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This paper presents a semantic foundation of temporal ptuaemodels used to design
temporal information systems. We consider a modeling laggiable to express both times-
tamping and evolution constraints. We conduct a deepesiigation on evolution constraints,
eventually devising a model-theoretic semantics for affaiged model with both timestamp-
ing and evolution constraints. The proposed formalizasaneant both to clarify the meaning
of the various temporal constructors that appeared inti@tiure and to give a rigorous defini-
tion, in the context of temporal information systems, tdom like satisfiability, subsumption
and logical implication. Furthermore, we show how to exprsnporal constraints using a
subset of first-order temporal logic, i. &L Rys, the description logi@ LR extended with
the temporal operatorSinceand Until. We show howDLR s is able to capture the vari-
ous modeling constraints in a succinct way and to perforraraated reasoning on temporal
conceptual models.
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1. Introduction

Most of information modeling research and practice focus @tatic view of the
world, describing data as it should be and is day by day. @umata models and
database systems are meant to capture snapshots of the iarldhe current state
of the database, with the next snapshot replacing the previoe. Yet everybody is
well aware that such an approach only gives a very partial victhe world, neglecting
another essential component, its dynamics, i.e. how thédvemolves as time passes.
Recording the current, past, and possibly predicted fignegshots is the very first step
towards capturing evolution. This functionality is supjeor by temporal information
systems. Data warehousing systems, based on keeping atggredf past snapshots,
have extensively shown that keeping knowledge over timailerthe possibility, for ex-
ample, to analyze evolution trends and develop scenariodéofuture. Such analysis
and forecasting are fundamental components of most deaisaking processes, which
are critical for successfully facing the complexity of tgtaactivities. A second step in
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capturing evolution is enforcing the rules that govern thalgion of data. Rules play
a fundamental role to maintain data consistency. In dataefivay] evolution rules are
expressed as evolution constraints, allowing to contrpliested changes to data and re-
ject those changes that can be recognized as incorrectdading to a new state that is
inconsistent with the previous ones) or inappropriate. (€lganges requested at a time
they are not allowed) or detected as suspicious (e.qg. tiegih an anomalous evolution
that requires additional validation procedures). Furiieps to enrich evolution man-
agement are possible, such as, for example, capturing ésems for change (why the
change happened), the actors of change (who prompted thgehats timing (when
did it happen), as well as any other information related éodiiange (which at this point
becomes like an object of interest from the data manageni@npuwint).

Knowledge of dynamics is intrinsically related to time aw@@ss. Capturing dy-
namics is grounded in the ability to capture time, as propdseresearch on temporal
databasés Abstracting from many details, the most popular time awess mechanism
is timestamping. From the evolution management viewptimestamping supports the
first step above, capturing evolution as a sequence of sogpshormal semantics ap-
proaches have extensively discussed timestamping [415,25,30]. Yet a clear for-
malization of evolution constraints (supporting the setetep) is still missing, despite
the fact that in the literature such constraints have lgrgeken advocated as useful for
modeling the behavior of temporal objects [5,28,19,2BR&27].

Our research aims at building a semantic foundation for teaipdata models.
We eventually devise a model-theoretic semantics for afffeiged conceptual model
with both timestamping and evolution constraints. Thisgudpcuses on evolution con-
straints, more precisely on providing a formal semanticddscribe how objects can
evolve in their lifecycle and how they can be related thraughime. The formaliza-
tion proposed here builds on previous efforts to formaleaapgoral conceptual models.
Namely, we rely on a previous work to define #1R+ model [5], a temporal Extended
Entity-Relationship (EER) model equipped with both a textual and a graphicalasynt
and based on a model-theoretic semant&&R captures timestamping constructors
along with transition constraints. The work reported irs thaper extend§ Ry with
new functionality (hereinafter defined) for evolutionargdeling, namely status classes,
generation relationships and across-time relationstipsther closely related work is
the one of Finger and McBrien [15]. They propose a model+titimformalization for
the ERT model, an EER model with timestamping and across-tetationships (called
H-marked relationships by the authors and introduced iresipus paper by McBrien,
Seltveit and Wrangler [26]). Our proposal modifies the sdiarof across-time re-
lationships as presented in [15] to comply with a crucial elod) requirement, i.e.

! Qutcomes in this domain include many proposals for modetmgporal data, and a large body of con-
sensus on the fundamental underlying concepts. Readerssted in analyses of state of art in temporal
modeling and of results achieved in the area are referragidstirveys [18,24] that still provide valuable
information.

2 EER denotes data models that enrich the standard ER modatiggage withsa links, disjoint and
covering constraints, and full cardinality constraintshitizardinality (0,n) assumed by default.
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snapshot reducibility [25].

The advantage of associating a set-theoretic semanticdatogaage is not only
to clarify the meaning of the language’s constructors bsib & give a semantic def-
inition to relevant modeling notions. In particular, givan interpretation function to
assign a set-theoretic semantics to the (temporal) magetinstructors, we are able to
give a rigorous definition of the notions ofchema satisfiabilityvhen a schema ad-
mits a non empty interpretation which guarantees that tinstcaints expressed by the
schema are not contradictory (similarly we define the natioiclass and relationships
satisfiability); subsumptiorbetween classes (relationships) when the interpretattbns
a class (relationships) is a subset of the interpretatioanather class (relationships)
which allows to check newsA links; logical implicationwhen a (temporal) constraint
is implicitly true in the current schema thus deriving newstpaints. In particular, in
this paper we stress both the formalization of a construartdrthe set of logical implica-
tions associated to such formalization. The obtained &dgjaplications are generally in
agreement with those mentioned in the literature on tenhporeceptual models. Thus,
each constructor’s formalization (together with its agsecl logical implications) can
be seen as a set of precise rules on the allowed behavioreadtebjn particular regard-
ing their evolution in time. Even if we do not address spedifiplementation issues,
these rules can be turned into explicit integrity constgain the form of trigger rules to
be added to the schema specified by the database desigrsegniddbling to check the
validity of user actions involving object evolution. Sintiee rules are the result of a
formal characterization we solve what is in our opinion acer weakness of existing
modeling approaches, i.e., without a rigorous foundati@re is no guarantee that the
proposed model leads to a sound system.

Finally, as a byproduct of the semantic formalization, veé@ahow how (temporal)
modeling constraints can be equivalently expressed by usBubset of first-order tem-
poral logic, i.e., the temporal description loditLRy,s [6]. DLRys is a combination
of the expressive and decidable description IdBI€R (a description logic with n-ary
relationships) with the linear temporal logic with tempdayperatorsSince(S) andUntil
(&) which can be used in front of both concepts and relationg cFioice of extending
DLR is motivated by its ability to give a logical reconstructiand an extension of rep-
resentational tools such as object-oriented and condegateamodels, frame-based and
web ontology languages [10-12,22]. In this paper, wel£&R s both to capture the
(temporal) modeling constructors in a succinct way, andstoneasoning techniques to
check satisfiability, subsumption and logical implicatide show howD LR, s axioms
capture the above mentioned rules associated with eactrectas’s formal semantics
while logical implications betwee®LRR;,s axioms is a way to derive new rules. Even
if full DLRys is undecidable this paper addresses interesting subsPt§®f,s where
reasoning becomes a decidable problem.

The paper is organized as follows. Section 2 discusses ia daiails the two com-
ponents for managing the dynamics of data: timestampingeantiition constraints.
Section 3 shows the modeling requirements that lead us boeldng the rigorous
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definition of our evolution framework. Sections 4 and 5 redaé characteristics of
the DLRys description logic and th€ Ry temporal data model on which we build
our proposal. Section 6 recall the modeling of timestamgimigstraints as provided in
ERvyr. Section 7 discusses the evolution constraints we addnespravides a formal
characterization for them together with a set of logicalliogtions and the correspon-
dentDLRys axioms. Section 8 shows that reasoning on the full-fledgegboeal set-
ting is undecidable but provides useful scenarios whersoréag becomes decidable.
Section 9 concludes the paper.

2. Recording and Controlling Evolution

As stated in the introduction, evolution management regufirst to be able to
record the different states of the database over time, settobe able to automatically
check that each operation resulting in a change conformbeaules that constrain
permissible evolutions. In this Section we analyze the sttp techniques to achieve
such functionality, i.e. timestamping and evolution coaists. The analysis is at the
conceptual modeling level. Implementation aspects agteirant to our goals.

2.1. Timestamping

Timestampings a temporal marking mechanism that, according to somericnit
(e.g., valid time or transaction time [23,31]), positiorstalrelevance on a timescale.
Hereinafter we only consider valid time (i.e. temporal refees driven by the appli-
cation view of evolution), which characterizes the vastarigj of application require-
ments. Timestamping provides the following functionality

e Attribute timestamping: Evolution of values.
The most well known aspect of timestamping is its associatidh attribute values
to keep the evolution of these values in time. For exampiegedtamping allows
keeping the knowledge that the affiliation attribute for éogpe S has value Uni-
versity of Paris$ for the period from 10/1969 to 9/1983, thehiversity of Dijori
from 10/1983 to 9/1988, therEPFL’ from 10/1988 to 2/2010. Timestamped at-
tributes are also called time-varying attributes. Redearctemporal databases has
extensively investigated how attribute timestamping caddfined and implemented
using various data models (e.g., relational, entity-reteship).

e Object and relationship timestamping: Lifecycle.
Similarly, temporal periods can characterize an objecetationships instance as a
whole rather than through its attributes. Here, it is its rhership in a class that is
split into periods according to a given classification ciite. For example, existence
of an employee object in thEmployee class can include periods where the object
is an active member of the class (e.g., the employee is diyrren payroll), peri-
ods where its membership is suspended (e.g., the employeetésmporary leave),
and a period where its membership is disabled (e.g., thecymplhas left the com-
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pany) [14]. These periods together form fiiecycle[28] of the object/relationship
instance in a given class/relationships (more details mengn Section 7.1). The
lifespan of an object/relationship instance describeddh®oral instants where the
instance is an active or suspended member of the class. fébgcle of an instance
is in general a set of time instants corresponding to thostarts where the instance
belongs to the class or relationships. Instances withyldiecare called temporal
instances. It is worth stressing that, from a conceptualpent, a real world ob-
ject may simultaneously qualify in the database for mentiigrisito several classes,
typically within the same is-a hierarchy (e.Baul Carltoncan be seen as simulta-
neously belonging to three classes, e son class, theEmployee class, and the
Manager class) and consequently hold a different lifecycle in edabsc For exam-
ple, the lifecycle ofPaulas a manager obviously covers a lifespan included in the one
of his lifecycle as an employee, which in turn is a subset sfliféspan as a person
(the lifespan inclusion is due to the semantics of the isva ietweerManager and
Employee and betweelmployee andPerson).

Timestamping (both as time-varying attributes and liféegi is obviously op-
tional, i.e. a data model should allow for both temporal arshgoral modeling con-
structors.

2.2. Evolution Constraints

Timestamping enriches the static view of data by allowingprding the states of
the database over a period of time. A temporal databasea(database equipped with
timestamps) may indeed be seen as a sequence of snapskqisy orstant as defined by
the smallest time granularity. Evolution constraints anpased on a temporal database
to control the mechanism that rules dynamic aspects, i.at afte the permissible tran-
sitions from one state of the database to the next one. Iht@gnstraints in general can
be as complex as needed to express rules on applicationttamodels embed some
predefined kinds of static integrity constraints (e.g.queness specifications, cardinal-
ity constraints) but very rarely include constructs to eggsrdynamic constraints. On the
other hand, during modification operations, SQL triggemvigle a construct to compare
the new value replacing the existing value, thus enforcimgelutionary constraint.
For full expressiveness, integrity constraint definitianduages are usually grounded
on first or second order logic. In this paper we will show howletion constraints can
be expressed using a temporal description logic. In thevaflg, we summarize the
main features of evolution constraints.

e Applied to attributes, they are known dgnamic integrity constraintOne example,
simply using arithmetic comparison operators, is the caigtthat the value for
the Salary attribute of an employee can only increase. A second exaigfilee
constraint that the number of values for a multivalued laitg, e.g. thé®iplomas
of a person, can only increase over time. In the latter caseayéhat the attribute is
expandingmeaning that the deletion of values is not allowed.
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e Applied to the lifecycle of an object (relationship instajcevolution constraints are

referred to astatus constraintsThey rule the permissible evolution of an instance’s
membership in a class/relationships along its lifesparr. ekample, an object that
is an active member of a class may become a disabled membez ofass, but not
vice versa [14]. The different statusesljeduled, active, suspended, disapkdtail
different constraints. For example, in [14] if an objectrighe suspended status the
values of its attributes within the suspension period canebiieved but cannot be
modified. We further discuss status issues in Section 7.1.

Applied to objects, evolution constraints are referredstransition constraintand
usually rule the evolution of an object from being member dfas to being member
of another class (see Section 7.2 for more details) [20] eikample, an object in the
Student class may migrate to become an object of Feeulty class or evolve
to also become an object of th@umnus class. Conversely, an object now in the
FullProfessor class cannot become later an object in ABeistantProfessor
class.

Finally, evolution constraints may be embedded in relatigos. Evolution-related
knowledge may indeed be conveyed through relationshipscided to a specific
evolutionary semanticgseneration relationshipflL9] between objects of clagsand
objects of clas8 (possibly equal ta) describe the fact that objectsirare generated
by objects irB. If A andB are temporal classes, this entails that the lifecycle of an
object cannot start before the lifecycle of the relageobject(s). For example, in a
company database, the splitting of a department translaiehe fact that the orig-
inal department generates two (or more) new departmentser@gon relationships
allow backtracking the history of an object and its provearGenealogical search is
an example of popular backtracking, supported by parenthelationships holding
generation semanticsSynchronization relationshipsm MADS [29] enforce Allen
temporal constraints [2] between participating objectsr é&ample, a relationship
WorksFor between temporal classBaployee andProject may hold a synchro-
nization semantics of typeverlapto require that each assignment of an employee
to a project is only valid if there is at least one common pémdere both the em-
ployee and the project are simultaneously in activity. Irstrtemporal data models,
relationships between temporal classes implicitly erd@ overlap synchronization
constraint, as the rules of the model state that the lifecgtthe relationship must be
within the intersection of the lifecycle of the related alife While this often corre-
sponds to application requirements, it is not always the taat a temporal overlap
has to be enforced. Hence in our approach relationshipseleatéemporal objects
do not bear any implicit temporal constraint. They may likidtaneously existing
objects as well as objects whose existences are disjoirgy frtay also link a tem-
poral object with an atemporal one. Instead, if a temporaktaint is required by
the application, the relationship is explicitly enricheithnsynchronization semantics
and the synchronization predicate may be any of the Alleerial-based temporal
predicates, not just overlap. Since in this paper we ded with point-based tem-
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poral constraints we consider a simplified form of synchzation relationships that
can be expressed by point-based temporal constraints. $\h@germacross-time
relationships rather than just relationships, to emphasize that outioaekhips be-
tween temporal objects allow the linked objects not to cstext the time the rela-
tionship is asserted. As an example of an across-time @ekitip consider the case
of a Grandparent relationships which involves a dead grandparent with aifgav
grandchild (see Section 7.3).

3. Modeling Requirements

This Section briefly illustrates the requirements that aegdently advocated in
the literature on temporal data models when dealing withptenal constraints.

e Orthogonality. Temporal constructors should be specified separately atepén-
dently for classes, relationships, and attributes. Deipgndn application require-
ments, the temporal support must be decided by the designer.

e Upward Compatibility. This term denotes the capability of preserving the nontem-
poral semantics of conventional (legacy) conceptual selsewhen embedded into
temporal schemas.

e Snapshot Reducibility. Snapshots of the database described by a temporal schema
are the same as the database described by the same schemeealvteenporal con-
structors are eliminated and the schema is interpretedoatexthy. Indeed, this prop-
erty specifies that we should be able to fully rebuild a terapdatabase by starting
from the single snapshots.

These requirements are not so obvious when dealing witlviegobbjects. The for-
malization carried out in this paper provides a data modiel tbrespect these require-
ments also in presence of evolving objects. In particulehogonality affects mainly
timestamping [28] and our formalization satisfies this @ipie by introducing tempo-
ral marks that could be used to specify the temporal behaficlasses, relationships,
and attributes in an independent way (see Section 6). Upwaargpatibility and snap-
shot reducibility [25] are strictly related. Consideredether, they allow to preserve the
meaning of atemporal constructors. In particular, the rimgpof classical constructors
must be preserved in such a way that a designer could eiteehes to model classical
databases, or when used in a genuine temporal setting teaming must be preserved
at each instant of time. We enforce upward compatibility bing global timestamps
over legacy constructors (see Section 6). Snapshot ratitycib hard to preserve when
dealing with both generation and across-time relatiorsshipere involved object may
not coexist. We enforce snapshot reducibility by a paréictieatment of relationship
typing (see Sections 7.4,7.3).
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Figure 1. Syntax and semanticSsBLRys

4. The Temporal Description Logic

The temporal description logi®LR;,s [6] combines the propositional tempo-
ral logic with Sinceand Until and the (non-temporal) description logizCR [10,8].
DLRys can be regarded as a rather expressive fragment of therfitst-emporal logic
L{since, until} (cf. [13,21)).

The basic syntactical types @LRys are classes(i.e., unary predicates, also
known asconcepty and n-ary relations of arity > 2. Starting from a set oitomic
classeqdenoted byCN), a set ofatomic relations(denoted byRN), and a set ofole
symbols(denoted byl) we hereinafter define inductively (complex) class andtiata
expressions as is shown in the upper part of Figure 1, wherditiary constructors
(M,u,U,S) are applied to relations of the same arity,j, k, n are natural numbers,
1 < n, andj does not exceed the arity &

The non-temporal fragment @L7R,s coincides withDLR. For both class and
relation expressions all the Boolean constructors ardadolai The selection expression
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U;/n : C denotes am-ary relation whose argument nam&d (i < n) is of type C,

if it is clear from the context, we omit and write(U; : C'). The projection expres-
sion Hgk[Uj]R is a generalisation with cardinalities of the projectioregior over the
argument named’; of the relationR; the plain classical projection Ezl[Uj]R. Itis
also possible to use the pure argument position versioredatiguage by replacing role
symbolsU; with the corresponding position numbeérdo show the expressive power of
DLRys we refer to the next Sections whePeCR;,s is used to capture various forms
of temporal constraints.

The model-theoretic semantics DILR;.s assumes a flow of timé& = (7, <),
where, is a set of time points (or chronons) arda binary precedence relation on
7,, is assumed to be isomorphic (@, <). The language 0DLRys is interpreted in
temporal model®ver 7, which are triples of the forn = (7, A%, Z®)), whereA” is
non-empty set of objects (tlmainof 7) and-Z(Y) aninterpretation functiorsuch that,
for everyt € T (in the following the notatiort € 7 is used as a shortcut fore 7,),
every clas’, and everyn-ary relationR, we haveC*®) ¢ AT and RT®) C (AT)".
The semantics of class and relation expressions is definie ilower part of Figure 1,
where(u,v) = {w € T | u < w < v}. For classes, the temporal operators (some
time in the future)® (at the next moment), and their past counterparts can beedefin
viald andS: OTC =TUC, ®C = LU C, etc. The operatorsl™ (always in the
future) andO~ (always in the past) are the duals ©f (some time in the future) and
<~ (some time in the past), respectively, i85C = -OT=C andO~C = -0~ -C,
for both classes and relations. The operatdrgat some moment) and its dual (at
all moments) can be defined for both classes and relatiofs@s= C L OTC LUO~C
andO*C = CnotC OO, respectively.

A knowledge baseés a finite sett of DLRys axioms of the formC; C (5 and
Ry C Ry, with Ry andR5 being relations of the same arity. An interpretatibpatisfies
C1 € Cy (Ry C Ry) if and only if the interpretation ot’; (R;) is included in the
interpretation ofC (R,) at all time, i.e.CF" ¢ ¢Z® (RF® ¢ RIYy forall ¢ €
7. Variousreasoning servicesan be defined irDLRys. A knowledge basey, is
satisfiableif there is an interpretation that satisfies all the axiom&iin symbols,

T = X). AclassC (or relation R) is satisfiableif there isZ such thatCZ®) = ()

(respectively,RZ() £ (), for some time point. A knowledge base;, logically implies
an axiom,C; C Cy, and writeX = C; C Oy, if we haveZ E C; C C, whenever
7 E X. In this latter case, the conceff is said to besubsumedy the concept’s in

the knowledge baskE. A conceptC is satisfiable, given a knowledge baseif there
exists a modef of ¥ such thattZ(®) =+ () for somet € T,i.e. X £ C C L.

While DLR knowledge bases are fully able to capture atemporal EER
schemas [10,11]—i.e., given an EER schema there is an atjsfiableDLR knowl-
edge base—in the following Sections we show HPWR;,s knowledge bases can cap-
ture temporal EER schemas with both timestamping and ewalgbnstraints.
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Figure 2. The compangRvr diagram

5. The Temporal Conceptual ModelE Ry

In this Section, the temporal EER mod&R 1 is briefly introduced (see [4,5] for
full details). ERyr supports timestamping for classes, attributes, and oelstips.
ERyr is equipped with both a textual and a graphical syntax aloitg & model-
theoretic semantics as a temporal extension of the EER smsmdh2]. The formal
foundations of€ Ry allowed also to prove a correct encoding&Ry schemas as
knowledge base i LRys [5].

An ERyr schemais atupleZ = (£, REL, ATT, CARD, ISA, DISJ, COVER, S, T, KEY),
such that:L is a finite alphabet partitioned into the safs{classsymbols),A (attribute
symbols), R (relationship symbols), ¢/ (role symbols), andD (domain symbols).
ATT is a function that maps a class symbol ¢nto an A-labeled tuple overD,
ATT(C) = (Ay : Dy,..., A : D). RELIs a function that maps a relationship symbol
in R to ani/-labeled tuple ove€, REL(R) = (U; : C4,..., Uy : Cy), andk is thearity
of R. cARD s a functionC x R xU — N x (NU{oo}) denoting cardinality constraints.
We denote withcMIN(C, R, U) andcMAX (C, R, U) the first and second component of
CARD. In Figure 2,CARD(TopManager, Manages,man) = (1, 1). ISA is a binary rela-
tionshipisa C (CxC)U(R xR). ISA between relationships is restricted to relationships
with the same arityisA is visualized with a directed arrow, elenager ISAEmployee
in Figure 2.DISJ, COVER are binary relations ovel° x C, describing disjointness and
covering partitions, respectivelnisyis visualized with a circledd” and cCoveR with
a double directed arrow, e.@epartment, InterestGroup are both disjoint and they
coverOrganizationalUnit. The seC is partitioned into: a sel® of Snapshot classes
(the S-markedclasses in Figure 2), a sét/ of Mixed classegthe unmarkedclasses
in Figure 2), and a set’ of Temporary classefthe T-markedclasses in Figure 2). A
similar partition applies to the s&. s, T are binary relations ovef x .4 containing,
respectively, the snapshot and temporary attributes afss¢be&, T marked attributes
in Figure 2). KEY is a function that maps class symbolsdro their key attributes,
KEY(C) = A. Keys are visualized as underlined attributes.

The model-theoretic semantics associated with &f&, modeling language
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adopts thesnapshact representation of abstract temporal databases and tehgoora
ceptual models [13]. Following the snapshot paradigm, the 8f time7 = (7,, <),
where7, is a set of time points (or chronons) ardis a binary precedence relation on
7,, is assumed to be isomorphic to eith@, <) or (N, <). Thus, standard relational
databases can be regarded as the result of mapping a terdataiadse from time points
in 7 to atemporal constructors, with the same interpretatiocooktants and the same
domain.

Definition 5.1 (ERyr Semantics) Let X be anERy 1 schema. Aemporal database
statefor the schem& is a tupleB = (7, ABU AB, B®)), such thatAB is a nonempty
set of abstract objects disjoint from5; A, = Uy, .p AF is the set of basic domain

values used in the scherda and-2®) is a function that for eache 7 maps:

e Every basic domain symbd); into a seth(t) = A%i.

e Everyclas€ to a setCB() C AB—thusobjectsare instances of classes.

e Every relationshipR to a setRE(") of ¢{-labeled tuples oveAP—i.e., letR be an
n-ary relationship connecting the classes. .., C,, REL(R) = (U; : C1,..., U, :
Cy,),thenyr € RBY — (r = (U :01,...,Up s 0y) AV €{1,...,n}.0; € C’iB(t)).
We adopt the convention; : o1,...,U, : o,) = (01, ...,0,), Whenl{-labels are
clear from the context.

e Every attributeA to a setAB() ¢ AB x AB such that, for eact’ € C, if ATT(C) =
(A; : Dy,..., A, : Dy), then,o € CB® — (Vi € {1,...,h},3a;. {0,a;) €
Af(t) AVa;.{o,a;) € ABY g, € A%i).

7
B is said degal temporal database staifet satisfies all of the constraints expressed in

the schema (we don't report here the semantics for temporatints since they will
be discussed in details in the next Sections):

e ForeachCy,Cy € C, if Cy 1sA Cs, then,CP® ¢ ¢5®),

e ForeachR, Rs € R, if Ry ISA Ry, then,R°") ¢ RE®,

e For each cardinality constraiactarD(C, R, U), then:
o€ CBY — cMIN(C, R, U) < #{r € RBY | r[U] = 0} < cMAX(C, R,U).
e ForC,C4,...,C, €C,if {C4,...,C,} DISIC, then,
Vie {1,...,n}.Ci1SAC AVj € {1,...,n}, j #i.00D ncPY = .
e ForC,Cy,...,C, €C,if {C4,...,C,} COVERC, then,
Vie{l,...,n}.Ci1saC ACBO = B,
e ForeachC € C, A € A such thakey(C) = A, then,A is a snapshot attribute—i.e.
(C, A;) € s—andVa € AB.#{oc CBY | (0,a) € ABW} < 1.

3 The snapshot model represents the same class of tempabadas as the so calléahestampmodel [24,
25] which adds a temporal attribute to each relation [13].
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Given such a set-theoretic semantics we are able to rigigrdaiine some relevant mod-
eling notions such as satisfiability, subsumption and dédwn of new constraints by
means of logical implication.

Definition 5.2. Let > be a schema(' € C a class, and? € R a relationship. The
following modeling notions can be defined:

1. C (R) is satisfiableif there exists a legal temporal database stfer X such that
CB®) £ ¢ (RB® £ @), for somet € T

2. Y is satisfiableif there exists a legal temporal database stafer > (B is also said
amodelfor X);

3. (1 (Ry) is subsumedby C5 (R2) in X if every legal temporal database state ¥ois
also a legal temporal database statedpisa C5 (R 1ISA Rs);

4. A schemay’ is logically impliedby a schema: over the same signature if every
legal temporal database state ois also a legal temporal database state>for

In the following Sections we will show how temporal databatsdes 3, support
defining the semantics of timestamping and then how to extetid ER 1 and 5 to
capture evolution constraints.

6. Timestamping

ERyr is able to distinguish betweesnapshotconstructors—i.e. constructors
which bear no explicit specification of a given lifespan [28jhich we convey by
assuming a global lifespan (see Section 7.1) associateddo @&f their instances—
temporaryconstructors—i.e. each of their instances has a limitegspian—ormixed
constructors—i.e. their instances can have either a glmbaltemporary existence. In
the following, a class, relationship or attribute is callechporal if it is either temporary
or mixed. The two temporal marks, (snapshot) and (temporary), introduced at the
conceptual level, capture such temporal behavior. The steBaof timestamping can
now be defined as follows:

0cCBO L cT.ocCB) Snapshot Cl ass

0eCBO — ¢ £t.og CBE) Tenporary C ass

re RB® v’ e T .re RBM) Snapshot Rel ati onship
re RB® — 3¢/ £t.rg RBW) Tenmporary Rel ationship

(0 € CBD A (0,a;) € APDY S vt/ € T (0,a;) € ABY) Snapshot Attribute
(0 € CBO A (0,a;) € APYY 3 £ (0, a;) ¢ APY) Tenporary Attribute

Note that, the semantics for attribute timestamping respie ERyr syntax where
attributes are defined snapshot or temporary only locally, w.r.t. the classes they
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are attached with. Timestamps for both classes and reddtijos are captured by the
following DL Ry s axioms:

C C (O0*C) Snapshot Cl ass

C C (0*=C) Tenporary C ass

RC (O*R) Snapshot Rel ationship
RC (O*-R) Tenporary Rel ationship

Considering attributes we first remember that they are cagtin DLR as binary
relationships. Then, for each attributd, € A, the following DLR axiom holds:
A C From: T MTo: T. Thus, if (A4,C) € sor (A,C) € T then the following
DLRys axioms hold, respectively:

C C —J[From](AM<¢*—A) Snapshot Attribute
C C —3J[From|(O*A) Tenporary Attribute

The distinction between snapshot, temporary and mixedteatsrs has been
adopted inERy to avoid overloadingthe meaning of un-marked constructors. In-
deed, the classical distinction between temporal (usirggrgooral mark) and atemporal
(leaving the constructor un-marked) constructors may bieiguous in the meaning of
un-marked constructors. In this classical setting, unkingris used to model both truly
atemporal constructors (i.e., snapshot classes whosmaest lifespan is always equal to
the whole database lifespan), as well as legacy consteuffimrupward compatibility
where the constructor is not marked as temporal becauseitiieab data model did not
support the temporal dimension. The problem is that, dukdadnteraction between the
various components of a temporal model, un-marked constsican even purposely
represent temporary constructors. As an example, think tfainvolving a temporary
entity (as superclass) and an un-marked entity (as a sspcl8sice a designer cannot
forecast all the possible interactions between the (teatpoonstraints of a given con-
ceptual schema, this ultimately means that in the clasamaloactatemporality cannot
be guaranteednd this is true even for the upward compatibility.

ERyr explicitly introduces a snapshot mark to force both atemlitgrand up-
ward compatibility. As logical implication is formally defed inERy 1 (see Defini-
tion 5.2), missing specifications can be inferred and inigaler a set of logical im-
plications hold in the case of timestamping. For instanoefigure 2, aManager
is temporary bothAreaManager and TopManager are temporary, too. Because
OrganizationalUnit iS snapshot and partitioned into two sub-clasPepartment
which is snapshot anthterestGroup, the latter should be snapshot, too. As the tem-
porary clas§opManager participates in the relationshipanages, then the latter must
be temporary, too. The result of these deductions is givefigare 3 (see [5] for an
exhaustive list of deductions involving timestamps). Nibtat, when mapping Ry
into a relational schema both temporary and un-marked atsts are mapped into a
relation with added timestamp attributes, while snapsbaostructors do not need any
additional time attribute (for full details on tl#&R 1 relational mapping see [1]).
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Figure 3. The company diagram with deductions on timestamps

7. Formalizing Evolving Objects

Evolution constraints contribute in modeling the tempdrahavior of an object.
This Section discusses in details the aspects of evolufianadeling that we take into
account in our work. We first recalls the basic concepts thae been proposed in the
literature to deal with evolution, and their impact on theuléng conceptual language.
Then we propose a formalization of the basic temporal casdéyat are at the root of
advanced conceptual temporal models: lifecycle with faatuses (scheduled, active,
suspended, disabled); transitions of objects in diffectagses along their whole lifecy-
cle; generation and across-time relationships asseniolgiteon constraints on objects
linked by temporal relationships. These are genuine exteaso the€ Ry model that
need to be taken into account in proposing a formalizatisethaon a model-theoretic
semantics and a correspondent set of axioms expressedthsitgmporal description
logic DLRys.

We aim both to present a formal characterization of the teaimmnceptual mod-
eling constructors for timestamping and evolution, andge ilne reasoning capabilities
of DLRys to check satisfiability, subsumption and logical implioas over temporal
schemas. The model-theoretic semantics we illustrate foerthe various evolution
constraints and the corresponding sefR;,s axioms are an extension of the one
developed for the mode&l Ry, introduced in Section 5. The validity of the proposed
formalization is justified by providing a set of logical inigations which are in agree-
ment with the derivations mentioned in the literature ongeral data modeling.

7.1. Status Classes

Status[28,14] is a conceptual notion associated to temporal etaas a compo-
nent of the description of the lifecycle of their objectsrdtords the evolving state of
membership of each object in the class. Following [28]ustainodeling includes up to
four different statuses, and the allowed transitions betwbem:

e Scheduled. An object is scheduled if the planning of its existence witthie class
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has to be recorded while its membership in the class will belgome effective (ac-
tive) some time later. For example, if a new project is appdobut will not start until

a later date the given project can be created as a new objéu Broject class,
with status scheduled for the valid time interval startihnghe date of the approval
decision and ending at the expected launching date. Eaeldsigu object will even-
tually become an active object. A scheduled object beaiddtgtity (has an oid), but
its attribute values do not need to be present. Supportiohedsiled status avoids the
introduction of a new time type, the decision time [14], antbsthes the processing
of lifecycle queries.

e Active. The status of an object is active if the object is a full mendfe¢he class (and
therefore conforms to its type). For example, a currentigodmg project is an active
member, at time now, of theroject class. Being active entails that the object can
undergo any operation (retrieval, update, deletion, ,etm)ess otherwise specified
by the application.

e Suspended. This status qualifies objects that exist as members of thss,claut
are to be seen as temporarily inactive members of the clasggBnactive means
that the object cannot undergo some operations. For exanmp[@4] no change
to the values of the attributes of an object is allowed in teequls the object is
suspended. An employee taking a temporary leave of abssmredaxample of what
can be considered as a suspended employee. Only activesobgecbe suspended.
A suspended object was in the past an active one.

e Disabled. This status is used to specify that the object’'s membersitipe class has
expired, meaning that the object is no more accessible inrmalanode of opera-
tion. While logically deleted, disabled objects are keptdfome specific application
purposes, e.g. statistical analyses. When the object eEcdefinitely irrelevant for
the application, it is killed, rather than disabled, andagjgears from the class. A
disabled object was in the past an active member of the ciasslfject cannot be
created in the disabled status). It can never again becoroe-digabled member of
that class (e.g., an expired project cannot be reactivated)

These four statuses intuitively correspond to a behaviommefamiliar with in
the real world. They are application-independent notidreeir choice has been driven
by the abstract view of what an object behavior may be in texfmaembership into a
class. For specific applications specific classes may b@gediwith a simplified form
of lifecycle. For example, a lifecycle of a given class maydedined as not including
the scheduled status, or not including the suspended statualready mentioned, the
simplest lifecycle consists of a single period with actitetiss (which would be the case
for atemporal objects, should they be given a lifecycle).

A critical issue is deciding the operational semantics efdtatuses. Following the
modification control approach in [14], statuses differ inre of the operations that are
allowed on objects in each status. Obviously active obgetgully operational, i.e. they
can undergo any operation. But should modification of suspembjects be inhibited,
as proposed in [14]? What if, for example, while an employesuispended the cate-
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gorization scheme of the company changes and the suspenggdyee now qualifies

for a different category? Should the change be performethtosuspended employee
as for all other employees, or should the change be storeonire $og of changes for

this employee and activated only at the moment the empl@@myers its active status?
The latter policy suggests an analogy between suspendedtslgnd site failure in a

network system. But in network systems objects in a faililtg sannot be retrieved,

while in [14] suspended objects can be retrieved. In summagycould always find an

example where the application requirements include theilpiisy to update an object

whatever its status is. Consequently, a generic approadidi@ave to the designer to
decide which restrictions to full operational semanti¢sany, should characterize the
non-active statuses. Also, the manipulation languageldraiow predicates on status
to be included in the formulation of a query.

A similar difficult issue is to decide to what extent, if anfietstatus of objects
constrains the relationships holding between those abjébbst data models only allow
creation of relationships between objects in the activieistat the time the relationship
is created. Our discussion on across-time relationshipwshowever that applications
may require the capability to involve suspended/scheddiabled objects in the cre-
ation of a new relationship (see Sections 7.4,7.3).

To conclude this discussion on statuses, it is worth najidimat application-
oriented lifecycles are frequently found and may be orgahiasing the same mecha-
nism as for the application-independent lifecycle. Fomepi, in a supplying company
objects in a clasBrder can be categorized as standing-order, registered-onatet-m-
process, billed-order, paid-order, order-in-deliverglivcered-order. The designer could
then specify the transition between these "statuses” thegevith the corresponding
transition rules, and let the system enforce the consigtehorders’ evolution with the
stated constraints. It would be worth investigating thesjimlity to devise a formalism
that handles the definition and management of applicatfenyicles in a similar way as
it handles the predefined lifecycle we discussed above. HBsiig beyond the scope of
this paper. Notice that, conversely, having applicatimhependent lifecycles associated
to objects and monitored by the system has two definite adgasta) it allows relying
on standard operators (e.g. activate, suspend, reaciiiséble) for status manipulation,
andb) it allows a simpler definition of both generation and syncization relationships
since the system knows the synchronization predicatesafiy to lifecycles.

Formalization. Let C be a temporal (i.e., temporary or mixed) class. We captare st
tus transition of membership i@ by associating ta” the following status classes
Scheduled-C, Suspended-C, Disabled-C. In particular, status classes are represented
by the hierarchy of Figure 4 (whex€ may also be mixed) that classifiésinstances
according to their actual status. To preserve upward cdhilitgtwe do not explicitly
introduce an active class, but assume by default that the wérte class itself denotes
the set of active objects, i.elctive-C = C. We can assume that the status classes are
created automatically by the system each time a class iadeldemporal. Thus, design-
ers and users are forced neither to introduce nor to mangsiatus classes. They only
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Figure 4. Status classes.

have to be aware of the different statuses in the lifecyclanobbject. Note that, since
membership of objects into snapshot classes is globabhjects are always active, the
notion of status classes does not apply to snapshot classes.

To capture the intended meaning of status classes, we defihecaconstraints
and then prove that such constraints capture the evolvingui@ of status classes as
described in the literature [28,14]. First of all, disjoiass andsA constraints between
statuses of a clags can be described as illustrated in Figure 4, whgrg is supposed
to be a snapshot class which represents the universe oéabshjects (i.e.Top?®) =
AB). Other than hierarchical constraints, the intended séinsaof status classes induces
the following rules that are related to their temporal bétrav

(ExisTs) Existence persists until Disabled.
0 € Exists-CBY) — v’ > t.(o € Exists-CB() v o e Disabled—CB(t/))
(DisABl) Disabled persists.
o0 € Disabled-CB®) — V¢’ > t.0 € Disabled-cB()
(Di1saB2) Disabled was Active in the past.
0 € Disabled-CB8(®) — 3¢’ < t.o € ¢BH)
(SusP Suspended was Active in the past.
0 € Suspended-CB(®) — I’ < t.0 € cBE)
(ScH1) Scheduled will eventually become Active.
0 € Scheduled-CB®) — 3¢’ > t.0 € cBH)
(ScH2) Scheduled can never follow Active.
0eCB®) V' > t.0 & Scheduled-cB(*)

As an example of a rule expressing the semantics associatibe different statuses,
the following rule formally expresses the suggestion frdd] [to make unchangeable
the attributes of suspended objects, the unchangealtiityirgy at the time instant the
object becomes suspended. l4ean attribute of a clas§' then:

(FREEZ) Freezing attributes of suspended classes.
o€ Suspended-CB(t) A {o,a) € AB®) _, (0,a) € AB(t-1)

DLRys axioms are able to fully capture the hierarchical constsaif Figure 4 (see [5]
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for more details). Moreover, the above semantic equatiomsaptured by the following
DLRys axioms:

(ExISTS) Exists-C C O1(Exists-C LI Disabled-C)
(DisAB1)Disabled-C = O Disabled-C
(DisAB2)Disabled-CC &~C

(SusP) Suspended-CLC &7C

(SCH1) Scheduled-CC &TC

(SCcH2) ¢ LC O"—-Scheduled-C

(FREEZ) Suspended-C C —J[From|(AM S —4)

As a consequence of the above formalization, schedulediaalled status classes can
be true only for a single interval, while active and suspéndasses can hold for set of
intervals (i.e., an object can move many times back and footn active to suspended

status and vice versa). In particular, the following set@fmules can be derived.

Proposition 7.1 (Status Classes: Logical Implicationsiiven the above formaliza-
tion of status classes, the following logical implicatidndd (each logical implication is
described by a natural language sentence and the corrésgdndRR;,s axiom):

(DisaB3) Disabled will never become active anymore.
Disabled-C C Ot—C

(ScH3) Scheduled persists until active.
Scheduled-C C Scheduled-CU/ C
Let o € Scheduled-CB(*), theno € Exists-CB(*) and, by (®H1), 3t; > tg.0 €
CB®) Let assume thaty = min{t € T | t > to ando € CB®}. Now, by
(EXISTS), Vt'.tg < t' < ti.0 € (Exists-C L Disbled-C)B(*). On the other hand,
by (DIsAB3), o ¢ Disbled-CB(), By the “min” choice oft;, o ¢ CB) and also
o & Suspended-CB(), Thus, V' .ty < t' < t;.0 € Scheduled-CB(*),
Together with axiom (8H2), we can also conclude th&theduled-C is true just on
a single interval.

(ScH4) Scheduled cannot evolve directly to Disabled.
Scheduled-C C @ —Disbled-C
Let o € Scheduled-CB(t) then by (®H1), 3t > tg.0o € CB®). Thus, by
(DISAB3), 0 & Disbled-CBto+1),

Status classes are central in describing the evolutionahawor of objects. In
the following we show the adequacy of the semantics assaciat status classes to
describe:a) the behavior of temporal classes involvedsa relationshipsp) the notions
of lifespan, birthanddeathof an object. In the next Sections status classes will be tiosed
model: ¢) the object migration between classdpthe relationships that involve objects
existing at different times (both generation and acrase-tielationships).

Isa vs. status.When anisa relationship is specified between two temporal classes, say
B 1sA A, then the following constraints must hold between the retspestatus classes:
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(1sal) Objects active inBB must be active .
BC A

(1sa2) Objects suspended B must be either suspended or activedn
Suspended-B C Suspended-A LI A

(1sa3) Objects disabled iB must be either disabled, suspended or activd.in
Disabled-B L Disabled-A Ll Suspended-A LJ A

(1sad) Objects scheduled iB must exist inA.
Scheduled-B C Exists-A

(1sa5) Objects disabled im, and active inB in the past, must be disabled in
Disabled-A1 <7 B C Disabled-B

The formalization of status classes provided above is nific&nt to guarantee
properties KSA1-5Y. We need to further assume that the system behaves undenthe
poral ISA assumptionEach time ansA between two temporal classes holdsi§a A),
then anisA between the respective existence status clagses{s-B ISA Exists-A)
is automatically added by the system. Now, we are able toeptioat points IGA1-5)
above are entailed by the semantics associated to staiseslander the tempornala
assumption.

Proposition 7.2 (Status Classes V3$sA: Logical Implications).Let A, B be two tem-
poral classes such thatisa A, then propertiesi$Al-5) are valid logical implications.

(1sal) Objects active inBB must be active .
Obviously true sincd3 ISA A holds, and bot, B are considered active.

(1sa2) Objects suspended B must be either suspended or activedn
Let o € Suspended-B5(") sinceSuspended-B ISA Exists-B, and (by temporal
ISA assumptionExists-B ISA Exists-A, then,o € Exists-AB(t0)  On the other
hand, by (8sP), 3t; < to.o € BB®) and thenp € AB"). Then, by ($H2),
o ¢ Scheduled-AB(0), Thus, due to the disjoint covering constraint betweervacti
and suspended classes, either AB() or o € Suspended-AB(t0),

(1sa3) Objects disabled iB must be either disabled, suspended or activd.in
Leto € Disabled-BB(0) then, by (DsAB2), 3t; < tg.0 € BB, By Bisa A and
A ISA Exists-A, then,o € Exists-AB(1), By (ExisTs) and the disjointness between
existing and disabled classes, there are only two pogibikt point in timey > ¢4:

1. o € Exists-AB(*0) and thus, by (8H2), 0 € AB() or o € Suspended-AB(t0);
or

2. 0 € Disabled-AB(to),

(1sA4) Objects scheduled iB must exist inA.
Let o € Scheduled-BB(*0) then,o € Exists-B5(0), Thus, by the temporaka
assumptionp € Exists-AB(0)  As a further logical implication, it also follows that
objects scheduled iB cannot be disabled iA.

4 We let the reader check that points 2,4 and 5 are not nedgssaei.
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(1sab) Objects disabled im, and active inB in the past, must be disabled iR
Leto € Disabled-AB(0) ando € BB(") for somet; < to, then,o € Exists-BB(1),
By (ExisTS) and the disjointness between existing and disabled dagbere
are only two possibilities at tim¢, > t;: eithero € Exists-B5() or o ¢
Disabled-BB(0), By absurd, leb € Exists-BB(%0) then by temporalsa assump-
tion, o € Exists-AB(0) which contradicts the assumption that Disabled-AB(t0).

Lifespan. Here we define the lifespan of objects belonging to a temmaak, together
with other related notions. The lifespan of an object w.atclass describes the tem-
poral instant where the object can be considered a member of the class. thdth
introduction of status classes we can distinguish betwieefailowing notions of lifes-
pan: EXISTENCE., LIFESPANg, ACTIVE¢, BEGINg, BIRTHo and DEATH. They are
functions which depend on the object membership to thestEasses associated to a
temporal clasg’.

The existence timef an object describes the temporal instants where the tobjec
is either a scheduled, active or suspended member of a glasa. cMore formally,
EXISTENCESPAN: : AB — 27 such that:

EXISTENCESPANG (0) = {t € T | 0 € Exists-cB®)}

Thelifespanof an object describes the temporal instants where the tolsjen active
or suspended member of a given class (thuseSPAN¢ (0) C EXISTENCESPANG (0)).
More formally, LFESPANc : AB — 27 such that:

LIFESPANG (0) = {t € T | 0 € ¢B®) U Suspended-cB*)}

Theactivesparof an object describes the temporal instants where the tibjan active
member of a given class (thusCAIVESPANc (0) € LIFESPANG (0)). More formally,
ACTIVESPANC : AB — 27 such that:

ACTIVESPANG (0) = {t € T | 0 € CB®}

The functions EGINc and DEATH associate to an object the first and the last appear-
ance, respectively, of the object as a member of a given,dldste BIRTH- denotes
the first appearance as an active object of that class. Mamafty, BEGIN¢, BIRTH,
DEATH¢ : AB — 7, such that:

BEGIN¢(0) = min(EXISTENCESPAN( (0))
BIRTHc(0) = min(ACTIVESPANG (0)) = min(LIFESPANG(0))
DEATHc(0) = max(LIFESPANG (0))

We could still speak of existencespan, lifespan or actaedpr snapshot classes, but in
this case EISTENCESPAN( (0) = LIFESPAN¢ (0) = ACTIVESPANG (0) = 7.

® Note that the semantics 6fRy 1 allows for set of intervals—usually mentioned as tempolanents in
the literature—as generic lifespan of an object.
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Figure 5. Transitions employee-to-manager and areaporanager

7.2. Transition

A database object represents a real world object seen as hanefrthe class the
object belongs to. As the real world evolves, the same reddvadject may loose its
quality as a member of the class and may acquire other oriad@itmemberships in
other classes defined in the database. For example, thefereraisms allowingJohn
to be simultaneously represented as a member of theRiadsyee and as a member of
the classTennisPlayer, and later to become a member of the clssager. In other
words, objects can dynamically show up and move around gfroloe classes defined
in a schema.

Transitionsconstraints [20,28] bear specific transition semanticeyThiave been
introduced to model the phenomenon caltdgect migration A transition records ob-
jects migrating from asourceclass to aargetclass. At the schema level, it expresses
that the instances of the source class nmagrate into the target class. Two types of
transitions have been considerglynamic evolutionwhen objects cease to be instances
of the source class to become instances of the target ctadyaamic extensigrwhen
the creation of the target instance does not force the relnabtiae source instance. For
example, considering the company schema (Figure 3), if we tearecord data about
the promotion of area managers into top managers we carfyspedynamic evolution
from the class\ireaManager to the clasSopManager. We can also record the fact that
a mere employee becomes a manager by defining a dynamic iextéresn the class
Employee to the clas$lanager (see Figure 5).

Finally, transitions are particularly relevant in the ca$@ot directly instantiable
classes. A class is said not directly instantiable if cozatif objects with a new oid is not
allowed in the class. In this case, transition constraiefind the trajectory of objects
in time and consequently rules object’s evolution as farxastence in a not directly
instantiable class is concerned.

Regarding the graphical representation, as illustratddgare 5, we use a dashed
arrow pointing to the target class and labeled with eith&ex or DEv denoting dynamic
extension and evolution, respectively.

Formalization. Specifying a transition between two classes means #)atfe want to
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keep track of such migratiory) Not necessarily all the objects in the source or in the
target participate in the migration) When the source class is a temporal class, migration
only involves active or suspended objects—thus, neitteatdiéd nor scheduled objects
can take part in a transition.

In the following, we present a formalization that satisfies above requirements.
Notice that transitions are constrained by the fact that domsider single objects. For-
malizing dynamic transitions as relationships would reisubinary relationships linking
the same migrating object twice, once as an instance in ireselass and once as an
instance in the target class. Rather than defining a rekdtiprtype with an equality
constraint on the identity of the linked instances, we re@né transitions by introducing
a new class denoted by eitheEXc, ¢, Or DEV¢, ¢, for dynamic extension and evolu-
tion, respectively. More formally, in case oflgnamic extensiobetween classes;, Co
the following semantic equation holds:

o€ DExg(f?)C2 — (0 € (Suspended-C; 81 U, BW) Ao & B0 Ao e 025(

t+1))
And the equivalenD LR, s axiom is:
(DEX) DEX¢,.c, C (Suspended-Cy LICq) M —=Cy M D Cy

In case of alynamic evolutiorbetween classes;, C; the source object cannot remain
active in the source class. Thus, the following semanti@ggu holds:

o€ DEvg(lt,)CQ — (0 € (Suspended-C; 81 U BV Ao & 51 A
o€ CBUTD o g BEHD)
And the equivalenDLR;,s axiom is:
(DEV) DEV¢,,c, T (Suspended-Cy LICy) MM —Co M P (Co M -CY)

Finally, we formalize the case where the sour€g)(and/or the target,) totally par-
ticipate in a dynamic extension/evolution (at schema lexeehdd mandatory cardinality
constraints omEX /DEV links):

oeCf(t) — 3t > toe DExggt/gQ Source Total Transition
0cC8"W — 3’ < tocpext),  Target Total Transition
oeCf(t) — 3t > toe DEvggt,gQ Source Total Evol ution
0cC8" = 3t < toepevh)  Target Total Evolution

The above cases are captured by the followingR;,s axioms, respectively:

(STT) C1 C OFTDEXey .0 Source Total Transition
(TTT) C2 C O DEX(y 0 Target Total Transition
(STE) C1 C OFDEVe, 0y Source Total Evolution
(TTE) C2 C OTDEV(, 0 Target Total Evol ution

Note that, either TT or TTE are appropriate constraints to describe the behavior of not



A. Artale, C. Parent, S. Spaccapietra / Evolving Objectseamporal Information Systems 23

directly instantiable classes. An interesting set of cqusaces of the above proposed
modeling of dynamic transitions are shown in the followinggmosition.

Proposition 7.3 (Transition: Logical Implications).The following logical implica-
tions hold as a consequence of the transition semantics:

1. The classe®EX¢, ¢, andDEV(, ¢, are temporary classes; actually, they hold at
single time points.
DEX¢,,c, T @ - DEX(y 0, 1O ~DEX(, ¢, (Similar for bEve, ¢,)
Indeed, leto € DExggt)CQ, theno ¢ C5® ando € CZ"™ | thuso ¢ pExZ'HY

C1,Ca
ando ¢ DEX'.). Note that, the time such thab € DEXg. 1., records when the

transition event happens. Similar considerations apply v ¢, ¢, .

2. Objects in the class@sEX ¢, ¢, andDEV(, ¢, cannot be disabled aS5.
DEX¢, ¢, T —Disabled-C, (similar forbEve, ¢,)
Indeed, sinceDEXc,,c, T @ Cy, i.e. objects INDEXc, ¢, are active inCs
starting from the next point in time, then by propertyi$@B3), DEXc, c, T
—Disabled-C,. The same holds fawEve, ¢, .

3. The target clas€’; cannot be snapshot (it becomes temporary in case of both
and TTE constraints).
DEXcy,c; © OF[C2 M (0T =Co U O™ 2Cy)]
Indeed, from ([EX), DEX¢, ¢, & —Co I D C, (the same holds fabEve, ¢,).

4. As a consequence of dynamic evolution, the source adlasszannot be snapshot
(and it becomes temporary in caseSafe constraints).
DEV¢y 0, C Q*[Cl M (<>+—\Cl (| <>7—|Cl)]
Indeed, an object evolving frof; to C, ceases to be a member®©f.

5. Dynamic evolution cannot be specified between a class andfdtseesub-classes.
C2 CC1EDEVG 0, E L
Indeed, from (¥V), DEV¢, ¢, T @ (C2 M —Ch) which contradicts”; C C.

6. Dynamic extension between disjoint classes logicallyigsgDynamic evolution.
{DEXcy 05, C1 E —Ca} = DEV, 0

7.3. Across-Time Relationships

Across-Timeelationships [30,26,28] describe relationships betwagects that
may not coexist at the same time and possibly not at the timeadhationship is as-
serted. The conceptual model MADS [28,29] allows $gnchronizatiorrelationships
to specify temporal constraints (Allen temporal relatidnstween the lifespan of linked
objects. Historical marksare used in the ERT model [26] to express a relationship be-
tween objects not existing at the same time (both past anulefitistorical marks are
introduced).
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Figure 6. Across-Time Relationships

There are many examples of these relationships (see Fiyutmfsider, for exam-
ple, a relationshiBiography between an author and a famous person already dead, or
the relationshirandparent that holds even if the grandparent passed away before the
grandchild was born or the grandchild is not yet born. Cceréid) the company schema
(Figure 3), the relationshigorks-for is an across-time relationship if company rules
allow assigning an employee to a project before its offi@ahiching, or if employees
may keep on working on a project after its official closure.

This Section formalizes across-time relationships with @im of preserving the
shapshot reducibility of the resulting model. Let us coesid concrete example. Let
Biography be an across-time relationship linking the author of a Epgy with a fa-
mous person no more in existence. Snapshot reducibility theaf if there is an instance
(say,bio = (Tulard,Napoleon)) of the Biography relationship at time, (Tulard
wrote a bio on Napoleon in 1984), then, the projectioBdgraphy at timet, (1984
in our example) must contain the pdifulard, Napoleon). Now, while Tulard is a
member of the classuthor in 1984, we cannot say thH&poleon is an active member
of the clasPerson in 1984. Our formalization of across-time relationshipspgmses
the use of status classes to preserve snapshot reducibiliy biography example can
be solved by asserting thitpoleon is a member of th®isabled-Person class in
1984—i.e. the disabled status associated to the Blasson.

At the conceptual level, we mark reltionship roles witk,S,F (standing for Past,
Now, Suspended and Future, respectively). Furthermoreglloe to freely compose
the marks, e.g{P,=) denotes a role to a past or current object, wkiie) stands for a
role to a future or current object (see Figure 6).

Remark 7.4. Note that, across-time relationships represent a genatialn of the clas-
sical notion of relationships. They do not impose any terapmwnstraint on the involved
objects allowing to capture a simplified version of the sypafeation relationships in-
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troduced in MADS [29]. In particular, if no mark is expligitstated on a relationship’s
role (as in the case of the role restrictedPtm ject in Figure 6.c) we implicitly as-
sume the compound maxle,=,S,F)—said full-cross mark. This assumption changes
the semantic for relationships as given in Section 5. Werassly default, that for
each relationship’s role the full-cross semantics holde (ke formal definition below).
This new semantics for relationships maintains the contiposility of the language. In
particular, to force a relationship to hold on an active £lag need to add thes) mark
(as in the case of the role restrictedeiployee in Figure 6.c).

Formalization. Let R be a relationship, then, the semantics of markinglfhdabeled
role of the relationship is (we report the semantics for thgle marks and the full-cross
compound mark, the other compound marks are just the disjumnef the single ones):

<01, 02> € RB(t) — 01 € Clg(t) Now <:>

(01,00) € RB® — o) € Disabled-C,5( Past(P)

(01,00) € RB® — 0 € Scheduled-C;53() Future(F)

(01,09) € RB® — 0, € Suspended-C;5® SuspendedS)
(01,09) € RB®) — 0, € (Exists-Cy LIDisabled-C;)B®) Full-Cross(P,=,S,F)

The correspondin®LR;,s axioms are:

RCU;:Cy Now (=)

R C U; : Disabled-C; Past(P)

R C Uy : Scheduled-Cy Future(F)

R C U, : Suspended-C; SuspendedsS)

RC U, : (Exists-C; LIDisabled-Cy) Full-Cross(P,=,S,F)

We say that a role in an across-time relationshigtiit historicalif its mark does
not contain thé=) mark (e.qg.(P,F) is strict historical whilg/P,=) is not). The following
Proposition shows how timestamping interacts with actwse-relationships.

Proposition 7.5 (Across-Time: Logical Implications)The following logical implica-
tions hold as a consequence of the across-time semantics.

1. If a relationship, R, is snapshot then historical marks reduce to thé mark (i.e.,
R is not a genuine across-time relationships).
Easily follows from next point.

2. If a relationship, R, has at least one strict historical role, then it is a tempgra
relationship.
RCOT-RUO =R
Without loss of generality, let assume thais binary and the role restricted &
is marked as past. Thus, {61,0,) € RB®, theno, € Disabled-c>"*) and, by
(DIsAB2), 3t <tS.t.oj € CIB(“). Then(oy, 0y) ¢ RB("),
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Figure 7. Production and transformation generation ihatiips.

3. Ifarelationship,R, has a strict historical role to a clags;, then the”; class cannot
be snapshot. Moreover, if the participation 0y is total, the class is temporary.
RC U12<>*[Cl M (<>+—|C1 (] <>_—|Cl)]

Let assume thaR is binary andC; participates as strict past. Thusif;, 02) €

RB® then,o; € Disabled-C>"™. Then,o; ¢ Cfg(t) while, by (DiIsAB2), 3t; < ¢

stop € CPU),

7.4. Generation Relationships

Generatiorrelationships [28,19,27] represent processes that et temergence
of new objectstarting from a set of existing objects. They express thets (f) objects
in a target class may be generated from (sets of) objects duzes class. Depending
whether the source objects are preserved (as member ofuhmestass) or disabled by
the generation process, we distinguish betwamexductionandtransformationrelation-
ships, respectively. Cardinality constraints can be adolegecify the cardinality of sets
involved in a generation. For example (see Figure 7), if watt@a record the fact that
a group of managers proposes at most one new project a piaduetationship from
Manager t0o Project can be defined with the cardinalitat'most onéon the manager
side. As another example, let us assume that a company maygana reorganization of
its departments. Some departments may either merge oraglibe replaced by others,
and the company wants to record these changes. One way wettddefine a cyclic
transformation relationship obepartment linking a set of existing departments to a
set of new departments. Generation relationships areasittiltransition constraints.
On the other hand, transition constraints involve objeetwring the same oid, while ob-
jects linked by generation relationships necessarily difarent oids. As will be clear
from the semantics of generation relationships, they angeaial case of across-time
relationships.

At the conceptual level we introduce two marks for generatiglationships:GP
for production andGT for transformation relationships, and an arrow pointinghe
target class (see Figure 7).

Formalization. We model generation as binary relationships connectinguecealass
to a target oneReEL(R) = (source : (4, target : C). The semantics gbroduction
relationships R, is described by the following equation:
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(01,00) € RB® — (0; € CPY A 0y € Scheduled-C,8M A 0y € CEUT)

Thus, objects active in the source class produce objedtsantthe target class at the
next point in time. A production relationship is a speciadeaf across-time relationship
with an (=) mark on the source role and @R) mark on the target role. As for across-
time relationships, the use of status classes allows ussgepre snapshot reducibility.
Indeed, for each pair of object&, 02), belonging to a generation relationshipsis
active in the source while, is scheduled in the target. TH2LR;,s axiom capturing
the production semantics is:

(PROD) R C source: (1 Mtarget : (Scheduled-Cy 1D Cy)

The case ofransformationis captured by the following semantic equation:

(01,09) € RB® — (0, € CP" A o) € Disabled-C;BtHD A
03 € Scheduled-C,%" Aoy € 025(”1))

Thus, objects active in the source generate objects actitleeitarget at the next point
in time while the source objects cease to exist as membeedfdhrce. As for produc-
tion relationships, transformations are special casesmfsa-time relationships. The
DLRys axiom capturing the transformation semantics is:

(TRANS) R C source:(C1M@ Disabled-C;)Mtarget: (Scheduled-Col 1D Cs)

Proposition 7.6 (Generation: Logical Implications)The following logical implica-
tions hold as a consequence of the generation semantics:

1. A generation relationshipR, is temporary; actually, it is instantaneous.
R E |:|+—\R no =R
Indeed, let(o;, 05) € RB®, then, sincers ¢ Scheduled-Cs" ™), then(oy, 05) ¢
RB(+Y)  Since,0, ¢ Cf(t), then(oy, 03) ¢ RBU-1),

2. The target class(,, cannot be snapshot. Moreover, if the participation €&y is
total, the class is temporary.
R C target: O*[Cy M (OT=Co U O™ =(Ch)]
B(t) B(t) B(t+1)
Indeed, lefo;,02) € R”", then,oy ¢ C5"” andos € C, )

3. Objects participating as target cannot be disabled.
R C target:—Disabled-C,
Indeed, let(oq, 02) € RB®) then,oq € CS(HU. Thuso, ¢ Disabled-Cf(t).

4. If Ris atransformation relationship, thed;; cannot be snapshot. Moreover, if the
participation for C is total, the class is temporary.
R C source:O*[Cy M (OT=C1 U O™ ()]
Indeed, objects it that participate inR will be disabled at the next point in time.
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Note that thebepartment class that is both the source and target of a transforma-
tion relationship (Figure 7) can no longer be snapshot (@astin Figure 3) and must be
changed to temporary. This is an example of inconsistenegkihg that an automated
reasoner could perform to avoid inconsistent classes impdeal schema. Furthermore,
as a consequence of this new timestamp foDdgartment class,InterestGroup is
now a genuine mixed class.

8. Complexity of Reasoning on Temporal Models

As this paper shows, the temporal description IGBIER;,s is able to fully cap-
ture temporal schemas with both timestamping and evolutarstraints. Reasoning
overDLRys knowledge bases, i.e., checking satisfiability, subsuwnpind logical im-
plications, turns out to be undecidable [6]. The main redsothis is the possibility to
postulate that a binary relation does not vary in time. Nbgg,tshowing that temporal
schemas can be mapped i€ R;,s axioms does not necessarily imply that reasoning
over temporal schemas is an undecidable problem. Unfarlynf3] shows that the un-
decidable Halting Problem can be encoded as the problenass shtisfiability w.r.t. a
temporal schema with, among the others, the following cant: disjoint and covering
constraints, sub-relationships, timestamping and elonitonstraints.

On the other hand, the fragmeMLR 5, of DLRys deprived of the ability to
talk about temporal persistence ofary relations, forn > 2, is decidable. Indeed,
reasoning iNDLR,, s is an EXPTIME-complete problem [6]. This result gives us an
useful scenario where reasoning over temporal schemasniescdecidable. In partic-
ular, if we forbid timestamping for relationships (i.e.|atonships are just unmarked)
reasoning on temporal models with just class timestampinduti evolution constraints
can be reduced to reasoning o¥8LR,,s. The problem of reasoning in this setting is
complete for EXPTIME since the EXPTIME-complete problemredsoning with4.LC
knowledge bases can be captured by such schemas [9].

We regain decidability by allowing full timestamping, i.Bmestamping for rela-
tionships, attributes and classes, but dropping evolut@mstraints. This result shows
another useful scenario where a complete procedure foomaag over timestamping
can be adopted. This scenario is decidable since it is gestgibencode temporal
schemas without evolution constraints by using a comlanaietween the description
logic DLR and the epistemic modal log&5 (see [7] for the exact mapping). The logic
DLRgs has been recently proved to be decidable [7] by extending\éaqars result on
the logic ALCg5 [16].

Other interesting scenarios under investigation are tkesavhere the temporal
expressivity is maintained in its full capability (i.e. bdull timestamping and evolution
constraints) but some of the classical EER constructs appéd. In particular, we
claim that by dropping isa between relationships and/ditfgaring constraints we could
regain decidability in the full temporal scenario.
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9. Conclusions

In this paper we proposed a formalization of the various riegeconstructors
that support the design of temporal DBMS with particulaestion to evolution con-
straints. The formalization, based on a model-theoreticastics, has been developed
with the aim to preserve three fundamental modeling reqergs: Orthogonality, Up-
ward Compatibility and Snapshot Reducibility. The introtion of status classes, which
describe the evolution in the membership of an object inengpbral class, allowed us
to maintain snapshot reducibility when characterizinghlg#nerations and across-time
relationships. The formal semantics clarified the meaninth@ language’s construc-
tors and also gave a rigorous definition to relevant modeiiotipns like: satisfiability
of schemas, classes and relationships; subsumption fordiaéses and relationships;
logical implication. Furthermore, for each constructor presented its formalization
together with the associated set of logical implications.

Finally, we have been able to show how temporal schemas caquyealently ex-
pressed using a subset of first-order temporal logic, RER;,s, the description logic
DLR extended with the temporal operat&@isiceandUntil. Overall, we obtained a tem-
poral conceptual model that preserves well establishectimggrequirements, equipped
with a model-theoretic semantics where each constructobeseen as a set of precise
rules, and with the possibility to perform automated reaspiy mapping temporal
schemas into temporal description logic knowledge bases.
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