
Annals of Mathematics and Artificial Intelligence 0 (2006) ?–? 1

Evolving Objects in Temporal Information Systems

Alessandro Artalea Christine Parentb Stefano Spaccapietrac
a Faculty of Computer Science, Free University of Bolzano, I;

E-mail: artale@inf.unibz.it
b HEC/INFORGE, Université de Lausanne, CH;

E-mail: christine.parent@unil.ch
c Database Laboratory, Ecole Polytechnique Fédérale Lausanne, CH;

E-mail: stefano.spaccapietra@epfl.ch

This paper presents a semantic foundation of temporal conceptual models used to design
temporal information systems. We consider a modeling language able to express both times-
tamping and evolution constraints. We conduct a deeper investigation on evolution constraints,
eventually devising a model-theoretic semantics for a full-fledged model with both timestamp-
ing and evolution constraints. The proposed formalizationis meant both to clarify the meaning
of the various temporal constructors that appeared in the literature and to give a rigorous defini-
tion, in the context of temporal information systems, to notions like satisfiability, subsumption
and logical implication. Furthermore, we show how to express temporal constraints using a
subset of first-order temporal logic, i.e.,DLRUS , the description logicDLR extended with
the temporal operatorsSinceandUntil. We show howDLRUS is able to capture the vari-
ous modeling constraints in a succinct way and to perform automated reasoning on temporal
conceptual models.

Keywords: Temporal Data Models, Description Logics.

AMS Subject classification:computer science, knowledge representation, database theory

1. Introduction

Most of information modeling research and practice focus ona static view of the
world, describing data as it should be and is day by day. Current data models and
database systems are meant to capture snapshots of the world, i.e. the current state
of the database, with the next snapshot replacing the previous one. Yet everybody is
well aware that such an approach only gives a very partial view of the world, neglecting
another essential component, its dynamics, i.e. how the world evolves as time passes.
Recording the current, past, and possibly predicted futuresnapshots is the very first step
towards capturing evolution. This functionality is supported by temporal information
systems. Data warehousing systems, based on keeping aggregates of past snapshots,
have extensively shown that keeping knowledge over time entails the possibility, for ex-
ample, to analyze evolution trends and develop scenarios for the future. Such analysis
and forecasting are fundamental components of most decision-making processes, which
are critical for successfully facing the complexity of today’s activities. A second step in

2 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

capturing evolution is enforcing the rules that govern the evolution of data. Rules play
a fundamental role to maintain data consistency. In data modeling, evolution rules are
expressed as evolution constraints, allowing to control requested changes to data and re-
ject those changes that can be recognized as incorrect (i.e., leading to a new state that is
inconsistent with the previous ones) or inappropriate (e.g., changes requested at a time
they are not allowed) or detected as suspicious (e.g., resulting in an anomalous evolution
that requires additional validation procedures). Furthersteps to enrich evolution man-
agement are possible, such as, for example, capturing the reasons for change (why the
change happened), the actors of change (who prompted the change), its timing (when
did it happen), as well as any other information related to the change (which at this point
becomes like an object of interest from the data management viewpoint).

Knowledge of dynamics is intrinsically related to time awareness. Capturing dy-
namics is grounded in the ability to capture time, as proposed by research on temporal
databases1. Abstracting from many details, the most popular time awareness mechanism
is timestamping. From the evolution management viewpoint,timestamping supports the
first step above, capturing evolution as a sequence of snapshots. Formal semantics ap-
proaches have extensively discussed timestamping [4,5,13,17,25,30]. Yet a clear for-
malization of evolution constraints (supporting the second step) is still missing, despite
the fact that in the literature such constraints have largely been advocated as useful for
modeling the behavior of temporal objects [5,28,19,20,26,30,27].

Our research aims at building a semantic foundation for temporal data models.
We eventually devise a model-theoretic semantics for a full-fledged conceptual model
with both timestamping and evolution constraints. This paper focuses on evolution con-
straints, more precisely on providing a formal semantics todescribe how objects can
evolve in their lifecycle and how they can be related throughout time. The formaliza-
tion proposed here builds on previous efforts to formalize temporal conceptual models.
Namely, we rely on a previous work to define theERV T model [5], a temporal Extended
Entity-Relationship2 (EER) model equipped with both a textual and a graphical syntax
and based on a model-theoretic semantics.ERV T captures timestamping constructors
along with transition constraints. The work reported in this paper extendsERV T with
new functionality (hereinafter defined) for evolutionary modeling, namely status classes,
generation relationships and across-time relationships.Another closely related work is
the one of Finger and McBrien [15]. They propose a model-theoretic formalization for
the ERT model, an EER model with timestamping and across-time relationships (called
H-marked relationships by the authors and introduced in a previous paper by McBrien,
Seltveit and Wrangler [26]). Our proposal modifies the semantics of across-time re-
lationships as presented in [15] to comply with a crucial modeling requirement, i.e.

1 Outcomes in this domain include many proposals for modelingtemporal data, and a large body of con-
sensus on the fundamental underlying concepts. Readers interested in analyses of state of art in temporal
modeling and of results achieved in the area are referred to two surveys [18,24] that still provide valuable
information.

2 EER denotes data models that enrich the standard ER modelinglanguage withISA links, disjoint and
covering constraints, and full cardinality constraints—whit cardinality (0,n) assumed by default.

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 3

snapshot reducibility [25].
The advantage of associating a set-theoretic semantics to alanguage is not only

to clarify the meaning of the language’s constructors but also to give a semantic def-
inition to relevant modeling notions. In particular, givenan interpretation function to
assign a set-theoretic semantics to the (temporal) modeling constructors, we are able to
give a rigorous definition of the notions of:schema satisfiabilitywhen a schema ad-
mits a non empty interpretation which guarantees that the constraints expressed by the
schema are not contradictory (similarly we define the notions of class and relationships
satisfiability); subsumptionbetween classes (relationships) when the interpretationsof
a class (relationships) is a subset of the interpretation ofanother class (relationships)
which allows to check newISA links; logical implicationwhen a (temporal) constraint
is implicitly true in the current schema thus deriving new constraints. In particular, in
this paper we stress both the formalization of a constructorand the set of logical implica-
tions associated to such formalization. The obtained logical implications are generally in
agreement with those mentioned in the literature on temporal conceptual models. Thus,
each constructor’s formalization (together with its associated logical implications) can
be seen as a set of precise rules on the allowed behavior of objects, in particular regard-
ing their evolution in time. Even if we do not address specificimplementation issues,
these rules can be turned into explicit integrity constraints in the form of trigger rules to
be added to the schema specified by the database designer, thus enabling to check the
validity of user actions involving object evolution. Sincethe rules are the result of a
formal characterization we solve what is in our opinion a serious weakness of existing
modeling approaches, i.e., without a rigorous foundation there is no guarantee that the
proposed model leads to a sound system.

Finally, as a byproduct of the semantic formalization, we also show how (temporal)
modeling constraints can be equivalently expressed by using a subset of first-order tem-
poral logic, i.e., the temporal description logicDLRUS [6]. DLRUS is a combination
of the expressive and decidable description logicDLR (a description logic with n-ary
relationships) with the linear temporal logic with temporal operatorsSince(S) andUntil
(U) which can be used in front of both concepts and relations. The choice of extending
DLR is motivated by its ability to give a logical reconstructionand an extension of rep-
resentational tools such as object-oriented and conceptual data models, frame-based and
web ontology languages [10–12,22]. In this paper, we useDLRUS both to capture the
(temporal) modeling constructors in a succinct way, and to use reasoning techniques to
check satisfiability, subsumption and logical implication. We show howDLRUS axioms
capture the above mentioned rules associated with each constructor’s formal semantics
while logical implications betweenDLRUS axioms is a way to derive new rules. Even
if full DLRUS is undecidable this paper addresses interesting subsets ofDLRUS where
reasoning becomes a decidable problem.

The paper is organized as follows. Section 2 discusses in more details the two com-
ponents for managing the dynamics of data: timestamping andevolution constraints.
Section 3 shows the modeling requirements that lead us in elaborating the rigorous

4 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

definition of our evolution framework. Sections 4 and 5 recall the characteristics of
theDLRUS description logic and theERV T temporal data model on which we build
our proposal. Section 6 recall the modeling of timestampingconstraints as provided in
ERV T . Section 7 discusses the evolution constraints we address and provides a formal
characterization for them together with a set of logical implications and the correspon-
dentDLRUS axioms. Section 8 shows that reasoning on the full-fledged temporal set-
ting is undecidable but provides useful scenarios where reasoning becomes decidable.
Section 9 concludes the paper.

2. Recording and Controlling Evolution

As stated in the introduction, evolution management requires first to be able to
record the different states of the database over time, second to be able to automatically
check that each operation resulting in a change conforms to the rules that constrain
permissible evolutions. In this Section we analyze the supporting techniques to achieve
such functionality, i.e. timestamping and evolution constraints. The analysis is at the
conceptual modeling level. Implementation aspects are irrelevant to our goals.

2.1. Timestamping

Timestampingis a temporal marking mechanism that, according to some criterion
(e.g., valid time or transaction time [23,31]), positions data relevance on a timescale.
Hereinafter we only consider valid time (i.e. temporal references driven by the appli-
cation view of evolution), which characterizes the vast majority of application require-
ments. Timestamping provides the following functionality:

• Attribute timestamping: Evolution of values.
The most well known aspect of timestamping is its association with attribute values
to keep the evolution of these values in time. For example, timestamping allows
keeping the knowledge that the affiliation attribute for employeeS has value ”Uni-
versity of Paris” for the period from 10/1969 to 9/1983, then ”University of Dijon”
from 10/1983 to 9/1988, then ”EPFL” from 10/1988 to 2/2010. Timestamped at-
tributes are also called time-varying attributes. Research on temporal databases has
extensively investigated how attribute timestamping can be defined and implemented
using various data models (e.g., relational, entity-relationship).

• Object and relationship timestamping: Lifecycle.
Similarly, temporal periods can characterize an object or relationships instance as a
whole rather than through its attributes. Here, it is its membership in a class that is
split into periods according to a given classification criterion. For example, existence
of an employee object in theEmployee class can include periods where the object
is an active member of the class (e.g., the employee is currently on payroll), peri-
ods where its membership is suspended (e.g., the employee ison temporary leave),
and a period where its membership is disabled (e.g., the employee has left the com-

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 5

pany) [14]. These periods together form thelifecycle [28] of the object/relationship
instance in a given class/relationships (more details are given in Section 7.1). The
lifespan of an object/relationship instance describes thetemporal instants where the
instance is an active or suspended member of the class. The lifecycle of an instance
is in general a set of time instants corresponding to those instants where the instance
belongs to the class or relationships. Instances with lifecycle are called temporal
instances. It is worth stressing that, from a conceptual viewpoint, a real world ob-
ject may simultaneously qualify in the database for membership into several classes,
typically within the same is-a hierarchy (e.g.Paul Carltoncan be seen as simulta-
neously belonging to three classes, thePerson class, theEmployee class, and the
Manager class) and consequently hold a different lifecycle in each class. For exam-
ple, the lifecycle ofPaulas a manager obviously covers a lifespan included in the one
of his lifecycle as an employee, which in turn is a subset of his lifespan as a person
(the lifespan inclusion is due to the semantics of the is-a link betweenManager and
Employee and betweenEmployee andPerson).

Timestamping (both as time-varying attributes and lifecycles) is obviously op-
tional, i.e. a data model should allow for both temporal and atemporal modeling con-
structors.

2.2. Evolution Constraints

Timestamping enriches the static view of data by allowing recording the states of
the database over a period of time. A temporal database (i.e.a database equipped with
timestamps) may indeed be seen as a sequence of snapshots, one per instant as defined by
the smallest time granularity. Evolution constraints are imposed on a temporal database
to control the mechanism that rules dynamic aspects, i.e. what are the permissible tran-
sitions from one state of the database to the next one. Integrity constraints in general can
be as complex as needed to express rules on application data.Data models embed some
predefined kinds of static integrity constraints (e.g., uniqueness specifications, cardinal-
ity constraints) but very rarely include constructs to express dynamic constraints. On the
other hand, during modification operations, SQL triggers provide a construct to compare
the new value replacing the existing value, thus enforcing an evolutionary constraint.
For full expressiveness, integrity constraint definition languages are usually grounded
on first or second order logic. In this paper we will show how evolution constraints can
be expressed using a temporal description logic. In the following, we summarize the
main features of evolution constraints.

• Applied to attributes, they are known asdynamic integrity constraints. One example,
simply using arithmetic comparison operators, is the constraint that the value for
the Salary attribute of an employee can only increase. A second exampleis the
constraint that the number of values for a multivalued attribute, e.g. theDiplomas
of a person, can only increase over time. In the latter case wesay that the attribute is
expandingmeaning that the deletion of values is not allowed.

6 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

• Applied to the lifecycle of an object (relationship instance), evolution constraints are
referred to asstatus constraints. They rule the permissible evolution of an instance’s
membership in a class/relationships along its lifespan. For example, an object that
is an active member of a class may become a disabled member of the class, but not
vice versa [14]. The different statuses (scheduled, active, suspended, disabled) entail
different constraints. For example, in [14] if an object is in the suspended status the
values of its attributes within the suspension period can beretrieved but cannot be
modified. We further discuss status issues in Section 7.1.

• Applied to objects, evolution constraints are referred to as transition constraintsand
usually rule the evolution of an object from being member of aclass to being member
of another class (see Section 7.2 for more details) [20]. Forexample, an object in the
Student class may migrate to become an object of theFaculty class or evolve
to also become an object of theAlumnus class. Conversely, an object now in the
FullProfessor class cannot become later an object in theAssistantProfessor

class.

• Finally, evolution constraints may be embedded in relationships. Evolution-related
knowledge may indeed be conveyed through relationships associated to a specific
evolutionary semantics.Generation relationships[19] between objects of classA and
objects of classB (possibly equal toA) describe the fact that objects inA are generated
by objects inB. If A andB are temporal classes, this entails that the lifecycle of anA

object cannot start before the lifecycle of the relatedB object(s). For example, in a
company database, the splitting of a department translatesinto the fact that the orig-
inal department generates two (or more) new departments. Generation relationships
allow backtracking the history of an object and its provenance. Genealogical search is
an example of popular backtracking, supported by parenthood relationships holding
generation semantics.Synchronization relationshipsin MADS [29] enforce Allen
temporal constraints [2] between participating objects. For example, a relationship
WorksFor between temporal classesEmployee andProject may hold a synchro-
nization semantics of typeoverlap to require that each assignment of an employee
to a project is only valid if there is at least one common period where both the em-
ployee and the project are simultaneously in activity. In most temporal data models,
relationships between temporal classes implicitly enforce an overlap synchronization
constraint, as the rules of the model state that the lifecycle of the relationship must be
within the intersection of the lifecycle of the related objects. While this often corre-
sponds to application requirements, it is not always the case that a temporal overlap
has to be enforced. Hence in our approach relationships between temporal objects
do not bear any implicit temporal constraint. They may link simultaneously existing
objects as well as objects whose existences are disjoint. They may also link a tem-
poral object with an atemporal one. Instead, if a temporal constraint is required by
the application, the relationship is explicitly enriched with synchronization semantics
and the synchronization predicate may be any of the Allen interval-based temporal
predicates, not just overlap. Since in this paper we deal only with point-based tem-

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 7

poral constraints we consider a simplified form of synchronization relationships that
can be expressed by point-based temporal constraints. We use the termacross-time
relationships, rather than just relationships, to emphasize that our relationships be-
tween temporal objects allow the linked objects not to coexist at the time the rela-
tionship is asserted. As an example of an across-time relationship consider the case
of a Grandparent relationships which involves a dead grandparent with a leaving
grandchild (see Section 7.3).

3. Modeling Requirements

This Section briefly illustrates the requirements that are frequently advocated in
the literature on temporal data models when dealing with temporal constraints.

• Orthogonality. Temporal constructors should be specified separately and indepen-
dently for classes, relationships, and attributes. Depending on application require-
ments, the temporal support must be decided by the designer.

• Upward Compatibility. This term denotes the capability of preserving the nontem-
poral semantics of conventional (legacy) conceptual schemas when embedded into
temporal schemas.

• Snapshot Reducibility. Snapshots of the database described by a temporal schema
are the same as the database described by the same schema, where all temporal con-
structors are eliminated and the schema is interpreted atemporally. Indeed, this prop-
erty specifies that we should be able to fully rebuild a temporal database by starting
from the single snapshots.

These requirements are not so obvious when dealing with evolving objects. The for-
malization carried out in this paper provides a data model able to respect these require-
ments also in presence of evolving objects. In particular, orthogonality affects mainly
timestamping [28] and our formalization satisfies this principle by introducing tempo-
ral marks that could be used to specify the temporal behaviorof classes, relationships,
and attributes in an independent way (see Section 6). Upwardcompatibility and snap-
shot reducibility [25] are strictly related. Considered together, they allow to preserve the
meaning of atemporal constructors. In particular, the meaning of classical constructors
must be preserved in such a way that a designer could either use them to model classical
databases, or when used in a genuine temporal setting their meaning must be preserved
at each instant of time. We enforce upward compatibility by using global timestamps
over legacy constructors (see Section 6). Snapshot reducibility is hard to preserve when
dealing with both generation and across-time relationships where involved object may
not coexist. We enforce snapshot reducibility by a particular treatment of relationship
typing (see Sections 7.4,7.3).

8 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

C →> | ⊥ | CN | ¬C | C1 u C2 | ∃≶k[Uj]R |

3
+C | 3

−C | 2
+C | 2

−C |⊕ C | 	 C | C1 U C2 | C1 S C2

R →>n | RN | ¬R | R1 u R2 | Ui/n : C |

3
+R | 3

−R | 2
+R | 2

−R |⊕R | 	R | R1 U R2 | R1 S R2

>I(t) = ∆I

⊥I(t) = ∅
CNI(t) ⊆ >I(t)

(¬C)I(t) = >I(t) \ CI(t)

(C1 u C2)
I(t) = C

I(t)
1 ∩ C

I(t)
2

(∃≶k[Uj]R)I(t) = { d ∈ >I(t) |]{〈d1, . . . , dn〉 ∈ RI(t) | dj = d} ≶ k}

(C1 U C2)
I(t) = { d ∈ >I(t) | ∃v > t.(d ∈ C

I(v)
2 ∧ ∀w ∈ (t, v).d ∈ C

I(w)
1)}

(C1 S C2)
I(t) = { d ∈ >I(t) | ∃v < t.(d ∈ C

I(v)
2 ∧ ∀w ∈ (v, t).d ∈ C

I(w)
1)}

(>n)I(t) ⊆ (∆I)n

RNI(t) ⊆ (>n)I(t)

(¬R)I(t) = (>n)I(t) \ RI(t)

(R1 u R2)
I(t) = R

I(t)
1 ∩ R

I(t)
2

(Ui/n : C)I(t) = { 〈d1, . . . , dn〉 ∈ (>n)I(t) | di ∈ CI(t)}
(R1 U R2)

I(t) = { 〈d1, . . . , dn〉 ∈ (>n)I(t) |

∃v > t.(〈d1, . . . , dn〉 ∈ R
I(v)
2 ∧ ∀w ∈ (t, v). 〈d1, . . . , dn〉 ∈ R

I(w)
1)}

(R1 S R2)
I(t) = { 〈d1, . . . , dn〉 ∈ (>n)I(t) |

∃v < t.(〈d1, . . . , dn〉 ∈ R
I(v)
2 ∧ ∀w ∈ (v, t). 〈d1, . . . , dn〉 ∈ R

I(w)
1)}

(3+R)I(t) = {〈d1, . . . , dn〉 ∈ (>n)I(t) | ∃v > t. 〈d1, . . . , dn〉 ∈ RI(v)}
(⊕R)I(t) = {〈d1, . . . , dn〉 ∈ (>n)I(t) | 〈d1, . . . , dn〉 ∈ RI(t+1)}

(3−R)I(t) = {〈d1, . . . , dn〉 ∈ (>n)I(t) | ∃v < t. 〈d1, . . . , dn〉 ∈ RI(v)}
(R)I(t) = {〈d1, . . . , dn〉 ∈ (>n)I(t) | 〈d1, . . . , dn〉 ∈ RI(t−1)}

Figure 1. Syntax and semantics ofDLRUS .

4. The Temporal Description Logic

The temporal description logicDLRUS [6] combines the propositional tempo-
ral logic with Sinceand Until and the (non-temporal) description logicDLR [10,8].
DLRUS can be regarded as a rather expressive fragment of the first-order temporal logic
L{since, until} (cf. [13,21]).

The basic syntactical types ofDLRUS are classes(i.e., unary predicates, also
known asconcepts) and n-ary relations of arity ≥ 2. Starting from a set ofatomic
classes(denoted byCN), a set ofatomic relations(denoted byRN), and a set ofrole
symbols(denoted byU) we hereinafter define inductively (complex) class and relation
expressions as is shown in the upper part of Figure 1, where the binary constructors
(u,t,U ,S) are applied to relations of the same arity,i, j, k, n are natural numbers,
i ≤ n, andj does not exceed the arity ofR.

The non-temporal fragment ofDLRUS coincides withDLR. For both class and
relation expressions all the Boolean constructors are available. The selection expression

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 9

Ui/n : C denotes ann-ary relation whose argument namedUi (i ≤ n) is of typeC;
if it is clear from the context, we omitn and write(Ui : C). The projection expres-
sion∃≶k[Uj]R is a generalisation with cardinalities of the projection operator over the
argument namedUj of the relationR; the plain classical projection is∃≥1[Uj]R. It is
also possible to use the pure argument position version of the language by replacing role
symbolsUi with the corresponding position numbersi. To show the expressive power of
DLRUS we refer to the next Sections whereDLRUS is used to capture various forms
of temporal constraints.

The model-theoretic semantics ofDLRUS assumes a flow of timeT = 〈Tp, <〉,
whereTp is a set of time points (or chronons) and< a binary precedence relation on
Tp, is assumed to be isomorphic to〈Z, <〉. The language ofDLRUS is interpreted in
temporal modelsoverT , which are triples of the formI .

= 〈T ,∆I , ·I(t)〉, where∆I is
non-empty set of objects (thedomainof I) and·I(t) aninterpretation functionsuch that,
for everyt ∈ T (in the following the notationt ∈ T is used as a shortcut fort ∈ Tp),
every classC, and everyn-ary relationR, we haveCI(t) ⊆ ∆I andRI(t) ⊆ (∆I)n.
The semantics of class and relation expressions is defined inthe lower part of Figure 1,
where(u, v) = {w ∈ T | u < w < v}. For classes, the temporal operators3

+ (some
time in the future),⊕ (at the next moment), and their past counterparts can be defined
via U andS: 3

+C ≡ > U C, ⊕C ≡ ⊥ U C, etc. The operators2+ (always in the
future) and2− (always in the past) are the duals of3

+ (some time in the future) and
3

− (some time in the past), respectively, i.e.,2
+C ≡ ¬3

+¬C and2
−C ≡ ¬3

−¬C,
for both classes and relations. The operators3

∗ (at some moment) and its dual2
∗ (at

all moments) can be defined for both classes and relations as3
∗C ≡ C t3

+C t3
−C

and2
∗C ≡ C u 2

+C u 2
−C, respectively.

A knowledge baseis a finite setΣ of DLRUS axioms of the formC1 v C2 and
R1 v R2, with R1 andR2 being relations of the same arity. An interpretationI satisfies
C1 v C2 (R1 v R2) if and only if the interpretation ofC1 (R1) is included in the
interpretation ofC2 (R2) at all time, i.e. C

I(t)
1 ⊆ C

I(t)
2 (RI(t)

1 ⊆ R
I(t)
2), for all t ∈

T . Various reasoning servicescan be defined inDLRUS . A knowledge base,Σ, is
satisfiableif there is an interpretation that satisfies all the axioms inΣ (in symbols,
I |= Σ). A classC (or relationR) is satisfiableif there isI such thatCI(t) 6= ∅
(respectively,RI(t) 6= ∅), for some time pointt. A knowledge base,Σ, logically implies
an axiom,C1 v C2, and writeΣ |= C1 v C2, if we haveI |= C1 v C2 whenever
I |= Σ. In this latter case, the conceptC1 is said to besubsumedby the conceptC2 in
the knowledge baseΣ. A conceptC is satisfiable, given a knowledge baseΣ, if there
exists a modelI of Σ such thatCI(t) 6= ∅ for somet ∈ T , i.e.Σ 6|= C v ⊥.

While DLR knowledge bases are fully able to capture atemporal EER
schemas [10,11]—i.e., given an EER schema there is an equi-satisfiableDLR knowl-
edge base—in the following Sections we show howDLRUS knowledge bases can cap-
ture temporal EER schemas with both timestamping and evolution constraints.

10 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

DepartmentS InterestGroup

OrganizationalUnitS

d

MemberS

(1,n)

org
mbr

EmployeeS

Name(String)

S

PaySlipNumber(Integer)

Salary(Integer)

T

ManagerT

TopManagerAreaManager

Works-forT

(1,n)

act

emp

ProjectT

ProjectCode(String)

Manages
man

(1,1)

prj

(1,1)

Figure 2. The companyERV T diagram

5. The Temporal Conceptual ModelERV T

In this Section, the temporal EER modelERV T is briefly introduced (see [4,5] for
full details). ERV T supports timestamping for classes, attributes, and relationships.
ERV T is equipped with both a textual and a graphical syntax along with a model-
theoretic semantics as a temporal extension of the EER semantics [12]. The formal
foundations ofERV T allowed also to prove a correct encoding ofERV T schemas as
knowledge base inDLRUS [5].

An ERV T schema is a tuple:Σ = (L, REL, ATT , CARD, ISA, DISJ, COVER, S, T, KEY),
such that:L is a finite alphabet partitioned into the sets:C (classsymbols),A (attribute
symbols), R (relationship symbols), U (role symbols), andD (domain symbols).
ATT is a function that maps a class symbol inC to an A-labeled tuple overD,
ATT(C) = 〈A1 : D1, . . . , Ah : Dh〉. REL is a function that maps a relationship symbol
in R to anU -labeled tuple overC, REL(R) = 〈U1 : C1, . . . , Uk : Ck〉, andk is thearity
of R. CARD is a functionC×R×U 7→ N× (N∪{∞}) denoting cardinality constraints.
We denote withCMIN(C,R,U) andCMAX(C,R,U) the first and second component of
CARD. In Figure 2,CARD(TopManager, Manages, man) = (1, 1). ISA is a binary rela-
tionshipISA ⊆ (C×C)∪(R×R). ISA between relationships is restricted to relationships
with the same arity.ISA is visualized with a directed arrow, e.g.Manager ISA Employee

in Figure 2. DISJ, COVER are binary relations over2C × C, describing disjointness and
covering partitions, respectively.DISJ is visualized with a circled “d” and COVER with
a double directed arrow, e.g.Department, InterestGroup are both disjoint and they
coverOrganizationalUnit. The setC is partitioned into: a setCS of Snapshot classes
(the S-markedclasses in Figure 2), a setCM of M ixed classes(the unmarkedclasses
in Figure 2), and a setCT of Temporary classes(theT-markedclasses in Figure 2). A
similar partition applies to the setR. S, T are binary relations overC × A containing,
respectively, the snapshot and temporary attributes of a class (seeS, T marked attributes
in Figure 2). KEY is a function that maps class symbols inC to their key attributes,
KEY(C) = A. Keys are visualized as underlined attributes.

The model-theoretic semantics associated with theERV T modeling language

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 11

adopts thesnapshot3 representation of abstract temporal databases and temporal con-
ceptual models [13]. Following the snapshot paradigm, the flow of timeT = 〈Tp, <〉,
whereTp is a set of time points (or chronons) and< is a binary precedence relation on
Tp, is assumed to be isomorphic to either〈Z, <〉 or 〈N, <〉. Thus, standard relational
databases can be regarded as the result of mapping a temporaldatabase from time points
in T to atemporal constructors, with the same interpretation ofconstants and the same
domain.

Definition 5.1 (ERV T Semantics). Let Σ be anERV T schema. Atemporal database
statefor the schemaΣ is a tupleB = (T ,∆B ∪∆B

D, ·B(t)), such that:∆B is a nonempty
set of abstract objects disjoint from∆B

D; ∆B
D =

⋃
Di∈D ∆B

Di
is the set of basic domain

values used in the schemaΣ; and·B(t) is a function that for eacht ∈ T maps:

• Every basic domain symbolDi into a setDB(t)
i = ∆B

Di
.

• Every classC to a setCB(t) ⊆ ∆B—thusobjectsare instances of classes.

• Every relationshipR to a setRB(t) of U -labeled tuples over∆B—i.e., letR be an
n-ary relationship connecting the classesC1, . . . , Cn, REL(R) = 〈U1 : C1, . . . , Un :

Cn〉, then,r ∈ RB(t) → (r = 〈U1 : o1, . . . , Un : on〉 ∧ ∀i ∈ {1, . . . , n}.oi ∈ C
B(t)
i).

We adopt the convention:〈U1 : o1, . . . , Un : on〉 ≡ 〈o1, . . . , on〉, whenU -labels are
clear from the context.

• Every attributeA to a setAB(t) ⊆ ∆B×∆B
D, such that, for eachC ∈ C, if ATT(C) =

〈A1 : D1, . . . , Ah : Dh〉, then, o ∈ CB(t) → (∀i ∈ {1, . . . , h},∃ai. 〈o, ai〉 ∈

A
B(t)
i ∧ ∀ai.〈o, ai〉 ∈ A

B(t)
i → ai ∈ ∆B

Di
).

B is said alegal temporal database stateif it satisfies all of the constraints expressed in
the schema (we don’t report here the semantics for temporal constraints since they will
be discussed in details in the next Sections):

• For eachC1, C2 ∈ C, if C1 ISA C2, then,CB(t)
1 ⊆ C

B(t)
2 .

• For eachR1, R2 ∈ R, if R1 ISA R2, then,RB(t)
1 ⊆ R

B(t)
2 .

• For each cardinality constraintCARD(C,R,U), then:
o ∈ CB(t) → CMIN(C,R,U) ≤ #{r ∈ RB(t) | r[U] = o} ≤ CMAX(C,R,U).

• ForC,C1, . . . , Cn ∈ C, if {C1, . . . , Cn} DISJC, then,

∀i ∈ {1, . . . , n}.Ci ISA C ∧ ∀j ∈ {1, . . . , n}, j 6= i.CB(t)
i ∩ C

B(t)
j = ∅.

• ForC,C1, . . . , Cn ∈ C, if {C1, . . . , Cn} COVERC, then,

∀i ∈ {1, . . . , n}.Ci ISA C ∧ CB(t) =
⋃n

i=1 C
B(t)
i .

• For eachC ∈ C, A ∈ A such thatKEY(C) = A, then,A is a snapshot attribute–i.e.
〈C,Ai〉 ∈ S— and∀a ∈ ∆B

D.#{o ∈ CB(t) | 〈o, a〉 ∈ AB(t)} ≤ 1.

3 The snapshot model represents the same class of temporal databases as the so calledtimestampmodel [24,
25] which adds a temporal attribute to each relation [13].

12 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

Given such a set-theoretic semantics we are able to rigorously define some relevant mod-
eling notions such as satisfiability, subsumption and derivation of new constraints by
means of logical implication.

Definition 5.2. Let Σ be a schema,C ∈ C a class, andR ∈ R a relationship. The
following modeling notions can be defined:

1. C (R) is satisfiableif there exists a legal temporal database stateB for Σ such that
CB(t) 6= ∅ (RB(t) 6= ∅), for somet ∈ T ;

2. Σ is satisfiableif there exists a legal temporal database stateB for Σ (B is also said
amodelfor Σ);

3. C1 (R1) is subsumedby C2 (R2) in Σ if every legal temporal database state forΣ is
also a legal temporal database state forC1 ISA C2 (R1 ISA R2);

4. A schemaΣ′ is logically impliedby a schemaΣ over the same signature if every
legal temporal database state forΣ is also a legal temporal database state forΣ′.

In the following Sections we will show how temporal databasestates,B, support
defining the semantics of timestamping and then how to extendboth ERV T andB to
capture evolution constraints.

6. Timestamping

ERV T is able to distinguish betweensnapshotconstructors—i.e. constructors
which bear no explicit specification of a given lifespan [23], which we convey by
assuming a global lifespan (see Section 7.1) associated to each of their instances—
temporaryconstructors—i.e. each of their instances has a limited lifespan—ormixed
constructors—i.e. their instances can have either a globalor a temporary existence. In
the following, a class, relationship or attribute is calledtemporal if it is either temporary
or mixed. The two temporal marks,S (snapshot) andT (temporary), introduced at the
conceptual level, capture such temporal behavior. The semantics of timestamping can
now be defined as follows:

o∈CB(t) → ∀t′∈T .o∈CB(t′) Snapshot Class
o∈CB(t) → ∃t′ 6= t.o 6∈CB(t′) Temporary Class
r∈RB(t) → ∀t′∈T .r∈RB(t′) Snapshot Relationship
r∈RB(t) → ∃t′ 6= t.r 6∈RB(t′) Temporary Relationship

(o ∈ CB(t) ∧ 〈o, ai〉 ∈ A
B(t)
i) → ∀t′ ∈ T .〈o, ai〉 ∈ A

B(t′)
i Snapshot Attribute

(o ∈ CB(t) ∧ 〈o, ai〉 ∈ A
B(t)
i) → ∃t′ 6= t.〈o, ai〉 6∈ A

B(t′)
i Temporary Attribute

Note that, the semantics for attribute timestamping respects theERV T syntax where
attributes are defined snapshot or temporary only locally, i.e. w.r.t. the classes they

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 13

are attached with. Timestamps for both classes and relationships are captured by the
following DLRUS axioms:

C v (2∗C) Snapshot Class
C v (3∗¬C) Temporary Class
R v (2∗R) Snapshot Relationship
R v (3∗¬R) Temporary Relationship

Considering attributes we first remember that they are captured in DLR as binary
relationships. Then, for each attribute,A ∈ A, the following DLR axiom holds:
A v From : > u To : >. Thus, if 〈A,C〉 ∈ S or 〈A,C〉 ∈ T then the following
DLRUS axioms hold, respectively:

C v ¬∃[From](A u 3
∗¬A) Snapshot Attribute

C v ¬∃[From](2∗A) Temporary Attribute

The distinction between snapshot, temporary and mixed constructors has been
adopted inERV T to avoid overloading the meaning of un-marked constructors. In-
deed, the classical distinction between temporal (using a temporal mark) and atemporal
(leaving the constructor un-marked) constructors may be ambiguous in the meaning of
un-marked constructors. In this classical setting, un-marking is used to model both truly
atemporal constructors (i.e., snapshot classes whose instances lifespan is always equal to
the whole database lifespan), as well as legacy constructors (for upward compatibility)
where the constructor is not marked as temporal because the original data model did not
support the temporal dimension. The problem is that, due to the interaction between the
various components of a temporal model, un-marked constructors can even purposely
represent temporary constructors. As an example, think of an ISA involving a temporary
entity (as superclass) and an un-marked entity (as a subclass). Since a designer cannot
forecast all the possible interactions between the (temporal) constraints of a given con-
ceptual schema, this ultimately means that in the classicalapproachatemporality cannot
be guaranteedand this is true even for the upward compatibility.

ERV T explicitly introduces a snapshot mark to force both atemporality and up-
ward compatibility. As logical implication is formally defined inERV T (see Defini-
tion 5.2), missing specifications can be inferred and in particular a set of logical im-
plications hold in the case of timestamping. For instance, in Figure 2, asManager
is temporary bothAreaManager and TopManager are temporary, too. Because
OrganizationalUnit is snapshot and partitioned into two sub-classes,Department

which is snapshot andInterestGroup, the latter should be snapshot, too. As the tem-
porary classTopManager participates in the relationshipsManages, then the latter must
be temporary, too. The result of these deductions is given inFigure 3 (see [5] for an
exhaustive list of deductions involving timestamps). Notethat, when mappingERV T

into a relational schema both temporary and un-marked constructors are mapped into a
relation with added timestamp attributes, while snapshot constructors do not need any
additional time attribute (for full details on theERV T relational mapping see [1]).

14 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

DepartmentS InterestGroupS

OrganizationalUnitS

d

MemberS

(1,n)

org
mbr

EmployeeS

Name(String)

S

PaySlipNumber(Integer)

Salary(Integer)

T

ManagerT

TopManagerTAreaManagerT

Works-forT

(1,n)

act

emp

ProjectT

ProjectCode(String)

ManagesT
man

(1,1)

prj

(1,1)

Figure 3. The company diagram with deductions on timestamps

7. Formalizing Evolving Objects

Evolution constraints contribute in modeling the temporalbehavior of an object.
This Section discusses in details the aspects of evolutionary modeling that we take into
account in our work. We first recalls the basic concepts that have been proposed in the
literature to deal with evolution, and their impact on the resulting conceptual language.
Then we propose a formalization of the basic temporal concepts that are at the root of
advanced conceptual temporal models: lifecycle with four statuses (scheduled, active,
suspended, disabled); transitions of objects in differentclasses along their whole lifecy-
cle; generation and across-time relationships asserting evolution constraints on objects
linked by temporal relationships. These are genuine extensions to theERV T model that
need to be taken into account in proposing a formalization based on a model-theoretic
semantics and a correspondent set of axioms expressed usingthe temporal description
logic DLRUS .

We aim both to present a formal characterization of the temporal conceptual mod-
eling constructors for timestamping and evolution, and to use the reasoning capabilities
of DLRUS to check satisfiability, subsumption and logical implications over temporal
schemas. The model-theoretic semantics we illustrate herefor the various evolution
constraints and the corresponding set ofDLRUS axioms are an extension of the one
developed for the modelERV T , introduced in Section 5. The validity of the proposed
formalization is justified by providing a set of logical implications which are in agree-
ment with the derivations mentioned in the literature on temporal data modeling.

7.1. Status Classes

Status[28,14] is a conceptual notion associated to temporal classes as a compo-
nent of the description of the lifecycle of their objects. Itrecords the evolving state of
membership of each object in the class. Following [28], status modeling includes up to
four different statuses, and the allowed transitions between them:

• Scheduled. An object is scheduled if the planning of its existence within the class

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 15

has to be recorded while its membership in the class will onlybecome effective (ac-
tive) some time later. For example, if a new project is approved but will not start until
a later date the given project can be created as a new object inthe Project class,
with status scheduled for the valid time interval starting at the date of the approval
decision and ending at the expected launching date. Each scheduled object will even-
tually become an active object. A scheduled object bears itsidentity (has an oid), but
its attribute values do not need to be present. Supporting a scheduled status avoids the
introduction of a new time type, the decision time [14], and smoothes the processing
of lifecycle queries.

• Active. The status of an object is active if the object is a full memberof the class (and
therefore conforms to its type). For example, a currently ongoing project is an active
member, at time now, of theProject class. Being active entails that the object can
undergo any operation (retrieval, update, deletion, etc.), unless otherwise specified
by the application.

• Suspended. This status qualifies objects that exist as members of the class, but
are to be seen as temporarily inactive members of the class. Being inactive means
that the object cannot undergo some operations. For example, in [14] no change
to the values of the attributes of an object is allowed in the periods the object is
suspended. An employee taking a temporary leave of absence is an example of what
can be considered as a suspended employee. Only active objects can be suspended.
A suspended object was in the past an active one.

• Disabled. This status is used to specify that the object’s membership in the class has
expired, meaning that the object is no more accessible in a normal mode of opera-
tion. While logically deleted, disabled objects are kept for some specific application
purposes, e.g. statistical analyses. When the object becomes definitely irrelevant for
the application, it is killed, rather than disabled, and disappears from the class. A
disabled object was in the past an active member of the class (an object cannot be
created in the disabled status). It can never again become a non-disabled member of
that class (e.g., an expired project cannot be reactivated).

These four statuses intuitively correspond to a behavior weare familiar with in
the real world. They are application-independent notions.Their choice has been driven
by the abstract view of what an object behavior may be in termsof membership into a
class. For specific applications specific classes may be equipped with a simplified form
of lifecycle. For example, a lifecycle of a given class may bedefined as not including
the scheduled status, or not including the suspended status. As already mentioned, the
simplest lifecycle consists of a single period with active status (which would be the case
for atemporal objects, should they be given a lifecycle).

A critical issue is deciding the operational semantics of the statuses. Following the
modification control approach in [14], statuses differ in terms of the operations that are
allowed on objects in each status. Obviously active objectsare fully operational, i.e. they
can undergo any operation. But should modification of suspended objects be inhibited,
as proposed in [14]? What if, for example, while an employee is suspended the cate-

16 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

gorization scheme of the company changes and the suspended employee now qualifies
for a different category? Should the change be performed forthe suspended employee
as for all other employees, or should the change be stored in some log of changes for
this employee and activated only at the moment the employee recovers its active status?
The latter policy suggests an analogy between suspended objects and site failure in a
network system. But in network systems objects in a failing site cannot be retrieved,
while in [14] suspended objects can be retrieved. In summary, we could always find an
example where the application requirements include the possibility to update an object
whatever its status is. Consequently, a generic approach would leave to the designer to
decide which restrictions to full operational semantics, if any, should characterize the
non-active statuses. Also, the manipulation language should allow predicates on status
to be included in the formulation of a query.

A similar difficult issue is to decide to what extent, if any, the status of objects
constrains the relationships holding between those objects. Most data models only allow
creation of relationships between objects in the active status at the time the relationship
is created. Our discussion on across-time relationships shows however that applications
may require the capability to involve suspended/scheduled/disabled objects in the cre-
ation of a new relationship (see Sections 7.4,7.3).

To conclude this discussion on statuses, it is worth noticing that application-
oriented lifecycles are frequently found and may be organized using the same mecha-
nism as for the application-independent lifecycle. For example, in a supplying company
objects in a classOrder can be categorized as standing-order, registered-order, order-in-
process, billed-order, paid-order, order-in-delivery, delivered-order. The designer could
then specify the transition between these ”statuses”, together with the corresponding
transition rules, and let the system enforce the consistency of orders’ evolution with the
stated constraints. It would be worth investigating the possibility to devise a formalism
that handles the definition and management of application lifecycles in a similar way as
it handles the predefined lifecycle we discussed above. But this is beyond the scope of
this paper. Notice that, conversely, having application-independent lifecycles associated
to objects and monitored by the system has two definite advantages:a) it allows relying
on standard operators (e.g. activate, suspend, reactivate, disable) for status manipulation,
andb) it allows a simpler definition of both generation and synchronization relationships
since the system knows the synchronization predicates thatapply to lifecycles.

Formalization. Let C be a temporal (i.e., temporary or mixed) class. We capture sta-
tus transition of membership inC by associating toC the following status classes:
Scheduled-C, Suspended-C, Disabled-C. In particular, status classes are represented
by the hierarchy of Figure 4 (whereC may also be mixed) that classifiesC instances
according to their actual status. To preserve upward compatibility we do not explicitly
introduce an active class, but assume by default that the name of the class itself denotes
the set of active objects, i.e.,Active-C ≡ C. We can assume that the status classes are
created automatically by the system each time a class is declared temporal. Thus, design-
ers and users are forced neither to introduce nor to manipulate status classes. They only

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 17

Top S

Exists-C

Scheduled-C

Disabled-C

C T Suspended-C

d

d

Figure 4. Status classes.

have to be aware of the different statuses in the lifecycle ofan object. Note that, since
membership of objects into snapshot classes is global, i.e.objects are always active, the
notion of status classes does not apply to snapshot classes.

To capture the intended meaning of status classes, we define ad-hoc constraints
and then prove that such constraints capture the evolving behavior of status classes as
described in the literature [28,14]. First of all, disjointness andISA constraints between
statuses of a classC can be described as illustrated in Figure 4, whereTop is supposed
to be a snapshot class which represents the universe of abstract objects (i.e.,TopB(t) ≡
∆B). Other than hierarchical constraints, the intended semantics of status classes induces
the following rules that are related to their temporal behavior:

(EXISTS) Existence persists until Disabled.
o ∈ Exists-CB(t) → ∀t′ > t.(o ∈ Exists-CB(t′) ∨ o ∈ Disabled-CB(t′))

(DISAB1) Disabled persists.
o ∈ Disabled-CB(t) → ∀t′ > t.o ∈ Disabled-CB(t′)

(DISAB2) Disabled was Active in the past.
o ∈ Disabled-CB(t) → ∃t′ < t.o ∈ CB(t′)

(SUSP) Suspended was Active in the past.
o ∈ Suspended-CB(t) → ∃t′ < t.o ∈ CB(t′)

(SCH1) Scheduled will eventually become Active.
o ∈ Scheduled-CB(t) → ∃t′ > t.o ∈ CB(t′)

(SCH2) Scheduled can never follow Active.
o ∈ CB(t) → ∀t′ > t.o 6∈ Scheduled-CB(t′)

As an example of a rule expressing the semantics associated to the different statuses,
the following rule formally expresses the suggestion from [14] to make unchangeable
the attributes of suspended objects, the unchangeability starting at the time instant the
object becomes suspended. LetA an attribute of a classC then:

(FREEZ) Freezing attributes of suspended classes.
o ∈ Suspended-CB(t) ∧ 〈o, a〉 ∈ AB(t) → 〈o, a〉 ∈ AB(t−1)

DLRUS axioms are able to fully capture the hierarchical constraints of Figure 4 (see [5]

18 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

for more details). Moreover, the above semantic equations are captured by the following
DLRUS axioms:

(EXISTS) Exists-C v 2
+(Exists-C t Disabled-C)

(DISAB1) Disabled-C v 2
+Disabled-C

(DISAB2) Disabled-C v 3
−C

(SUSP) Suspended-C v 3
−C

(SCH1) Scheduled-C v 3
+C

(SCH2) C v 2
+¬Scheduled-C

(FREEZ) Suspended-C v ¬∃[From](A u	¬A)

As a consequence of the above formalization, scheduled and disabled status classes can
be true only for a single interval, while active and suspended classes can hold for set of
intervals (i.e., an object can move many times back and forthfrom active to suspended
status and vice versa). In particular, the following set of new rules can be derived.

Proposition 7.1 (Status Classes: Logical Implications).Given the above formaliza-
tion of status classes, the following logical implicationshold (each logical implication is
described by a natural language sentence and the corresponding DLRUS axiom):

(DISAB3) Disabled will never become active anymore.
Disabled-C v 2

+¬C
(SCH3) Scheduled persists until active.

Scheduled-C v Scheduled-C U C

Let o ∈ Scheduled-CB(t0), theno ∈ Exists-CB(t0) and, by (SCH1), ∃t1 > t0.o ∈
CB(t1). Let assume thatt1 = min{t ∈ T | t > t0 and o ∈ CB(t)}. Now, by
(EXISTS), ∀t′.t0 < t′ < t1.o ∈ (Exists-C t Disbled-C)B(t′). On the other hand,
by (DISAB3), o 6∈ Disbled-CB(t′). By the “min” choice oft1, o 6∈ CB(t′) and also
o 6∈ Suspended-CB(t′). Thus,∀t′.t0 < t′ < t1.o ∈ Scheduled-CB(t′).
Together with axiom (SCH2), we can also conclude thatScheduled-C is true just on
a single interval.

(SCH4) Scheduled cannot evolve directly to Disabled.
Scheduled-C v ⊕¬Disbled-C
Let o ∈ Scheduled-CB(t0), then by (SCH1), ∃t1 > t0.o ∈ CB(t1). Thus, by
(DISAB3), o 6∈ Disbled-CB(t0+1).

Status classes are central in describing the evolutionary behavior of objects. In
the following we show the adequacy of the semantics associated to status classes to
describe:a) the behavior of temporal classes involved inISA relationships;b) the notions
of lifespan, birthanddeathof an object. In the next Sections status classes will be usedto
model:c) the object migration between classes;d) the relationships that involve objects
existing at different times (both generation and across-time relationships).

Isa vs. status.When anISA relationship is specified between two temporal classes, say
B ISA A, then the following constraints must hold between the respective status classes:

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 19

(ISA1) Objects active inB must be active inA.
B v A

(ISA2) Objects suspended inB must be either suspended or active inA.
Suspended-B v Suspended-A t A

(ISA3) Objects disabled inB must be either disabled, suspended or active inA.
Disabled-B v Disabled-A t Suspended-A t A

(ISA4) Objects scheduled inB must exist inA.
Scheduled-B v Exists-A

(ISA5) Objects disabled inA, and active inB in the past, must be disabled inB.
Disabled-A u 3

−B v Disabled-B

The formalization of status classes provided above is not sufficient to guarantee
properties (ISA1-5)4. We need to further assume that the system behaves under thetem-
poral ISA assumption: Each time anISA between two temporal classes holds (B ISA A),
then anISA between the respective existence status classes (Exists-B ISA Exists-A)
is automatically added by the system. Now, we are able to prove that points (ISA1-5)
above are entailed by the semantics associated to status classes under the temporalISA

assumption.

Proposition 7.2 (Status Classes Vs.ISA: Logical Implications) .LetA,B be two tem-
poral classes such thatB ISA A, then properties (ISA1-5) are valid logical implications.

(ISA1) Objects active inB must be active inA.
Obviously true sinceB ISA A holds, and bothA,B are considered active.

(ISA2) Objects suspended inB must be either suspended or active inA.
Let o ∈ Suspended-BB(t0), sinceSuspended-B ISA Exists-B, and (by temporal
ISA assumption)Exists-B ISA Exists-A, then,o ∈ Exists-AB(t0). On the other
hand, by (SUSP), ∃t1 < t0.o ∈ BB(t1), and then,o ∈ AB(t1). Then, by (SCH2),
o 6∈ Scheduled-AB(t0). Thus, due to the disjoint covering constraint between active
and suspended classes, eithero ∈ AB(t0) or o ∈ Suspended-AB(t0).

(ISA3) Objects disabled inB must be either disabled, suspended or active inA.
Let o ∈ Disabled-BB(t0), then, by (DISAB2), ∃t1 < t0.o ∈ BB(t1). By B ISA A and
A ISA Exists-A, then,o ∈ Exists-AB(t1). By (EXISTS) and the disjointness between
existing and disabled classes, there are only two possibilities at point in timet0 > t1:

1. o ∈ Exists-AB(t0), and thus, by (SCH2), o ∈ AB(t0) or o ∈ Suspended-AB(t0);
or

2. o ∈ Disabled-AB(t0).

(ISA4) Objects scheduled inB must exist inA.
Let o ∈ Scheduled-BB(t0), then,o ∈ Exists-BB(t0). Thus, by the temporalISA

assumption,o ∈ Exists-AB(t0). As a further logical implication, it also follows that
objects scheduled inB cannot be disabled inA.

4 We let the reader check that points 2,4 and 5 are not necessarily true.

20 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

(ISA5) Objects disabled inA, and active inB in the past, must be disabled inB.
Let o ∈ Disabled-AB(t0) ando ∈ BB(t1) for somet1 < t0, then,o ∈ Exists-BB(t1).
By (EXISTS) and the disjointness between existing and disabled classes, there
are only two possibilities at timet0 > t1: either o ∈ Exists-BB(t0) or o ∈
Disabled-BB(t0). By absurd, leto ∈ Exists-BB(t0), then by temporalISA assump-
tion,o ∈ Exists-AB(t0), which contradicts the assumption thato ∈ Disabled-AB(t0).

Lifespan. Here we define the lifespan of objects belonging to a temporalclass, together
with other related notions. The lifespan of an object w.r.t.a class describes the tem-
poral instants5 where the object can be considered a member of the class. Withthe
introduction of status classes we can distinguish between the following notions of lifes-
pan: EXISTENCEC , L IFESPANC , ACTIVEC , BEGINC , BIRTHC and DEATHC . They are
functions which depend on the object membership to the status classes associated to a
temporal classC.

The existence timeof an object describes the temporal instants where the object
is either a scheduled, active or suspended member of a given class. More formally,
EXISTENCESPANC : ∆B → 2T , such that:

EXISTENCESPANC (o) = {t ∈ T | o ∈ Exists-CB(t)}

The lifespanof an object describes the temporal instants where the object is an active
or suspended member of a given class (thus, LIFESPANC (o) ⊆ EXISTENCESPANC (o)).
More formally, LIFESPANC : ∆B → 2T , such that:

L IFESPANC (o) = {t ∈ T | o ∈ CB(t) ∪ Suspended-CB(t)}

Theactivespanof an object describes the temporal instants where the object is an active
member of a given class (thus, ACTIVESPANC (o) ⊆ L IFESPANC (o)). More formally,
ACTIVESPANC : ∆B → 2T , such that:

ACTIVESPANC (o) = {t ∈ T | o ∈ CB(t)}

The functions BEGINC and DEATHC associate to an object the first and the last appear-
ance, respectively, of the object as a member of a given class, while BIRTHC denotes
the first appearance as an active object of that class. More formally, BEGINC , BIRTHC ,
DEATHC : ∆B → T , such that:

BEGINC (o) = min(EXISTENCESPANC (o))
BIRTHC (o) = min(ACTIVESPANC (o)) ≡ min(L IFESPANC (o))
DEATHC (o) = max(L IFESPANC (o))

We could still speak of existencespan, lifespan or activespan for snapshot classes, but in
this case EXISTENCESPANC (o) ≡ L IFESPANC (o) ≡ ACTIVESPANC (o) ≡ T .

5 Note that the semantics ofERV T allows for set of intervals—usually mentioned as temporal elements in
the literature—as generic lifespan of an object.

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 21

EmployeeS

ManagerT

TopManagerTAreaManagerT

DEV

DEX

Figure 5. Transitions employee-to-manager and area-to-top manager

7.2. Transition

A database object represents a real world object seen as a member of the class the
object belongs to. As the real world evolves, the same real world object may loose its
quality as a member of the class and may acquire other or additional memberships in
other classes defined in the database. For example, there areformalisms allowingJohn
to be simultaneously represented as a member of the classEmployee and as a member of
the classTennisPlayer, and later to become a member of the classManager. In other
words, objects can dynamically show up and move around through the classes defined
in a schema.

Transitionsconstraints [20,28] bear specific transition semantics. They have been
introduced to model the phenomenon calledobject migration. A transition records ob-
jects migrating from asourceclass to atarget class. At the schema level, it expresses
that the instances of the source class maymigrate into the target class. Two types of
transitions have been considered:dynamic evolution, when objects cease to be instances
of the source class to become instances of the target class, anddynamic extension, when
the creation of the target instance does not force the removal of the source instance. For
example, considering the company schema (Figure 3), if we want to record data about
the promotion of area managers into top managers we can specify a dynamic evolution
from the classAreaManager to the classTopManager. We can also record the fact that
a mere employee becomes a manager by defining a dynamic extension from the class
Employee to the classManager (see Figure 5).

Finally, transitions are particularly relevant in the caseof not directly instantiable
classes. A class is said not directly instantiable if creation of objects with a new oid is not
allowed in the class. In this case, transition constraints define the trajectory of objects
in time and consequently rules object’s evolution as far as existence in a not directly
instantiable class is concerned.

Regarding the graphical representation, as illustrated inFigure 5, we use a dashed
arrow pointing to the target class and labeled with eitherDEX or DEV denoting dynamic
extension and evolution, respectively.

Formalization. Specifying a transition between two classes means that:a) We want to

22 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

keep track of such migration;b) Not necessarily all the objects in the source or in the
target participate in the migration;c) When the source class is a temporal class, migration
only involves active or suspended objects—thus, neither disabled nor scheduled objects
can take part in a transition.

In the following, we present a formalization that satisfies the above requirements.
Notice that transitions are constrained by the fact that they consider single objects. For-
malizing dynamic transitions as relationships would result in binary relationships linking
the same migrating object twice, once as an instance in the source class and once as an
instance in the target class. Rather than defining a relationship type with an equality
constraint on the identity of the linked instances, we represent transitions by introducing
a new class denoted by eitherDEXC1,C2

or DEVC1,C2
for dynamic extension and evolu-

tion, respectively. More formally, in case of adynamic extensionbetween classesC1, C2

the following semantic equation holds:

o ∈ DEX
B(t)
C1,C2

→ (o ∈ (Suspended-C1B(t) ∪ C1
B(t)) ∧ o 6∈ C2

B(t) ∧ o ∈ C
B(t+1)
2)

And the equivalentDLRUS axiom is:

(DEX) DEXC1,C2
v (Suspended-C1 t C1) u ¬C2 u⊕C2

In case of adynamic evolutionbetween classesC1, C2 the source object cannot remain
active in the source class. Thus, the following semantic equation holds:

o ∈ DEV
B(t)
C1,C2

→ (o ∈ (Suspended-C1B(t) ∪ C1
B(t)) ∧ o 6∈ C2

B(t) ∧

o ∈ C
B(t+1)
2 ∧ o 6∈ C

B(t+1)
1)

And the equivalentDLRUS axiom is:

(DEV) DEVC1,C2
v (Suspended-C1 t C1) u ¬C2 u⊕ (C2 u ¬C1)

Finally, we formalize the case where the source (C1) and/or the target (C2) totally par-
ticipate in a dynamic extension/evolution (at schema levelwe add mandatory cardinality
constraints onDEX/DEV links):

o∈C
B(t)
1 → ∃t′ > t.o∈DEX

B(t′)
C1,C2

Source Total Transition

o∈C
B(t)
2 → ∃t′ < t.o∈DEX

B(t′)
C1,C2

Target Total Transition

o∈C
B(t)
1 → ∃t′ > t.o∈DEV

B(t′)
C1,C2

Source Total Evolution

o∈C
B(t)
2 → ∃t′ < t.o∈DEV

B(t′)
C1,C2

Target Total Evolution

The above cases are captured by the followingDLRUS axioms, respectively:

(STT) C1 v 3
+DEXC1,C2

Source Total Transition
(TTT) C2 v 3

−DEXC1,C2
Target Total Transition

(STE) C1 v 3
+DEVC1,C2

Source Total Evolution
(TTE) C2 v 3

−DEVC1,C2
Target Total Evolution

Note that, either TTT or TTE are appropriate constraints to describe the behavior of not

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 23

directly instantiable classes. An interesting set of consequences of the above proposed
modeling of dynamic transitions are shown in the following proposition.

Proposition 7.3 (Transition: Logical Implications).The following logical implica-
tions hold as a consequence of the transition semantics:

1. The classesDEXC1,C2
and DEVC1,C2

are temporary classes; actually, they hold at
single time points.
DEXC1,C2

v ⊕¬ DEXC1,C2
u	¬DEXC1,C2

(similar for DEVC1,C2
)

Indeed, leto ∈ DEX
B(t)
C1,C2

, theno 6∈ C
B(t)
2 ando ∈ C

B(t+1)
2 , thuso 6∈ DEX

B(t+1)
C1,C2

ando 6∈ DEX
B(t−1)
C1,C2

. Note that, the timet such thato ∈ DEX
B(t)
C1,C2

records when the
transition event happens. Similar considerations apply for DEVC1,C2

.

2. Objects in the classesDEXC1,C2
andDEVC1,C2

cannot be disabled asC2.
DEXC1,C2

v ¬Disabled-C2 (similar for DEVC1,C2
)

Indeed, sinceDEXC1,C2
v ⊕C2, i.e. objects inDEXC1,C2

are active inC2

starting from the next point in time, then by property (DISAB3), DEXC1,C2
v

¬Disabled-C2. The same holds forDEVC1,C2
.

3. The target classC2 cannot be snapshot (it becomes temporary in case of bothTTT

andTTE constraints).
DEXC1,C2

v 3
∗[C2 u (3+¬C2 t 3

−¬C2)]
Indeed, from (DEX), DEXC1,C2

v ¬C2 u⊕ C2 (the same holds forDEVC1,C2
).

4. As a consequence of dynamic evolution, the source class,C1, cannot be snapshot
(and it becomes temporary in case ofSTE constraints).
DEVC1,C2

v 3
∗[C1 u (3+¬C1 t 3

−¬C1)]
Indeed, an object evolving fromC1 to C2 ceases to be a member ofC1.

5. Dynamic evolution cannot be specified between a class and oneof its sub-classes.
C2 v C1 |= DEVC1,C2

v ⊥
Indeed, from (DEV), DEVC1,C2

v ⊕ (C2 u ¬C1) which contradictsC2 v C1.

6. Dynamic extension between disjoint classes logically implies Dynamic evolution.
{DEXC1,C2

, C1 v ¬C2} |= DEVC1,C2

7.3. Across-Time Relationships

Across-Timerelationships [30,26,28] describe relationships betweenobjects that
may not coexist at the same time and possibly not at the time the relationship is as-
serted. The conceptual model MADS [28,29] allows forsynchronizationrelationships
to specify temporal constraints (Allen temporal relations) between the lifespan of linked
objects.Historical marksare used in the ERT model [26] to express a relationship be-
tween objects not existing at the same time (both past and future historical marks are
introduced).

24 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

Person AuthorBiography
P =

(a)

Person Grandparent
P,=

gparent

F,=

gchild

(0,4)

(b)

Employee Works-for T Project
(1,n)

=

(c)

Figure 6. Across-Time Relationships

There are many examples of these relationships (see Figure 6). Consider, for exam-
ple, a relationshipBiography between an author and a famous person already dead, or
the relationshipGrandparent that holds even if the grandparent passed away before the
grandchild was born or the grandchild is not yet born. Considering the company schema
(Figure 3), the relationshipWorks-for is an across-time relationship if company rules
allow assigning an employee to a project before its official launching, or if employees
may keep on working on a project after its official closure.

This Section formalizes across-time relationships with the aim of preserving the
snapshot reducibility of the resulting model. Let us consider a concrete example. Let
Biography be an across-time relationship linking the author of a biography with a fa-
mous person no more in existence. Snapshot reducibility says that if there is an instance
(say,bio = 〈Tulard, Napoleon〉) of the Biography relationship at timet0 (Tulard
wrote a bio on Napoleon in 1984), then, the projection ofBiography at timet0 (1984
in our example) must contain the pair〈Tulard, Napoleon〉. Now, while Tulard is a
member of the classAuthor in 1984, we cannot say thatNapoleon is an active member
of the classPerson in 1984. Our formalization of across-time relationships proposes
the use of status classes to preserve snapshot reducibility. The biography example can
be solved by asserting thatNapoleon is a member of theDisabled-Person class in
1984—i.e. the disabled status associated to the classPerson.

At the conceptual level, we mark reltionship roles withP,=,S,F (standing for Past,
Now, Suspended and Future, respectively). Furthermore, weallow to freely compose
the marks, e.g.〈P,=〉 denotes a role to a past or current object, while〈F,=〉 stands for a
role to a future or current object (see Figure 6).

Remark 7.4. Note that, across-time relationships represent a generalization of the clas-
sical notion of relationships. They do not impose any temporal constraint on the involved
objects allowing to capture a simplified version of the synchronization relationships in-

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 25

troduced in MADS [29]. In particular, if no mark is explicitly stated on a relationship’s
role (as in the case of the role restricted toProject in Figure 6.c) we implicitly as-
sume the compound mark〈P,=,S,F〉—said full-cross mark. This assumption changes
the semantic for relationships as given in Section 5. We assume, by default, that for
each relationship’s role the full-cross semantics holds (see the formal definition below).
This new semantics for relationships maintains the compositionality of the language. In
particular, to force a relationship to hold on an active class we need to add the〈=〉 mark
(as in the case of the role restricted toEmployee in Figure 6.c).

Formalization. Let R be a relationship, then, the semantics of marking theU1-labeled
role of the relationship is (we report the semantics for the single marks and the full-cross
compound mark, the other compound marks are just the disjunction of the single ones):

〈o1, o2〉 ∈ RB(t) → o1 ∈ C1
B(t) Now 〈=〉

〈o1, o2〉 ∈ RB(t) → o1 ∈ Disabled-C1B(t) Past〈P〉
〈o1, o2〉 ∈ RB(t) → o1 ∈ Scheduled-C1B(t) Future〈F〉
〈o1, o2〉 ∈ RB(t) → o1 ∈ Suspended-C1B(t) Suspended〈S〉
〈o1, o2〉 ∈ RB(t) → o1 ∈ (Exists-C1 t Disabled-C1)B(t) Full-Cross〈P,=,S,F〉

The correspondingDLRUS axioms are:

R v U1 : C1 Now 〈=〉
R v U1 : Disabled-C1 Past〈P〉
R v U1 : Scheduled-C1 Future〈F〉
R v U1 : Suspended-C1 Suspended〈S〉
R v U1 : (Exists-C1 t Disabled-C1) Full-Cross〈P,=,S,F〉

We say that a role in an across-time relationship isstrict historical if its mark does
not contain the〈=〉 mark (e.g.,〈P,F〉 is strict historical while〈P,=〉 is not). The following
Proposition shows how timestamping interacts with across-time relationships.

Proposition 7.5 (Across-Time: Logical Implications).The following logical implica-
tions hold as a consequence of the across-time semantics.

1. If a relationship,R, is snapshot then historical marks reduce to the〈=〉 mark (i.e.,
R is not a genuine across-time relationships).
Easily follows from next point.

2. If a relationship,R, has at least one strict historical role, then it is a temporary
relationship.
R v 3

+¬R t 3
−¬R

Without loss of generality, let assume thatR is binary and the role restricted toC1

is marked as past. Thus, if〈o1, o2〉 ∈ RB(t), theno1 ∈ Disabled-CB(t)
1 and, by

(DISAB2), ∃t1 <t s.t.o1∈C
B(t1)
1 . Then〈o1, o2〉 6∈RB(t1).

26 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

Department ReOrganize GT

Manager Propose GP Project
(0,1)

Figure 7. Production and transformation generation relationships.

3. If a relationship,R, has a strict historical role to a classC1, then theC1 class cannot
be snapshot. Moreover, if the participation forC1 is total, the class is temporary.
R v U1 :3∗[C1 u (3+¬C1 t 3

−¬C1)]
Let assume thatR is binary andC1 participates as strict past. Thus, if〈o1, o2〉 ∈

RB(t), then,o1 ∈ Disabled-CB(t)
1 . Then,o1 6∈ C

B(t)
1 while, by (DISAB2), ∃t1 < t

s.t. o1 ∈ C
B(t1)
1 .

7.4. Generation Relationships

Generationrelationships [28,19,27] represent processes that lead tothe emergence
of new objectsstarting from a set of existing objects. They express that (sets of) objects
in a target class may be generated from (sets of) objects in a source class. Depending
whether the source objects are preserved (as member of the source class) or disabled by
the generation process, we distinguish betweenproductionandtransformationrelation-
ships, respectively. Cardinality constraints can be addedto specify the cardinality of sets
involved in a generation. For example (see Figure 7), if we want to record the fact that
a group of managers proposes at most one new project a production relationship from
Manager to Project can be defined with the cardinality “at most one” on the manager
side. As another example, let us assume that a company may undergo a reorganization of
its departments. Some departments may either merge or splitand be replaced by others,
and the company wants to record these changes. One way would be to define a cyclic
transformation relationship onDepartment linking a set of existing departments to a
set of new departments. Generation relationships are similar to transition constraints.
On the other hand, transition constraints involve objects bearing the same oid, while ob-
jects linked by generation relationships necessarily beardifferent oids. As will be clear
from the semantics of generation relationships, they are a special case of across-time
relationships.

At the conceptual level we introduce two marks for generation relationships:GP
for production andGT for transformation relationships, and an arrow pointing tothe
target class (see Figure 7).

Formalization. We model generation as binary relationships connecting a source class
to a target one:REL(R) = 〈source : C1, target : C2〉. The semantics ofproduction
relationships, R, is described by the following equation:

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 27

〈o1, o2〉 ∈ RB(t) → (o1 ∈ C
B(t)
1 ∧ o2 ∈ Scheduled-C2B(t) ∧ o2 ∈ C

B(t+1)
2)

Thus, objects active in the source class produce objects active in the target class at the
next point in time. A production relationship is a special case of across-time relationship
with an 〈=〉 mark on the source role and an〈F〉 mark on the target role. As for across-
time relationships, the use of status classes allows us to preserve snapshot reducibility.
Indeed, for each pair of objects,〈o1, o2〉, belonging to a generation relationshipso1 is
active in the source whileo2 is scheduled in the target. TheDLRUS axiom capturing
the production semantics is:

(PROD) R v source : C1 u target : (Scheduled-C2 u⊕C2)

The case oftransformationis captured by the following semantic equation:

〈o1, o2〉 ∈ RB(t) → (o1 ∈ C
B(t)
1 ∧ o1 ∈ Disabled-C1B(t+1) ∧

o2 ∈ Scheduled-C2B(t) ∧ o2 ∈ C
B(t+1)
2)

Thus, objects active in the source generate objects active in the target at the next point
in time while the source objects cease to exist as member of the source. As for produc-
tion relationships, transformations are special cases of across-time relationships. The
DLRUS axiom capturing the transformation semantics is:

(TRANS) R v source : (C1u⊕ Disabled-C1)utarget : (Scheduled-C2u⊕C2)

Proposition 7.6 (Generation: Logical Implications).The following logical implica-
tions hold as a consequence of the generation semantics:

1. A generation relationship,R, is temporary; actually, it is instantaneous.
R v 2

+¬R u 2
−¬R

Indeed, let〈o1, o2〉 ∈ RB(t), then, sinceo2 6∈ Scheduled-CB(t+1)
2 , then〈o1, o2〉 6∈

RB(t+1). Since,o2 6∈ C
B(t)
2 , then〈o1, o2〉 6∈ RB(t−1).

2. The target class,C2, cannot be snapshot. Moreover, if the participation forC2 is
total, the class is temporary.
R v target :3∗[C2 u (3+¬C2 t 3

−¬C2)]

Indeed, let〈o1, o2〉 ∈ RB(t), then,o2 6∈ C
B(t)
2 ando2 ∈ C

B(t+1)
2 .

3. Objects participating as target cannot be disabled.
R v target :¬Disabled-C2
Indeed, let〈o1, o2〉 ∈ RB(t), then,o2 ∈ C

B(t+1)
2 . Thuso2 6∈ Disabled-CB(t)

2 .

4. If R is a transformation relationship, then,C1 cannot be snapshot. Moreover, if the
participation forC1 is total, the class is temporary.
R v source :3∗[C1 u (3+¬C1 t 3

−¬C1)]
Indeed, objects inC1 that participate inR will be disabled at the next point in time.

28 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

Note that theDepartment class that is both the source and target of a transforma-
tion relationship (Figure 7) can no longer be snapshot (as itwas in Figure 3) and must be
changed to temporary. This is an example of inconsistency checking that an automated
reasoner could perform to avoid inconsistent classes in a temporal schema. Furthermore,
as a consequence of this new timestamp for theDepartment class,InterestGroup is
now a genuine mixed class.

8. Complexity of Reasoning on Temporal Models

As this paper shows, the temporal description logicDLRUS is able to fully cap-
ture temporal schemas with both timestamping and evolutionconstraints. Reasoning
overDLRUS knowledge bases, i.e., checking satisfiability, subsumption and logical im-
plications, turns out to be undecidable [6]. The main reasonfor this is the possibility to
postulate that a binary relation does not vary in time. Note that, showing that temporal
schemas can be mapped intoDLRUS axioms does not necessarily imply that reasoning
over temporal schemas is an undecidable problem. Unfortunately, [3] shows that the un-
decidable Halting Problem can be encoded as the problem of class satisfiability w.r.t. a
temporal schema with, among the others, the following constructs: disjoint and covering
constraints, sub-relationships, timestamping and evolution constraints.

On the other hand, the fragment,DLR−
US , of DLRUS deprived of the ability to

talk about temporal persistence ofn-ary relations, forn ≥ 2, is decidable. Indeed,
reasoning inDLR−

US is an EXPTIME-complete problem [6]. This result gives us an
useful scenario where reasoning over temporal schemas becomes decidable. In partic-
ular, if we forbid timestamping for relationships (i.e., relationships are just unmarked)
reasoning on temporal models with just class timestamping but full evolution constraints
can be reduced to reasoning overDLR−

US . The problem of reasoning in this setting is
complete for EXPTIME since the EXPTIME-complete problem ofreasoning withALC
knowledge bases can be captured by such schemas [9].

We regain decidability by allowing full timestamping, i.e.timestamping for rela-
tionships, attributes and classes, but dropping evolutionconstraints. This result shows
another useful scenario where a complete procedure for reasoning over timestamping
can be adopted. This scenario is decidable since it is possible to encode temporal
schemas without evolution constraints by using a combination between the description
logicDLR and the epistemic modal logicS5 (see [7] for the exact mapping). The logic
DLRS5 has been recently proved to be decidable [7] by extending a previous result on
the logicALCS5 [16].

Other interesting scenarios under investigation are the cases where the temporal
expressivity is maintained in its full capability (i.e. both full timestamping and evolution
constraints) but some of the classical EER constructs are dropped. In particular, we
claim that by dropping isa between relationships and/or partitioning constraints we could
regain decidability in the full temporal scenario.

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 29

9. Conclusions

In this paper we proposed a formalization of the various modeling constructors
that support the design of temporal DBMS with particular attention to evolution con-
straints. The formalization, based on a model-theoretic semantics, has been developed
with the aim to preserve three fundamental modeling requirements: Orthogonality, Up-
ward Compatibility and Snapshot Reducibility. The introduction of status classes, which
describe the evolution in the membership of an object into a temporal class, allowed us
to maintain snapshot reducibility when characterizing both generations and across-time
relationships. The formal semantics clarified the meaning of the language’s construc-
tors and also gave a rigorous definition to relevant modelingnotions like: satisfiability
of schemas, classes and relationships; subsumption for both classes and relationships;
logical implication. Furthermore, for each constructor wepresented its formalization
together with the associated set of logical implications.

Finally, we have been able to show how temporal schemas can beequivalently ex-
pressed using a subset of first-order temporal logic, i.e.,DLRUS , the description logic
DLR extended with the temporal operatorsSinceandUntil. Overall, we obtained a tem-
poral conceptual model that preserves well established modeling requirements, equipped
with a model-theoretic semantics where each constructor can be seen as a set of precise
rules, and with the possibility to perform automated reasoning by mapping temporal
schemas into temporal description logic knowledge bases.

References

[1] B. Ahmad. Modeling bi-temporal databases. Master’s thesis, UMIST Department of Computation,
UK, 2003.

[2] J. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11),
1983.

[3] A. Artale. Reasoning on temporal conceptual schemas with dynamic constraints. In11th Int. Sympo-
sium on Temporal Representation and Reasoning (TIME04). IEEE Computer Society, 2004. Also in
Proc. of the 2004 Int. Workshop on Description Logics (DL’04).

[4] A. Artale and E. Franconi. Temporal ER modeling with description logics. InProc. of the Int. Conf.
on Conceptual Modeling (ER’99). Springer-Verlag, November 1999.

[5] A. Artale, E. Franconi, and F. Mandreoli. Description logics for modelling dynamic information. In
Jan Chomicki, Ron van der Meyden, and Gunter Saake, editors,Logics for Emerging Applications of
Databases. Lecture Notes in Computer Science, Springer-Verlag, 2003.

[6] A. Artale, E. Franconi, F. Wolter, and M. Zakharyaschev.A temporal description logic for reasoning
about conceptual schemas and queries. In S. Flesca, S. Greco, N. Leone, and G. Ianni, editors,
Proceedings of the 8th Joint European Conference on Logics in Artificial Intelligence (JELIA-02),
volume 2424 ofLNAI, pages 98–110. Springer, 2002.

[7] Alessandro Artale, Carsten Lutz, and David Toman. A description logic of change. InWorkshop
Notes of the Int. Workshop on Description Logics. DL-06, The Lake District, UK, May 2006.

[8] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.Description
Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, 2002.

[9] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. Reasoning on UML class diagrams.
Artificial Intelligence, 168(1–2):70–118, 2005.

30 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

[10] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query containment under
constraints. InProc. of the 17th ACM SIGACT SIGMOD SIGART Sym. on Principlesof Database
Systems (PODS’98), pages 149–158, 1998.

[11] D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual data modeling. In
J. Chomicki and G. Saake, editors,Logics for Databases and Information Systems. Kluwer, 1998.

[12] D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-based representation formalisms.J. of
Artificial Intelligence Research, 11:199–240, 1999.

[13] J. Chomicki and D. Toman. Temporal logic in informationsystems. In J. Chomicki and G. Saake,
editors,Logics for Databases and Information Systems, chapter 1. Kluwer, 1998.

[14] O. Etzion, A. Gal, and A. Segev. Extended update functionality in temporal databases. In O. Etzion,
S. Jajodia, and S. Sripada, editors,Temporal Databases - Research and Practice, Lecture Notes in
Computer Science, pages 56–95. Springer-Verlag, 1998.

[15] M. Finger and P. McBrien. Temporal conceptual-level databases. In D. Gabbay, M. Reynolds, and
M. Finger, editors,Temporal Logics – Mathematical Foundations and Computational Aspects, pages
409–435. Oxford University Press, 2000.

[16] D. Gabbay, A.Kurucz, F. Wolter, and M. Zakharyaschev.Many-dimensional modal logics: theory and
applications. Studies in Logic. Elsevier, 2003.

[17] H. Gregersen and J.S. Jensen. Conceptual modeling of time-varying information. Technical Report
TimeCenter TR-35, Aalborg University, Denmark, 1998.

[18] H. Gregersen and J.S. Jensen. Temporal Entity-Relationship models – a survey.IEEE Transactions
on Knowledge and Data Engineering, 11(3):464–497, 1999.

[19] R. Gupta and G. Hall. An abstraction mechanism for modeling generation. InProc. of ICDE’92,
pages 650–658, 1992.

[20] G. Hall and R. Gupta. Modeling transition. InProc. of ICDE’91, pages 540–549, 1991.
[21] I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragments of first-order temporal logics.

Annals of Pure and Applied Logic, 106:85–134, 2000.
[22] I. Horrocks, P.F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL: The making

of a web ontology language.Journal of Web Semantics, 1(1):7–26, 2003.
[23] C. S. Jensen, J. Clifford, S. K. Gadia, P. Hayes, and S. Jajodia et al. The Consensus Glossary of

Temporal Database Concepts. In O. Etzion, S. Jajodia, and S.Sripada, editors,Temporal Databases -
Research and Practice, pages 367–405. Springer-Verlag, 1998.

[24] C. S. Jensen and R. T. Snodgrass. Temporal data management. IEEE Transactions on Knowledge and
Data Engineering, 111(1):36–44, 1999.

[25] C. S. Jensen, M. Soo, and R. T. Snodgrass. Unifying temporal data models via a conceptual model.
Information Systems, 9(7):513–547, 1994.

[26] P. McBrien, A.H. Seltveit, and B. Wangler. An Entity-Relationship model extended to describe his-
torical information. InProc. of CISMOD’92, pages 244–260, Bangalore, India, 1992.

[27] C. Parent, S. Spaccapietra, and E. Zimanyi. The MurMur project: Modeling and querying multi-
representation spatio-temporal databases.Information Systems, 2005.

[28] S. Spaccapietra, C. Parent, and E. Zimanyi. Modeling time from a conceptual perspective. InInt.
Conf. on Information and Knowledge Management (CIKM98), 1998.

[29] S. Spaccapietra, C. Parent, and E. Zimanyi.Conceptual Modeling for Traditional and Spatio-
Temporal Applications—The MADS Approach. Springer, 2006.

[30] C. Theodoulidis, P. Loucopoulos, and B. Wangler. A conceptual modelling formalism for temporal
database applications.Information Systems, 16(3):401–416, 1991.

[31] Wikipedia. Wikipedia, the free encyclopedia. Temporal Databases. see
http://en.wikipedia.org/wiki/Temporal_database.

