able to prove that points (ISA1-5) above
are entailed by the semantics associated to status classes under the temporal ISA as-
sumption.

Proposition 2 (Status Classes Vs. ISA: Logical Implications). Let A, B be two tem-
poral classes such that B ISAA, then properties (ISA1-5) are valid logical implications.

(ISA1) Obviously true since B ISA A holds, and both A, B are considered active.
(ISA2) Let o ∈ Suspended-BB(t0), since Suspended-B ISA Exists-B, and (by tem-

poral ISA assumption) Exists-B ISA Exists-A, then, o ∈ Exists-AB(t0). On the
other hand, by (SUSP), ∃t1 < t0.o ∈ BB(t1), and then, o ∈ AB(t1). Then, by
(SCH2), o �∈ Scheduled-AB(t0). Thus, due to the disjoint covering constraint be-
tween active and suspended classes, either o ∈ AB(t0) or o ∈ Suspended-AB(t0).

(ISA3) Let o ∈ Disabled-BB(t0), then, by (DISAB2), ∃t1 < t0.o ∈ BB(t1). By B ISAA
and A ISA Exists-A, then, o ∈ Exists-AB(t1). By (EXISTS) and the disjointness
between existing and disabled classes, there are only two possibilities at point in
time t0 > t1:
1. o ∈ Exists-AB(t0),and thus,by (SCH2), o ∈ AB(t0) or o ∈ Suspended-AB(t0);

or
2. o ∈ Disabled-AB(t0).

(ISA4) Let o ∈ Scheduled-BB(t0), then, by (SCH1), ∃t1 > t0.o ∈ BB(t1), and by
B ISA A, o ∈ AB(t1). Thus, by (DISAB1) and the disjointness between active and
disabled states, o �∈ Disabled-AB(t0).

2 We let the reader check that points 2 and 5 are not necessarily true.



Modeling the Evolution of Objects in Temporal Information Systems 35

(ISA5) Let o ∈ Disabled-AB(t0) and o ∈ BB(t1) for some t1 < t0, then, o ∈
Exists-BB(t1). By (EXISTS) and the disjointness between existing and disabled
classes, there are only two possibilities at time t0 > t1: either o ∈ Exists-BB(t0)

or o ∈ Disabled-BB(t0). By absurd, let o ∈ Exists-BB(t0), then by tempo-
ral ISA assumption, o ∈ Exists-AB(t0), which contradicts the assumption that
o ∈ Disabled-AB(t0).

Lifespan. Here we define the lifespan of objects belonging to a temporal class, to-
gether with other related notions. In particular, we define EXISTENCEC , LIFESPANC ,
ACTIVEC , BEGINC , BIRTHC and DEATHC as functions depending on the object mem-
bership to the status classes associated to a temporal class C.

The existence time of an object describes the temporal instants where the object
is either a scheduled, active or suspended member of a given class. More formally,
EXISTENCESPANC : ∆B → 2T , such that:

EXISTENCESPANC(o) = {t ∈ T | o ∈ Exists-CB(t)}

The lifespan of an object describes the temporal instants where the object is an active or
suspended member of a given class (thus, LIFESPANC(o) ⊆ EXISTENCESPANC(o)).
More formally, LIFESPANC : ∆B → 2T , such that:

LIFESPANC(o) = {t ∈ T | o ∈ CB(t) ∪ Suspended-CB(t)}

The activespan of an object describes the temporal instants where the object is an active
member of a given class (thus, ACTIVESPANC(o) ⊆ LIFESPANC(o)). More formally,
ACTIVESPANC : ∆B → 2T , such that:

ACTIVESPANC(o) = {t ∈ T | o ∈ CB(t)}

The functions BEGINC and DEATHC associate to an object the first and the last appear-
ance, respectively, of the object as a member of a given class, while BIRTHC denotes
the first appearance as an active object of that class. More formally, BEGINC , BIRTHC ,
DEATHC : ∆B → T , such that:

BEGINC(o) = min(EXISTENCESPANC(o))
BIRTHC(o) = min(ACTIVESPANC(o)) ≡ min(LIFESPANC(o))
DEATHC(o) = max(LIFESPANC(o))

We could still speak of existencespan, lifespan or activespan for snapshot classes,
but in this case EXISTENCESPANC(o) ≡ LIFESPANC(o) ≡ ACTIVESPANC(o) ≡ T .

6.2 Transition

Dynamic transitions between classes model the notion of object migration from a source
to a target class. Two notions of dynamic transitions between classes are considered in
the literature [25, 16]: dynamic evolution, when an object ceases to be an instance of
a source class, and dynamic extension, when an object is still allowed to belong to the
source. Concerning the graphical representation, as illustrated in Figure 5, we use a
dashed arrow pointing to the target class and labeled with either DEX or DEV denoting
dynamic extension and evolution, respectively.
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Fig. 5. Transitions employee-to-manager and area-to-top manager

In a temporal setting, objects can obviously change their membership class. Spec-
ifying a transition between two classes means that: a. We want to keep track of such
migration; b. Not necessarily all the objects in the source or in the target participate
in the migration; c. When the source class is a temporal class, migration involves only
objects active or suspended. Thus, neither disabled nor scheduled objects can take part
in a transition.

In the following, we present a formalization that satisfies the above requirements.
Formalizing dynamic transitions as relationships would result in binary relationships
linking the same object that migrates from the source to the target class. Rather than
defining a relationship type with an equality constraint on the identity of the linked
objects, we represent transitions by introducing a new class denoted by either DEXC1,C2

or DEVC1,C2 for dynamic extension and evolution, respectively. More formally, in case
of a dynamic extension between classes C1, C2 the following semantic equation holds:

o ∈ DEX
B(t)
C1,C2

→ (o ∈ (Suspended-C1B(t) ∪ C1B(t)) ∧ o �∈ C2B(t) ∧ o ∈ C
B(t+1)
2 )

And the equivalent DLRUS axiom is:

(DEX) DEXC1,C2 � (Suspended-C1 � C1) � ¬C2 � ⊕ C2

In case of a dynamic evolution between classes C1, C2 the source object cannot remain
active in the source class. Thus, the following semantic equation holds:

o ∈ DEV
B(t)
C1,C2

→ (o ∈ (Suspended-C1B(t) ∪ C1B(t)) ∧ o �∈ C2B(t) ∧
o ∈ C

B(t+1)
2 ∧ o �∈ C

B(t+1)
1 )

And the equivalent DLRUS axiom is:

(DEV) DEVC1,C2 � (Suspended-C1 � C1) � ¬C2 � ⊕ (C2 � ¬C1)

Please note that, in case C1 is a snapshot class, then, Exists-C1 ≡ C1. Finally, we
formalize the case where the source (C1) and/or the target (C2) totally participate in
a dynamic extension (at schema level we add mandatory cardinality constraints on
DEX/DEV links):
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o∈C
B(t)
1 → ∃t′ > t.o∈DEX

B(t′)
C1,C2

Source Total Transition

o∈C
B(t)
2 → ∃t′ < t.o∈DEX

B(t′)
C1,C2

Target Total Transition

The above cases are captured by the following DLRUS axioms, respectively:

(STT) C1 � �+DEXC1,C2 Source Total Transition
(TTT) C2 � �−DEXC1,C2 Target Total Transition

In a similar way we deal with dynamic evolution constraints.

Proposition 3 (Transition: Logical Implications). The following logical implications
hold as a consequence of the transition semantics:

1. The classes DEXC1,C2 and DEVC1,C2 are temporary classes; actually, they hold at
single time points.
DEXC1,C2 � ⊕ ¬ DEXC1,C2 � � ¬DEXC1,C2 (similar for DEVC1,C2)

Indeed, let o ∈ DEX
B(t)
C1,C2

, then o �∈ C
B(t)
2 and o ∈ C

B(t+1)
2 , thus o �∈ DEX

B(t+1)
C1,C2

and o �∈ DEX
B(t−1)
C1,C2

. Note that, the time t such that o ∈ DEX
B(t)
C1,C2

records when the
transition event happens. Similar considerations apply for DEVC1,C2 .

2. Objects in the classes DEXC1,C2 and DEVC1,C2 cannot be disabled as C2.
DEXC1,C2 � ¬Disabled-C2 (similar for DEVC1,C2)
Indeed, since DEXC1,C2 � ⊕ C2, i.e. objects in DEXC1,C2 are active in C2 starting
from the next point in time, then by property (DISAB3), DEXC1,C2 �¬Disabled-C2.
The same holds for DEVC1,C2 .

3. The target class C2 cannot be snapshot (it becomes temporary in case of TTT con-
straints).
DEXC1,C2 � �∗[C2 � (�+¬C2 � �−¬C2)]
Indeed, from (DEX), DEXC1,C2 � ¬C2 � ⊕ C2 (the same holds for DEVC1,C2).

4. As a consequence of dynamic evolution, the source class, C1, cannot be snapshot
(and it becomes temporary in case of STT constraints).
DEVC1,C2 � �∗[C1 � (�+¬C1 � �−¬C1)]
Indeed, an object evolving from C1 to C2 ceases to be a member of C1.

5. Dynamic evolution cannot involve a class and one of its sub-classes.
C2 � C1 |= DEVC1,C2 � ⊥
Indeed, from (DEV), DEVC1,C2 � ⊕ (C2 � ¬C1) which contradicts C2 � C1.

6. Dynamic extension between disjoint classes logically implies Dynamic evolution.
{DEXC1,C2 , C1 � ¬C2} |= DEVC1,C2

6.3 Generation Relationships

Generation relationships [25, 17] represent processes that lead to the emergence of new
instances starting from a set of instances. Two distinct generation relationships have
been introduced: production, when the source objects survive the generation process;
transformation, when all the instances involved in the process are consumed. At the
conceptual level we introduce two marks associated to a relationship: GP for production
and GT for transformation relationships, and an arrow points to the target class (see
Figure 6).
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We model generation as binary relationships connecting a source class to a target
one: REL(R) = 〈source : C1, target : Scheduled-C2〉. The semantics of production
relationships, R, is described by the following equation:

〈o1, o2〉 ∈ RB(t) → (o1 ∈ C
B(t)
1 ∧ o2 ∈ Scheduled-C2B(t) ∧ o2 ∈ C

B(t+1)
2 )

Thus, objects active in the source class produce objects active in the target class at the
next point in time. Notice that, the use of status classes allow us to preserve snapshot
reducibility. Indeed, for each pair of objects, 〈o1, o2〉, belonging to a generation rela-
tionships o1 is active in the source while o2 is scheduled in the target. The DLRUS
axiom capturing the production semantics is:

(PROD) R � source : C1 � target : (Scheduled-C2 � ⊕ C2)

The case of transformation is captured by the following semantic equation:

〈o1, o2〉 ∈ RB(t) → (o1 ∈ C
B(t)
1 ∧ o1 ∈ Disabled-C1B(t+1) ∧

o2 ∈ Scheduled-C2B(t) ∧ o2 ∈ C
B(t+1)
2 )

Thus, objects active in the source generate objects active in the target at the next point
in time while the source objects cease to exist as member of the source. The DLRUS
axiom capturing the transformation semantics is:

(TRANS) R � source : (C1�⊕ Disabled-C1)�target : (Scheduled-C2�⊕ C2)

Proposition 4 (Generation: Logical Implications). The following logical implica-
tions hold as a consequence of the generation semantics:

1. A generation relationship, R, is temporary; actually, it is instantaneous.
R � �+¬R � �−¬R
Indeed, let 〈o1, o2〉 ∈ RB(t), then, since o2 �∈ Scheduled-CB(t+1)

2 , then 〈o1, o2〉 �∈
RB(t+1). Since, o2 �∈ C

B(t)
2 , then 〈o1, o2〉 �∈ RB(t−1).

2. The target class, C2, cannot be snapshot (it becomes temporary if total participa-
tion is specified).
R � target :�∗[C2 � (�+¬C2 � �−¬C2)]
Indeed, let 〈o1, o2〉 ∈ RB(t), then, o2 �∈ C

B(t)
2 and o2 ∈ C

B(t+1)
2 .

3. The target class, C2, cannot be disabled.
R � target :¬Disabled-C2
Indeed, let 〈o1, o2〉 ∈ RB(t), then, o2 ∈ C

B(t+1)
2 . Thus o2 �∈ Disabled-CB(t)

2 .
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4. If R is a transformation relationship, then, C1 cannot be snapshot (it becomes
temporary if total participation is specified).
R � source :�∗[C1 � (�+¬C1 � �−¬C1)]
Indeed, C1 will be disabled at the next point in time.

Note that, the Department class which is both the source and target of a transforma-
tion relationship (Figure 6) cannot longer be snapshot (as was in Figure 3) and it must
be changed to temporary (as a consequence of this new timestamp, InterestGroup is
a genuine mixed class).

6.4 Cross-Time Relationships

Cross-time relationships relate objects that are members of the participating classes at
different times. The conceptual model MADS [25] allows for synchronization relation-
ships to specify temporal constraints (Allen temporal relations) between the lifespan of
linked objects. Historical marks are used in the ERT model [23] to express a relation-
ship between objects not existing at the same time (both past and future historical marks
are introduced).

This Section formalizes cross-time relationships with the aim of preserving the snap-
shot reducibility of the resulting model. Let us consider a concrete example. Let “bi-
ography” be a cross-time relationship linking the author of a biography with a famous
person no more in existence. Snapshot reducibility says that if there is an instance (say,
bio = 〈Tulard, Napoleon〉) of the Biography relationship at time t0 (in particular,
Tulard wrote a bio on Napoleon in 1984), then, the projection of Biography at time t0
(1984 in our example) must contain the pair 〈Tulard, Napoleon〉. Now, while Tulard
is a member of the class Author in 1984, we cannot say that Napoleon is member of
the class Person in 1984. Our formalization of cross-time relationships proposes the
use of status classes to preserve snapshot reducibility. The biography example can be
solved by asserting that Napoleon is a member of the Disabled-Person class in 1984.

At the conceptual level, we mark with P,=,F (standing for Past, Now and Future,
respectively) the links of cross-time relationships. Furthermore, we allow for the com-
pound marks 〈P,=〉, 〈F,=〉 and 〈P,=,F〉, while just specifying = doesn’t add any con-
straint (see Figure 7). Assuming that R is a cross-time relationship between classes
C1, C2, then, the semantics of marking the C1 link is:

〈o1, o2〉 ∈ RB(t) → o1 ∈ Disabled-C1B(t) Strictly Past 〈P〉
〈o1, o2〉 ∈ RB(t) → o1 ∈ (C1 � Disabled-C1)B(t) Past 〈P,=〉
〈o1, o2〉 ∈ RB(t) → o1 ∈ Scheduled-C1B(t) Strictly Future 〈F〉
〈o1, o2〉 ∈ RB(t) → o1 ∈ (C1 � Scheduled-C1)B(t) Future 〈F,=〉
〈o1, o2〉 ∈ RB(t) → o1 ∈ (C1 � Scheduled-C1 � Disabled-C1)B(t) Full-Cross 〈P,=,F〉

The corresponding DLRUS axioms are:

R � U1 : Disabled-C1 Strictly Past 〈P〉
R � U1 : (C1 � Disabled-C1) Past 〈P,=〉
R � U1 : Scheduled-C1� Strictly Future 〈F〉
R � U1 : (C1 � Scheduled-C1) Future 〈F,=〉
R � U1 : (C1 � Scheduled-C1 � Disabled-C1) Full-Cross 〈P,=,F〉
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Fig. 7. Cross-Time Relationships

Proposition 5 (Cross-Time: Logical Implications). The following logical implica-
tions hold as a consequence of the cross-time semantics (apart from point 1., we assume
that C1 (C2) participates as either strict past or strict future):

1. If a relationship, R, is snapshot then historical marks reduce to the = mark (i.e., R
is not a genuine cross-time relationships).
See next point.

2. A cross-time relationship, R, is temporary (R � �+¬R � �−¬R).
Let assume that C1 participates as strict past. Thus, if 〈o1, o2〉 ∈ RB(t), then o1 ∈
Disabled-CB(t)

1 and, by (DISAB2), ∃t1 <t s.t. o1 ∈C
B(t1)
1 . Then 〈o1, o2〉 �∈RB(t1).

3. C1 (C2) cannot be snapshot (is temporary if total participation is specified).
R � U1 :�∗[C1 � (�+¬C1 � �−¬C1)]
Let assume that C1 participates as strict past. Thus, if 〈o1, o2〉 ∈ RB(t), then, o1 ∈
Disabled-CB(t)

1 . Then, o1 �∈ C
B(t)
1 while, by (DISAB2), ∃t1 < t s.t. o1 ∈ C

B(t1)
1 .

7 Complexity of Reasoning on Temporal Models

As this paper shows, the temporal description logic DLRUS is able to fully capture
temporal schemas with both timestamping and evolution constraints. Reasoning over
DLRUS knowledge bases, i.e., checking satisfiability, subsumption and logical impli-
cations, turns out to be undecidable [5]. The main reason for this is the possibility to
postulate that a binary relation does not vary in time. Note that, showing that temporal
schemas can be mapped into DLRUS axioms does not necessarily imply that reason-
ing over temporal schemas is an undecidable problem. Unfortunately, [2] shows that the
undecidable Halting Problem can be encoded as the problem of class satisfiability w.r.t.
a temporal schema with both timestamping and evolution constraints.

On the other hand, the fragment, DLR−
US , of DLRUS deprived of the ability to talk

about temporal persistence of n-ary relations, for n ≥ 2, is decidable. Indeed, reason-
ing in DLR−

US is an EXPTIME-complete problem [5]. This result gives us an useful
scenario where reasoning over temporal schemas becomes decidable. In particular, if
we forbid timestamping for relationships (i.e., relationships are just unmarked) reason-
ing on temporal models with both concept timestamping and full evolution constraints
can be reduced to reasoning over DLR−

US . The problem of reasoning in this setting
is complete for EXPTIME since the EXPTIME-complete problem of reasoning with
ALC knowledge bases can be captured by such schemas [6].
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It is an open problem whether reasoning is still decidable by regaining timestamp-
ing for relationships (and maintaining timestamping for classes) but dropping evolution
constraints. We have a strong feeling that this represents a decidable scenario since it is
possible to encode temporal schemas without evolution constraints by using a combina-
tion between the description logic DLR and the epistemic modal logic S5. Decidabil-
ity results have been proved for the sub-logic ALCS5 [13]. But, it is an open problem
whether this result still holds for the more complex logic DLRS5.

8 Conclusions

In this paper we proposed a formalization of the various modeling constructors that sup-
port the design of temporal DBMS with particular attention to evolution constraints. The
formalization, based on a model-theoretic semantics, has been developed with the aim
to preserve three fundamental modeling requirements: Orthogonality, Upward Compat-
ibility and Snapshot Reducibility. The introduction of status classes, which describe
the evolution in the membership of an object to a temporal class, allowed us to main-
tain snapshot reducibility when characterizing both generations and cross-time rela-
tionships. The formal semantics clarified the meaning of the language’s constructors
but it also gave a rigorous definition to relevant modeling notions like: satisfiability
of schemas, classes and relationships; subsumption for both classes and relationships;
logical implication. Furthermore, for each constructor we presented its formalization
together with the set of logical implications associated to such formalization.

Finally, we have been able to show how temporal schemas can be equivalently ex-
pressed using a subset of first-order temporal logic, i.e., DLRUS , the description logic
DLR extended with the temporal operators Since and Until. Overall, we obtained
a temporal conceptual model that preserves well established modeling requirements,
equipped with a model-theoretic semantics where each constructor can be seen as a set
of precise rules, and with the possibility to perform automated reasoning by mapping
temporal schemas (without timestamping on relationships) into temporal description
logic knowledge bases.
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